Logistic 回归模型
Logistic 回归模型

• 反对数变换得到 OR e1
11
实例1
研究急性心肌梗塞(AMI)患病与饮酒 的关系, 采用横断面调查。
饮酒 不饮酒 合计
(X=1) (X=0)
患病(y=1) 55 74 129
未患病(y=0) 104663 212555 317218
合计
104718 21262Odds分别为
O R e1e1 .7 9 1 7 5 96
95% CI=(4.3, 8.5)
34
实例3:Logistic模型的交互作用
• 由于本例模型为
L o g i t( P ) 0 1 x 1 2 x 2 3 x 1 x 2
• 3,P=,差别有统计学意义,可以认为吸烟 和家属史对患肺癌有交互作用。
33
实例3:Logistic模型的交互作用
• 由于本例模型为 L o g i t( P ) 0 1 x 1 2 x 2 3 x 1 x 2
• 对于无家属史,x2=0代入模型,得到
Logit(P)01x1
• 由回归系数与OR的关系,得到吸烟的:
2
数据分析的背景
• 单因素的分类资料统计分析,一般采用 Pearson 2进行统计检验,用Odds Ratio 及其95%可信区间评价关联程度。
• 考虑多因素的影响,对于反应变量为分 类变量时,用线性回归模型P=a+bx就不 合适了,应选用Logistic回归模型进行统 计分析。
3
Logistic回归模型
• 在本例中,对于同为吸烟或不吸烟的对象 而言(x2相对固定不变),
• 饮酒(x1=1)的对数Odds为
L o g (O d d s x 1 1 )0 1 2 x 2
• 不饮酒(x1=0)的对数Odds为
logistic回归模型结果解读

logistic回归模型结果解读
x
一、 logistic回归模型结果解读
Logistic回归模型是一种分类数据模型,主要用于对不同类别的输出结果进行预测,因此,其结果解读也要以分类的形式来解释。
1、系数与因变量之间的关系
Logistic回归模型通过对因变量的分析,来推断被解释变量的概率。
结果中的系数提供了因变量与被解释变量之间的关系,比如我们可以分析不同系数值大小,从而获得因变量对被解释变量的影响程度,正相关的影响是系数的正值,反之是负值。
2、P值
P值是从回归结果中获取的,它可以反映特定因变量对被解释变量的重要性,P值越小,表明相对于其它因变量,该因变量对被解释变量影响越明显,则说明该因变量是重要因素。
3、R-Square和平均绝对值
R-Square是可决系数,它反映回归结果的好坏,R-Square的值越大,表明模型的预测效果越好,也就是越能够准确的来预测被解释变量的值。
平均绝对值也是可以用来判断模型好坏的指标,它比较每个样本的预测值和实际值之间的误差,值越小则表示模型的预测精度越高。
4、改进模型
可以通过以上结果,来判断模型的预测效果好坏,从而思考如何改进模型:比如可以进行特征选择,去掉系数值较小或者P值较大的因变量;也可以使用其它模型,如决策树或神经网络模型来进行比较,看哪一个模型对被解释变量的预测效果更好。
logistic回归模型——方法与应用

logistic回归模型——方法与应用
logistic回归模型是一种广泛应用于分类问题的统计学习方法。
它主要用于预测二分类问题,但也可以通过多类logistic回归
处理多分类问题。
方法:
1. 模型定义:logistic回归模型是一种线性分类模型,它
使用一个Logistic函数(也称为sigmoid函数)将线性模型生成
的线性组合转换为概率分数。
Logistic函数将线性组合映射到
0到1之间的值,表示输入属于正面类别的概率。
2. 模型训练:logistic回归模型的训练目标是找到一个权
重向量,使得模型能够最大化正面类别的概率。
训练算法通常采用最大似然估计方法,通过迭代优化权重向量来最小化负对数似然损失函数。
3. 预测:给定一个测试样本,logistic回归模型通过计算
样本的得分(也称为Logit),将其映射到0到1之间的概率分数。
如果概率分数超过一个预先定义的阈值,则将测试样本分类为正面类别,否则将其分类为负面类别。
应用:
1. 二分类问题:logistic回归模型最常用于解决二分类问题,例如垃圾邮件过滤、欺诈检测等。
2. 多类问题:通过多类logistic回归模型,可以将多个类别映射到0到1之间的概率分数,然后根据概率分数将测试样本分配到不同的类别中。
3. 特征选择:logistic回归模型可以用于特征选择,通过计算每个特征的卡方得分,选择与类别最相关的特征。
4. 文本分类:logistic回归模型在文本分类问题中得到广泛应用,例如情感分析、主题分类等。
logistic回归模型

Logistic回归模型
• 列联表中的数据是以概率的形式把属性变量联系 起来的,而概率p的取值在0与1之间,因此,要把
概率 p (x)与 x 之间直接建立起函数关系是不合
适的。即 (x) x
Logistic回归模型
• 因此,人们通常把p的某个函数f(p)假设为变量的 函数形式,取 f ( p) ln (x) ln p
1 (x) 1 p
• 称之为logit函数,也叫逻辑斯蒂变换。 • 因此,逻辑斯蒂变换是取列联表中优势的对数。
当概率在0-1取值时,Logit可以取任意实数,避免 了线性概率模型的结构缺陷。
Logistic回归模型
假设响应变量Y是二分变量,令 p P(Y 1) ,影响Y
的因素有k个 x1, xk,则称:
多项logit模型
• 前面讨论的logit模型为二分数据的情况,有时候 响应变量有可能取三个或更多值,即多类别的属 性变量。
• 根据响应变量类型的不同,分两种情况:
–响应变量为定性名义变量; –响应变量为定性有序变量;
• 当名义响应变量有多个类别时,多项logit模型应 采取把每个类别与一个基线类别配成对,通常取 最后一类为参照,称为基线-类别logit.
• 为二分数据的逻辑斯ln 1蒂pp回归g(模x1,型,,xk简) 称逻辑斯蒂 回归模型。其中的k个因素称为逻辑斯蒂回归模型 的协变量。
• 最重要的逻辑斯蒂回归模型是logistic线性回归模 型,多元logit模型的形式为:
ln
p 1 p
0
1x1
k xk
Logistic回归模型
• 其中,0, 1, , k 是待估参数。根据上式可以得到
多项logit模型
logistic回归的模型公式

logistic回归的模型公式Logistic回归模型是一种经典的统计学习方法,用于解决二分类问题。
它通过建立一个逻辑回归方程,预测某个样本属于某一类别的概率。
本文将介绍Logistic回归模型的原理和应用,并探讨其优缺点。
一、Logistic回归模型的原理Logistic回归模型是建立在线性回归模型的基础上,通过引入一个非线性函数(称为Logistic函数或Sigmoid函数)将线性回归的输出结果转化为概率值。
Logistic函数的数学表达式为:f(x) = 1 / (1 + e^(-x)),其中e为自然对数的底。
该函数的特点是输出值在0和1之间,可以用来表示某个事件发生的概率。
在Logistic回归模型中,假设有n个自变量(特征)x1,x2,...,xn,对应的回归系数为β1,β2,...,βn。
模型的方程可以表示为:P(y=1|x) = f(β0 + β1x1 + β2x2 + ... + βnxn),其中P(y=1|x)表示样本属于正例的概率。
为了估计回归系数,通常采用最大似然估计方法。
具体来说,我们希望通过最大化似然函数来找到最优的回归系数,使得模型对观测数据的拟合度最高。
然后,利用估计得到的回归系数,我们可以对新的样本进行预测,并给出其属于正例的概率。
二、Logistic回归模型的应用Logistic回归模型有广泛的应用领域,尤其在医学、金融、市场营销等领域中得到了广泛的应用。
在医学领域,Logistic回归模型常用于疾病风险预测和诊断模型的建立。
例如,可以利用患者的年龄、性别、血压等特征来预测患者患某种疾病的风险。
在金融领域,Logistic回归模型可以用于信用评分和违约预测。
银行可以根据客户的个人信息和历史信用记录,利用Logistic回归模型来评估客户的信用风险,并据此决定是否给予贷款。
在市场营销领域,Logistic回归模型可以用于客户分类和市场细分。
根据客户的购买行为、兴趣爱好等特征,可以预测客户对某种产品或服务的购买概率,进而制定相应的市场营销策略。
logistic回归模型统计描述

logistic回归模型统计描述在统计学中,logistic回归模型是一种常用的分类方法,它适用于将自变量与离散的二分类因变量相关联的情况。
本文将会详细介绍logistic回归模型的原理、概念以及应用,并解释如何利用该模型进行统计推断与预测。
一、logistic回归模型的原理与概念1.1 逻辑函数与S型曲线在logistic回归模型中,我们使用逻辑函数(logistic function)将自变量的线性组合转换为一个介于0和1之间的概率值。
逻辑函数(也称为sigmoid函数)是一个S型曲线,它可以表示如下:f(z) = 1 / (1 + e^(-z))其中,f(z)表示逻辑函数的输出值,e为自然对数的底,z为自变量的线性组合。
1.2 线性组合与logit函数在logistic回归模型中,自变量的线性组合表示为:z = β0 + β1x1 + β2x2 + ... + βnxn其中,zi表示第i个样本的线性组合值,β0、β1、β2...βn为模型的参数,xi为自变量的取值。
1.3 参数的解释与推断在logistic回归模型中,参数的解释通常使用odds ratio(比率几率)来进行推断。
比率几率表示的是某个事件的成功概率与失败概率之间的比值。
对于一个二分类事件,比率几率可以表示为:odds = p / (1 - p)其中,p为事件成功的概率。
通过对比两种不同情况下的比率几率,可以推断参数对于事件发生的影响程度。
二、logistic回归模型的应用2.1 数据准备在使用logistic回归模型时,首先需要准备好相关的数据。
通常情况下,我们将数据集分为训练集和测试集,用于模型的训练与验证。
2.2 模型拟合与参数估计使用logistic回归模型进行拟合时,通常采用最大似然估计法。
最大似然估计法旨在选择最适合观测到的数据的参数值,使得观测到的数据的概率最大化。
2.3 模型评估与优化在模型拟合完成后,我们需要对模型进行评估与优化。
logistic回归模型和logit模型

logistic回归模型和logit模型引言部分:在机器学习领域中,分类问题一直是研究的热点之一。
Logistic回归模型和Logit模型是二分类问题中,表现优异的分类算法。
基于二项分布的原理,这两个模型能够有效的进行分类,因此受到了广泛的应用和研究。
正文部分:一、Logistic回归模型Logistic回归模型是一种广义线性模型,被广泛应用于分类问题中。
它通过Sigmoid函数将线性回归的结果映射到概率值,在进行分类时,将概率值与设定的阈值进行比较,从而进行分类。
Logistic回归模型的形式如下:$$ P(Y=1|X)=\frac{1}{1+e^{-(w^TX+b)}} $$其中,$w$表示特征的权值,$b$表示偏置的值,$X$表示输入的特征向量,$Y$表示输出的标签。
该模型的训练过程通常采用最大似然估计方法进行优化,从而得到最佳的模型参数。
二、Logit模型Logit模型也是一种二分类模型,它的实现基于对数几率的概念。
在Logit模型中,将正例的对数几率表示为输入向量的线性函数,而负例的对数几率为其相反数。
模型的形式如下:$$ \log(\frac{P(Y=1|X)}{1-P(Y=1|X)})=w^TX+b $$Logit模型使用最大似然估计法进行参数的学习,使得模型尽可能地对训练数据进行拟合。
通过计算输入向量对应的对数几率,可以得到相应的输出标签,从而进行分类。
三、Logistic回归模型与Logit模型的异同1. 形式不同:Logistic回归模型采用的是Sigmoid函数进行分类,而Logit模型则是基于对数几率的理论进行分类。
2. 拟合效果不同:Logistic回归模型在分类效果上表现出更好的鲁棒性,能够在处理多重共线性等情况下表现出较好的效果;而Logit模型的拟合效果较为稳定,能够更好地应对噪声和异常点的干扰。
3. 处理方式不同:Logistic回归模型通常采用迭代法和正则化方法来优化模型参数;而Logit模型常常采用牛顿法等基于优化的方法来更新模型参数。
Logistic回归模型

Logistic 回归模型1 Logistic 回归模型的基本知识 1.1 Logistic 模型简介主要应用在研究某些现象发生的概率p ,比如股票涨还是跌,公司成功或失败的概率,以及讨论概率p 与那些因素有关。
显然作为概率值,一定有10≤≤p ,因此很难用线性模型描述概率p 与自变量的关系,另外如果p 接近两个极端值,此时一般方法难以较好地反映p 的微小变化。
为此在构建p 与自变量关系的模型时,变换一下思路,不直接研究p ,而是研究p 的一个严格单调函数)(p G ,并要求)(p G 在p 接近两端值时对其微小变化很敏感。
于是Logit 变换被提出来:ppp Logit -=1ln)( (1)其中当p 从10→时,)(p Logit 从+∞→∞-,这个变化范围在模型数据处理上带来很大的方便,解决了上述面临的难题。
另外从函数的变形可得如下等价的公式:XT X T T eep X ppp Logit βββ+=⇒=-=11ln)( (2)模型(2)的基本要求是,因变量(y )是个二元变量,仅取0或1两个值,而因变量取1的概率)|1(X y P =就是模型要研究的对象。
而T k x x x X ),,,,1(21 =,其中i x 表示影响y 的第i 个因素,它可以是定性变量也可以是定量变量,Tk ),,,(10ββββ =。
为此模型(2)可以表述成:kx k x kxk x k k ee p x x p p βββββββββ+++++++=⇒+++=- 11011011011ln (3)显然p y E =)(,故上述模型表明)(1)(ln y E y E -是k x x x ,,,21 的线性函数。
此时我们称满足上面条件的回归方程为Logistic 线性回归。
Logistic 线性回归的主要问题是不能用普通的回归方式来分析模型,一方面离散变量的误差形式服从伯努利分布而非正态分布,即没有正态性假设前提;二是二值变量方差不是常数,有异方差性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Log (Oddsx10 ) 0 2 x2
28
多自变量Logistic模型的OR解释
• 则饮酒的对数Odds Ratio为
ln(OR) Log (Oddsx11 ) Log (Oddsx10 ) 1
• 即:饮酒的 OR e • 意义:对于同为吸烟的对象或者同 为不吸烟的对象,其饮酒的 OR e 1 • 故称校正吸烟后OR,而前者未考虑 吸烟的单因素OR称为crude OR
12
实例1
• 饮酒的患病率和Odds分别为
55 P 55 1 P Odds1 1 1 P 104663 104718 1
不饮酒的患病率和Odds分别为
55 211555 OR 1.5094166 74 104663
P2 74 74 Odds2 P2 1 P2 211555 212629
• 应用Stata软件进行最大似然估计,得到 回归系数估计的主要结果如下
y x1 x2 _cons Coef. -0.000021 1.710272 -8.227466 P>|z| 1.000 0.000 0.000 [95% Conf. Interval] -0.3680823 0.3680403 1.341277 2.079267 -8.478243 -7.976688
32
应用Logistic模型分析实例3
• 用Stata软件对实例3的资料拟合上述模型,得 到下列结果:
0
74
0 1
55
104663
212555
• 选择0和1使似然函数L达到最大,即最 大似然估计。
16
实例1:用Logistic模型进行统计分析
• 以上述实例资料用Stata统计软件对回归系数 进行最大似然估计,得到回归系数估计为 y b se(b) z P>|z| x .4117232 .1780719 2.31 0.021 _cons -7.962891 .1162679 -68.49 0.000 • 即:
20
实例2:应用Logistic模型 校正混杂作用
• 从分层的资料表述可知:由于吸烟的混 杂作用以致饮酒与AMI患病伴随有关联。 • 用x1=1和0分别表示饮酒和不饮酒,用 x2=1和0分别表示吸烟和不吸烟, Logistic模型表示如下
e P(Y 1) 0 1x1 2 x2 1 e
18
实例1:用Logistic模型进行统计分析
• 实例1-7.962891
• se(b)=0.1780719, z=b/se=2.31 ,P=0.021<0.05 拒绝H0,差异有统计学意义,可认为0。 • 饮酒与患AMI的关联性为
Logistic 回归模型
赵耐青 复旦大学公共卫生学院
1
数据分析的背景
• 计量资料单因素统计分析 – 对于两组计量资料的比较,一般采用t检 验或秩和检验。 – 对于两个变量的相关分析采用Pearson 相关分析或Spearman相关分析 • 考虑多因素的影响,对于应变量(反应变 量)为计量资料,一般可以考虑应用多重 线性回归模型进行多因素分析。
0 1x1 2 x2
21
Logistic模型的似然比检验
• 在多个自变量回归模型中,回归系数检验分 为单个回归系数检验和多个回归系数检验。
• 单个回归系数检验表示其它变量均在模型中 的情况下,检验某个回归系数i=0,一般用 Wald检验(如实例1)。
• 多个回归系数检验要用似然比方法 (likelihood ratio test)
30
Logistic模型中的交互作用
• 实例3:采用病例对照设计研究吸烟和家 属史与患肺癌的关联性。
吸烟 不吸烟 合计 有家属史 患肺癌 未患肺癌 200 50 300 450 500 500 无家属史 患肺癌 未患肺癌 80 6 270 310 350 316
• 用x1=1,0分别表示吸烟和不吸烟;x2=1,0 分别表示有无家属史;用y=1,0分别表示 患肺癌和未患肺癌。
• 饮酒:OR e -0.000021
0.999979
27
多自变量Logistic模型的OR解释
• 在本例中,对于同为吸烟或不吸烟的对象 而言(x2相对固定不变), • 饮酒(x1=1)的对数Odds为
Log (Oddsx11 ) 0 1 2 x2
• 不饮酒(x1=0)的对数Odds为
22
Logistic模型的似然比检验
• • • • • 多个回归系数的检验(以实例2为例) H0:1=2=0 H1:1,2不全为0 =0.05 H0为真时,模型为 Logit ( P) 0 用最大似然法进行估计,其对数最大似 然函数值(似然函数的最大值取对数)记 为ln(L0)
23
1
0.4117232 0 -7.962891
17
b z 2.31 se(b)
Logistic模型的单个回归系数检验
• 关键是如果=0,意味自变量X与Y无关联 性。由于的估计存在抽样误差,即使=0, 其估计值b一般不为0,故需检验=0? • H0: =0 H1: 0 • =0.05 b • 检验统计量 z se(b) • 可以证明: H0:=0 为真时,z近似服从标 准正态分布,即:|z|>1.96,P<0.05,拒绝H0
31
实例3:Logistic模型的交互作用
• 一般而言,吸烟和家属史均是肺癌的重要 相关因素,很有可能这两个因素对患肺癌 有交互作用,因此采用下列含有交互作用 项的Logistic模型。
Logit ( P) 0 1x1 2 x2 3 x1x2
• 其中x1和x2的乘积项x1x2称为交互作用项
P ln(Odds) ln( ) 0 1 x1 m xm 1 P
9
Logistic回归模型 P • 记: log it ( P ) ln( ) 1 P
• 故可以写为 • 也可以写为
log it (P) 0 1x1 m xm
exp(0 1x1 m xm ) P 1 exp(0 1x1 m xm )
7
基础知识
P P2 Odds1 Odds2 OR 1 1 P P2 Odds1 Odds2 OR 1 1
• 故比较两个率<==> • 比较OR =1? OR>1 ? OR<1?
8
(二分类)Logistic回归模型
• 因为0<Odds<+ • 所以 -< ln(Odds) <+ • 对ln(Odds)引入类似多重线性回归的 表达式
Logistic模型的似然比检验
• H1为真时,实例2的模型为
Logit ( P) 0 1x1 2 x2
• 用最大似然法进行估计,其对数最大似然函 数值记为ln(L1) • 记似然比检验统计量为2ln(L)=2(ln(L1)-ln(L0))
24
Logistic模型的似然比检验
• 可以证明:H0为真时, 2ln(L)近似服从 2分布,自由度为需检验的自变量个数, 如在实例2中,自由度为2。 2 • 如果似然比检验统计量2ln(L)> 0.05,df 则拒绝H0。 • 如果对模型中所有的自变量进行检验, 则称为模型检验。如实例2,对两个自变 量进行检验,故这是模型检验。
2
数据分析的背景
• 单因素的分类资料统计分析,一般采用 Pearson 2进行统计检验,用Odds Ratio 及其95%可信区间评价关联程度。 • 考虑多因素的影响,对于反应变量为分 类变量时,用线性回归模型P=a+bx就不 合适了,应选用Logistic回归模型进行统 计分析。
3
Logistic回归模型
饮酒 不饮酒 合计 (X=1) (X=0) a b n1 患病(y=1) c d n2 未患病(y=0) m1 m2 N 合计
• 患病率 P1=a/m1 P2=b/m2
5
基础知识
P • Odds(优势) Odds 1 P P ( P 1) 1 1 Odds 1 1 P 1 P 1 P
OR e
0.4117232
1.509417
19
• OR的95%可信区间为(1.06,2.14)
应用Logistic模型校正混杂作用
• 实例2:上例没有考虑吸烟情况,故将吸 烟作为分层加入,资料如下:
吸烟 不吸烟 饮酒% 不饮酒% 饮酒% 不饮酒% 患病 33(0.03) 21(0.03) 22(0.015) 53(0.015) 未患病 22331 14210 82332 198345 合计 22364 14231 82354 198398
10
回归系数的意义
• 以x1的回归系数1为例 • 固定其它自变量,比较x1与x1 +1的ln(Odds) 变化。 • 对于x1, ln(Oddsx ) 0 1x1 m xm 1 • 对于x1 +1,
ln(OR) ln(Oddsx1 1) ln(Oddsx1 ) 1 1 • 反对数变换得到
• 按研究设计分类 – 非配对设计:非条件Logistic回归模型 – 配对的病例对照:条件Logistic回归模型
• 按反应变量分类 – 二分类Logistic回归模型(常用) – 多分类无序Logistic回归模型 – 多分类有序Logistic回归模型
4
基础知识
• 通过下例引入和复习相关概念 • 例如:研究患某疾病与饮酒的关联性
13
实例1的Logistic回归模型
• 患病(Y=1)的概率为
0 1x
e P(Y 1| x) 0 1x 1 e
• x=1 表示饮酒,x=0表示不饮酒 • 回归系数0,1是未知参数,通常用最大 似然估计的方法。