Logistic回归模型
logistic回归模型

含有名义数据的logit
含有名义数据的logit
• 例:某地25岁及以上人中各类婚姻状况居民的死 亡情况见表,试建立死亡率关于年龄和婚姻状况 的logit模型。
p ln A 1M 1 2 M 2 3 M 3 1 p
• 其中,A表示年龄(取中值),M1、M2、M3表示婚 姻状况 • 于是,估计的logit方程为:
–累积概率满足: P(Y 1) P(Y J ) 1 –累积概率的模型并不利用最后一个概率,因为它必然 等于1
多项logit模型
【例】研究性别和两种治疗方法(传统疗法与新疗法) 对某种疾病疗效的影响,84个病人的数据见表。 • 由题知,疗效是一个有序变量,包括显著、较有 效和无效三个值,需要建立累积logit模型。
• 统计分析结论如下:
–女性比男性的疗效好,其优势比为: e1.319 3.798 –新疗法比传统疗法好,其优势比为: e1.797 6.032
本次问卷中的案例
(以食堂满意度为例) • 一般为多项逻辑模型,且响应变量为有序变量。
p ln 1 10 1 x1 2 x2 1 p 1 ln p1 p2 x x 20 1 1 2 2 1 ( p1 p2 )
多项logit模型
• 当响应变量为定性有序变量时,多项logit模型的处理会与 名义变量有所不同。 • 有序响应变量的累积logit模型 –当变量为有序变量时,logit可以利用这一点,得到比 基线-类别有更简单解释的模型; –Y的累积概率是指Y落在一个特定点的概率,对结果为 类别j时,其累积概率为: P(Y j) 1 j , j 1,, J
多项logit模型
• 应用统计软件,可以得到以上模型的参数估计和回 归方程:
logistic回归模型——方法与应用

logistic回归模型——方法与应用
logistic回归模型是一种广泛应用于分类问题的统计学习方法。
它主要用于预测二分类问题,但也可以通过多类logistic回归
处理多分类问题。
方法:
1. 模型定义:logistic回归模型是一种线性分类模型,它
使用一个Logistic函数(也称为sigmoid函数)将线性模型生成
的线性组合转换为概率分数。
Logistic函数将线性组合映射到
0到1之间的值,表示输入属于正面类别的概率。
2. 模型训练:logistic回归模型的训练目标是找到一个权
重向量,使得模型能够最大化正面类别的概率。
训练算法通常采用最大似然估计方法,通过迭代优化权重向量来最小化负对数似然损失函数。
3. 预测:给定一个测试样本,logistic回归模型通过计算
样本的得分(也称为Logit),将其映射到0到1之间的概率分数。
如果概率分数超过一个预先定义的阈值,则将测试样本分类为正面类别,否则将其分类为负面类别。
应用:
1. 二分类问题:logistic回归模型最常用于解决二分类问题,例如垃圾邮件过滤、欺诈检测等。
2. 多类问题:通过多类logistic回归模型,可以将多个类别映射到0到1之间的概率分数,然后根据概率分数将测试样本分配到不同的类别中。
3. 特征选择:logistic回归模型可以用于特征选择,通过计算每个特征的卡方得分,选择与类别最相关的特征。
4. 文本分类:logistic回归模型在文本分类问题中得到广泛应用,例如情感分析、主题分类等。
logistic回归的模型公式

logistic回归的模型公式Logistic回归模型是一种经典的统计学习方法,用于解决二分类问题。
它通过建立一个逻辑回归方程,预测某个样本属于某一类别的概率。
本文将介绍Logistic回归模型的原理和应用,并探讨其优缺点。
一、Logistic回归模型的原理Logistic回归模型是建立在线性回归模型的基础上,通过引入一个非线性函数(称为Logistic函数或Sigmoid函数)将线性回归的输出结果转化为概率值。
Logistic函数的数学表达式为:f(x) = 1 / (1 + e^(-x)),其中e为自然对数的底。
该函数的特点是输出值在0和1之间,可以用来表示某个事件发生的概率。
在Logistic回归模型中,假设有n个自变量(特征)x1,x2,...,xn,对应的回归系数为β1,β2,...,βn。
模型的方程可以表示为:P(y=1|x) = f(β0 + β1x1 + β2x2 + ... + βnxn),其中P(y=1|x)表示样本属于正例的概率。
为了估计回归系数,通常采用最大似然估计方法。
具体来说,我们希望通过最大化似然函数来找到最优的回归系数,使得模型对观测数据的拟合度最高。
然后,利用估计得到的回归系数,我们可以对新的样本进行预测,并给出其属于正例的概率。
二、Logistic回归模型的应用Logistic回归模型有广泛的应用领域,尤其在医学、金融、市场营销等领域中得到了广泛的应用。
在医学领域,Logistic回归模型常用于疾病风险预测和诊断模型的建立。
例如,可以利用患者的年龄、性别、血压等特征来预测患者患某种疾病的风险。
在金融领域,Logistic回归模型可以用于信用评分和违约预测。
银行可以根据客户的个人信息和历史信用记录,利用Logistic回归模型来评估客户的信用风险,并据此决定是否给予贷款。
在市场营销领域,Logistic回归模型可以用于客户分类和市场细分。
根据客户的购买行为、兴趣爱好等特征,可以预测客户对某种产品或服务的购买概率,进而制定相应的市场营销策略。
logistic回归模型参数

logistic回归模型参数Logistic回归模型参数Logistic回归是一种常用的分类模型,它通过将线性回归模型的输出映射到[0,1]区间上,来进行二分类任务。
在Logistic回归模型中,有一些重要的参数需要考虑和理解。
本文将详细介绍这些参数的含义和作用。
1. 截距项(Intercept)截距项是Logistic回归模型中的一个重要参数。
它表示当所有自变量的取值都为0时,模型预测的概率为多少。
截距项可以理解为模型在没有考虑任何自变量的情况下的基准预测概率。
如果截距项较大,说明基准预测概率较高,反之则较低。
2. 斜率项(Coefficients)斜率项是Logistic回归模型中各自变量的系数。
每个自变量都有一个对应的系数,表示该自变量对模型预测的影响程度。
系数的正负可以告诉我们自变量与因变量之间的正负关系,系数的大小可以告诉我们自变量对因变量的影响程度。
3. 偏置(Bias)偏置是Logistic回归模型中的一个重要参数,它可以理解为模型的容忍度。
偏置越高,模型对噪声和异常值的容忍度越高,但可能会导致过拟合;偏置越低,模型对噪声和异常值的容忍度越低,但可能会导致欠拟合。
合适的偏置可以使模型在训练集和测试集上都有较好的表现。
4. 阈值(Threshold)阈值是Logistic回归模型中用于分类的一个重要参数。
当模型输出的概率大于等于阈值时,将样本划分为正类;当模型输出的概率小于阈值时,将样本划分为负类。
阈值的选择对模型的分类结果有重要影响。
较高的阈值会使正类的判定更加严格,较低的阈值会使正类的判定更加宽松。
5. 正则化参数(Regularization)正则化参数是Logistic回归模型中的一个重要参数,用于控制模型的复杂度。
正则化参数越大,模型的复杂度越低,有助于防止过拟合;正则化参数越小,模型的复杂度越高,有助于提高模型的拟合能力。
合适的正则化参数可以使模型在训练集和测试集上都有较好的表现。
logistic回归模型和logit模型

logistic回归模型和logit模型引言部分:在机器学习领域中,分类问题一直是研究的热点之一。
Logistic回归模型和Logit模型是二分类问题中,表现优异的分类算法。
基于二项分布的原理,这两个模型能够有效的进行分类,因此受到了广泛的应用和研究。
正文部分:一、Logistic回归模型Logistic回归模型是一种广义线性模型,被广泛应用于分类问题中。
它通过Sigmoid函数将线性回归的结果映射到概率值,在进行分类时,将概率值与设定的阈值进行比较,从而进行分类。
Logistic回归模型的形式如下:$$ P(Y=1|X)=\frac{1}{1+e^{-(w^TX+b)}} $$其中,$w$表示特征的权值,$b$表示偏置的值,$X$表示输入的特征向量,$Y$表示输出的标签。
该模型的训练过程通常采用最大似然估计方法进行优化,从而得到最佳的模型参数。
二、Logit模型Logit模型也是一种二分类模型,它的实现基于对数几率的概念。
在Logit模型中,将正例的对数几率表示为输入向量的线性函数,而负例的对数几率为其相反数。
模型的形式如下:$$ \log(\frac{P(Y=1|X)}{1-P(Y=1|X)})=w^TX+b $$Logit模型使用最大似然估计法进行参数的学习,使得模型尽可能地对训练数据进行拟合。
通过计算输入向量对应的对数几率,可以得到相应的输出标签,从而进行分类。
三、Logistic回归模型与Logit模型的异同1. 形式不同:Logistic回归模型采用的是Sigmoid函数进行分类,而Logit模型则是基于对数几率的理论进行分类。
2. 拟合效果不同:Logistic回归模型在分类效果上表现出更好的鲁棒性,能够在处理多重共线性等情况下表现出较好的效果;而Logit模型的拟合效果较为稳定,能够更好地应对噪声和异常点的干扰。
3. 处理方式不同:Logistic回归模型通常采用迭代法和正则化方法来优化模型参数;而Logit模型常常采用牛顿法等基于优化的方法来更新模型参数。
十三、logistic回归模型

非条件logistic回归
模型简介
❖
简单分析实例
内
容
哑变量设置
提
自变量的筛选方法与逐步回归
要
模型拟合效果与拟合优度检验
模型的诊断与修正
条件logistic回归
模型简介
对分类变量的分析,当考察的影响因素较少,且也为分类 变量时,常用列联表(Contingency Table)进行整理,并 用2检验或分层2检验进行分析,但存在以下局限性:
.184
Wal d 6.391
30.370 6.683 4.270
33.224
df 1 1 1 1
1
Sctep lwt
3
ptl
-.015
.007
5.584
1
.728
.327
4.961
1
ht
1.789
.694
6.639
1
Constant
.893
.829
1.158
1
a. Variable(s) entered on step 1: ptl.
模型拟合效果检验
结果分析
Area Under the Curv e
Test Result Variable(s): Predicted probability
Area Std. Errora
.708
.043
Asymptotic Sigb. .000
Asymptotic 95% Confidence Interval
❖ 给出了模型拟合过程中每一步的-2log(L)及 两个伪决定系数。
逐步回归
结果分析
Variables in the Equation
logistic回归模型总结
[转载]logistic回归模型总结logistic回归模型是最成熟也是应用最广泛的分类模型,通过学习和实践拟通过从入门、进阶到高级的过程对其进行总结,以便加深自己的理解也为对此有兴趣者提供学习的便利。
一、有关logistic的基本概念logistic回归主要用来预测离散因变量与一组解释变量之间的关系最常用的是二值型logistic。
即因变量的取值只包含两个类别例如:好、坏;发生、不发生;常用Y=1或Y=0表示X 表示解释变量则P(Y=1|X)表示在X的条件下Y=1的概率,logistic回归的数学表达式为:log(p/1-p)=A+BX =L其中p/1-p称为优势比(ODDS)即发生与不发生的概率之比可以根据上式反求出P(Y=1|X)=1/(1+e^-L)根据样本资料可以通过最大似然估计计算出模型的参数然后根据求出的模型进行预测下面介绍logistic回归在SAS中的实现以及输出结果的解释二、logistic回归模型初步SAS中logistic回归输出结果主要包括预测模型的评价以及模型的参数预测模型的评价与多元线性回归模型的评价类似主要从以下几个层次进行(1)模型的整体拟合优度主要评价预测值与观测值之间的总体一致性。
可以通过以下两个指标来进行检验1、Hosmer-Lemeshowz指标HL统计量的原假设Ho是预测值和观测值之间无显著差异,因此HL指标的P-Value的值越大,越不能拒绝原假设,即说明模型很好的拟合了数据。
在SAS中这个指标可以用LACKFIT选项进行调用2、AIC和SC指标即池雷准则和施瓦茨准则与线性回归类似AIC和SC越小说明模型拟合的越好(2)从整体上看解释变量对因变量有无解释作用相当于多元回归中的F检验在logistic回归中可以通过似然比(likelihood ratiotest)进行检验(3)解释变量解释在多大程度上解释了因变量与线性回归中的R^2作用类似在logistic回归中可以通过Rsquare和C统计量进行度量在SAS中通过RSQ来调用Rsquare,C统计量自动输出(4)模型评价指标汇总<span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">统计量<span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">趋势<span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">拟合<span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">作用SAS<span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">调用命令<span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">备注AIC<span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">、SC<td valign="top" style="border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">越小<td valign="top" style="border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">越好<td width="197" valign="top" style="width:117.9pt;border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">类似与多元回归中的残差平方和<td width="177" valign="top" style="width:106.3pt;border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">模型自动输出<td width="123" valign="top" style="width:73.75pt;border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">似然比卡方<td valign="top" style="border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">越大<td valign="top" style="border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">越好<td width="197" valign="top" style="width:117.9pt;border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">类似与多元回归中的回归平方和<td width="177" valign="top" style="width:106.3pt;border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">自动输出<td width="123" valign="top" style="width:73.75pt;border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt">P<span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">值越小越好RSQUARE<td valign="top" style="border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">越大<td valign="top" style="border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">越好<td width="197" valign="top" style="width:117.9pt;border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">类似与多元回归中的R^2<td width="177" valign="top" style="width:106.3pt;border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">用RSQ<span style="font-family:宋体;mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">选项调用<td width="123" valign="top" style="width:73.75pt;border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt">C<span style="font-family:宋体;mso-ascii-font-family: Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">统计量<td valign="top" style="border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">越大<td valign="top" style="border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">越好<td width="197" valign="top" style="width:117.9pt;border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">度量观测值和条件预测的相对一致性<td width="177" valign="top" style="width:106.3pt;border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">自动输出<td width="123" valign="top" style="width:73.75pt;border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt">HL<span style="font-family:宋体;mso-ascii-font-family: Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">统计量<td valign="top" style="border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">越小<td valign="top" style="border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">越好<td width="197" valign="top" style="width:117.9pt;border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt"><span style="font-family:宋体;mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin;mso-fareast-font-family:宋体;mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin">度量观测值和预测值总体的一致性<td width="177" valign="top" style="width:106.3pt;border-top:none;border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;mso-border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt">。
Logistic回归分析
Logistic 回归分析Logistic 回归分析是与线性回归分析方法非常相似的一种多元统计方法。
适用于因变量的取值仅有两个(即二分类变量,一般用1和0表示)的情况,如发病与未发病、阳性与阴性、死亡与生存、治愈与未治愈、暴露与未暴露等,对于这类数据如果采用线性回归方法则效果很不理想,此时用Logistic 回归分析则可以很好的解决问题。
一、Logistic 回归模型设Y 是一个二分类变量,取值只可能为1和0,另外有影响Y 取值的n 个自变量12,,...,n X X X ,记12(1|,,...,)n P P Y X X X ==表示在n 个自变量的作用下Y 取值为1的概率,则Logistic 回归模型为:[]0112211exp (...)n n P X X X ββββ=+-++++它可以化成如下的线性形式:01122ln ...1n n P X X X P ββββ⎛⎫=++++ ⎪-⎝⎭通常用最大似然估计法估计模型中的参数。
二、Logistic 回归模型的检验与变量筛选根据R Square 的值评价模型的拟合效果。
变量筛选的原理与普通的回归分析方法是一样的,不再重复。
三、Logistic 回归的应用(1)可以进行危险因素分析计算结果各关于各变量系数的Wald 统计量和Sig 水平就直接反映了因素i X 对因变量Y 的危险性或重要性的大小。
(2)预测与判别Logistic回归是一个概率模型,可以利用它预测某事件发生的概率。
当然也可以进行判别分析,而且可以给出概率,并且对数据的要求不是很高。
四、SPSS操作方法1.选择菜单2.概率预测值和分类预测结果作为变量保存其它使用默认选项即可。
例:试对临床422名病人的资料进行分析,研究急性肾衰竭患者死亡的危险因素和统计规律。
Logistic回归分析.sav解:在SPSS中采用Logistic回归全变量方式分析得到:(1)模型的拟合优度为0.755。
Logistic回归
为了探讨冠心病发生的有关危险因素,对26例冠心 病病人和28例对照者进行病例−对照研究,各因素 的说明见下表2。试用logistic逐步回归分析方法筛 ( 选危险因素 。α 入 = 0.10,α出 = 0.15)
X为自变量:X 1 , X 2 ,L , X m 为自变量: 为自变量 取值为1的概率为 则Y取值为 的概率为: 取值为 的概率为:
P = P{ = 1 X 1 , X 2 ,L, X m } Y
0 ≤ P ≤1
Logistic回归模型可表示为:
e β + β X + β X +L+ β X P= 1 + e β + β X + β X +L+ β X
0 1 1 2 2 m m 0 1 1 2 2 m
m
P=
1 1+ e
−( β + β X + β X +L+ β X )
0 1 1 2 2 m m
P ln = β 0 + β1 X 1 + β 2 X 2 + L + β m X m 1− P
P 为阳性与阴性结果发生概率之 ln 1− P 比的自然对数,称为P的logit变换 ,记为
df 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sig. .010 .097 .007 .008 .005 .016 .010 .034 .002 .053 .044 .012 .021 .002
Exp(B) 16.875 .593 6.219 21.303 .278 5.597 20.656 5.277 .095 2.519 4.464 23.000 7.008 .009
Logistic回归模型
Logistic 回归模型一、 分组数据的Logistic 回归模型针对0-1型因变量产生的问题,我们对回归模型应该作两个方面的改进。
第一, 回归函数应该用限制在[0,1]区间内的连续曲线,而不能再沿用沿用直线回归方程。
限制在[0,1]区间内的连续曲线很多,例如所有连续变量的分布函数都符合要求,我们常用的是Logistic 函数与正如分布函数,Logistic 函数的形式为:()1xxe f x e =+Logistic 函数的中文名称逻辑斯蒂函数,简称逻辑函数 第二、因变量y 本身只取0、1两个离散值,不适合直接作为回归模型中的因变量,由于回归函数01()i i i E y x πββ==+表示在自变量为i x 的条件下i y 的平均值,而i y 是0-1型随机变量,因而()i i E y π=就是在自变量为i x 的条件下i y 等于1的比例.这就提示我们可以用i y 等于1的比例代替i y 本身作为因变量.二,例子 在一次住房展销会上,与房地产商签订初步购房意向书的共有325n =名顾客,在随后的3个月的时间内,只有一部分顾客确实购买了房屋.购买了房屋的顾客记为1,没有购买房屋的顾客记为0,以顾客的年家庭收入为自变量x,对下面表所示的数据,序号年家庭收入(万元)x 签订意向书人数n 实际购房人数m 实际购房比例p逻辑变换p′=ln(p/(1-p))权重w=np(1-p)1 1.52580.32-0.7537718 5.442 2.532130.40625-0.37948967.718753 3.558260.448276-0.207639414.344834 4.552220.423077-0.310154912.692315 5.543200.465116-0.139761910.697676 6.539220.5641030.257829119.58974477.528160.5714290.287682076.85714388.521120.5714290.287682075.14285799.515100.6666670.693147183.333333建立Logistic 回归模型:c i x x p i i i,,2,1,)exp(1)exp(1010 =+++=ββββ,其中,c 为分组数据的组数,本例中c=9.将以上回归方程作线性变换,令)1ln(iii p p p -=' 该变换称为逻辑变换,变换后的线性回归模型为 i i i x p εββ++='10该式是一个普通的一元线性回归模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Logistic 回归模型1 Logistic 回归模型的基本知识 1.1 Logistic 模型简介主要应用在研究某些现象发生的概率p ,比如股票涨还是跌,公司成功或失败的概率,以及讨论概率p 与那些因素有关。
显然作为概率值,一定有10≤≤p ,因此很难用线性模型描述概率p 与自变量的关系,另外如果p 接近两个极端值,此时一般方法难以较好地反映p 的微小变化。
为此在构建p 与自变量关系的模型时,变换一下思路,不直接研究p ,而是研究p 的一个严格单调函数)(p G ,并要求)(p G 在p 接近两端值时对其微小变化很敏感。
于是Logit 变换被提出来:ppp Logit -=1ln)( (1)其中当p 从10→时,)(p Logit 从+∞→∞-,这个变化范围在模型数据处理上带来很大的方便,解决了上述面临的难题。
另外从函数的变形可得如下等价的公式:XT X T T eep X ppp Logit βββ+=⇒=-=11ln)( (2)模型(2)的基本要求是,因变量(y )是个二元变量,仅取0或1两个值,而因变量取1的概率)|1(X y P =就是模型要研究的对象。
而T k x x x X ),,,,1(21 =,其中i x 表示影响y 的第i 个因素,它可以是定性变量也可以是定量变量,Tk ),,,(10ββββ =。
为此模型(2)可以表述成:kx k x kxk x k k ee p x x p p βββββββββ+++++++=⇒+++=- 11011011011ln (3)显然p y E =)(,故上述模型表明)(1)(ln y E y E -是k x x x ,,,21 的线性函数。
此时我们称满足上面条件的回归方程为Logistic 线性回归。
Logistic 线性回归的主要问题是不能用普通的回归方式来分析模型,一方面离散变量的误差形式服从伯努利分布而非正态分布,即没有正态性假设前提;二是二值变量方差不是常数,有异方差性。
不同于多元线性回归的最小二乘估计法则(残差平方和最小),Logistic 变换的非线性特征采用极大似然估计的方法寻求最佳的回归系数。
因此评价模型的拟合度的标准变为似然值而非离差平方和。
定义1 称事件发生与不发生的概率比为 优势比(比数比 odds ratio 简称OR),形式上表示为OR=kx k x e pp βββ+++=- 1101 (4) 定义2 Logistic 回归模型是通过极大似然估计法得到的,故模型好坏的评价准则有似然值来表征,称-2ˆln ()L β为估计值βˆ的拟合似然度,该值越小越好,如果模型完全拟合,则似然值ˆ()L β为1,而拟合似然度达到最小,值为0。
其中ˆ()lnL β表示βˆ的对数似然函数值。
定义3 记)ˆ(βVar 为估计值βˆ的方差-协方差矩阵,21)]ˆ([)ˆ(ββVar S =为βˆ的标准差矩阵,则称 k i S w iii i ,,2,1,]ˆ[2 ==β (5)为iβˆ的Wald 统计量,在大样本时,i w 近似服从)1(2χ分布,通过它实现对系数的显著性检验。
定义4 假定方程中只有常数项0β,即各变量的系数均为0,此时称20ˆˆ2[ln ()ln ()]L L χββ=-- (6) 为方程的显著性似然统计量,在大样本时,2χ近似服从)(2k χ分布。
1.2 Logistic 模型的分类及主要问题根据研究设计的不同,Logistic 回归通常分为成组资料的非条件Logistic 回归和配对资料的条件Logistic 回归两种大类。
还兼具两分类和多分类之分,分组与未分组之分,有序与无序变量之分。
具体如下: 两分类非条件Logistic 回归:分组数据的Logistic 回归,未分组数据的Logistic 回归; 多分类非条件Logistic 回归:无序变量Logistic 回归,无序变量Logistic 回归; 条件Logistic 回归:1:1型、1:M 型和M:N 型Logistic 回归。
关于Logistic 回归,主要研究的内容包括: 1. 模型参数的估计及检验 2. 变量模型化及自变量的选择 3. 模型评价和预测问题 4. 模型应用2 Logistic 模型的参数估计及算法实现2.1 两分类分组数据非条件Logistic 回归因变量(反应变量)分为两类,取值有两种,设事件发生记为y=1,不发生记为 y=0,设自变量T k x x x X ),,,(21 =是分组数据,取有限的几个值;研究事件发生的概率)|1(X y P =与自变量X 的关系,其Logistic 回归方程为:k k x x X y P X y P βββ+++=== 110)|0()|1(ln 或 kx k x kxk x ee X y P ββββββ+++++++== 1101101)|1( 例2.1.1 分组数据[1] 在一次住房展销会上,与房地产商签订初步购房意向书的有n=325人,在随后的3个月时间内,只有一部分顾客购买了房屋。
购买房屋的顾客记为1,否则记为0。
以顾客的年家庭收入(万元)作为自变量X ,对数据统计后如表2.1.1所示,建立Logistic 回归模型。
例2.1.2 药物疗效数据[2] 为考察某药物疗效,随机抽取220例病人并分配到治疗组和对照组,治疗组采用治疗药物,对照组采用安慰剂。
治疗一段时间后观察病人的疗效,得到表2.1.2数据。
设y 为疗效指标(y=1 有效,y=0无效),1x 为治疗组指标(1为治疗组,0为对照组),2x 为年龄组指标(1为>45岁,0为其他)。
表2.1.2 药物疗效数据上述两个例子数据都是经过统计加工后的分组数据,对此类数据进行Logistic 回归,首先要明确应变量对应事件的发生概率如何确定和进行Logit 变换,其次才能建立Logistic 回归。
为便于数据处理,我们将此类数据的格式作个约定,排列格式为(组序号,自变量X ,该组事件发生数,该组总例数)。
表2.1.3 分组数据的标准格式表2.1.1 改造表表2.1.2 改造表 经过改造后,可得我们关心的事件的发生的频率为 n i n m p i ,,2,1,ii==该组总例数该组发生事件数。
其中n 为分组数,然后作Logit 变换,即iii i p p p Logit p -==1ln )(~。
变换后的数据,形式上已经可以采用一般的线性回归的处理方式来估计回归参数了。
此时方程变为:∑==+=k j ij j i n i x p 10,,2,1,~ββ 当然这样处理并没有解决异方差性,当i n 较大时,i p ~的近似方差为: )(,)1(1)~(i i i i i i y E n p D =-≈πππ (7)所以选择权重 n i p p n i i i i ,,2,1),1( =-=ω,最后采用加权最小二乘法估计参数。
注意,分组数据的Logistic 回归只适用于大样本分组数据,对小样本的为分组数据不适用,并且以组数n 为回归拟合的样本量,明显降低了拟合精度,在实际应用中必须谨慎。
求解算法及步骤:1.依据分组数据的标准格式,计算频率i p 、Logit 变换i p ~和权重i ω 2.构建加权最小二乘估计:∑∑∑∑====--=--ni kj ij j i i i i ni kj ij j i i x y x y 11201120)(min )(min βωβωωββω (8)令 i i i y y ω=*,T ik i i i i i x x X ),,,(1*ωωω =,T k ),,,(10ββββ =则方程又变成一般的线性回归模型:∑=-ni i T i X y12**)(minβ (9)3.构造增广矩阵21****][+⨯+k k T TY X X X 利用消去法得]ˆ)ˆ([ββVar I =矩阵,得到估计βˆ其中2,1++K K I 为残差平方和SE , 回归方差1ˆ2--=k n SE σ各系数检验采用 )1(~ˆˆ--=k n t I t ii i i σβ总平方和∑∑∑===-=ni ni ini ii i i y y ST 112122)()(ωωω,回归平方和SE ST SR -=总平方和求解相当于拟合i i y ωβ*0*=方程的残差平方和,故得上式ST所以方程的检验为)1,(~)1/(/----=k n k F k n SE kSR F例2.1.1的求解过程如下(由LLLStat 统计软件计算):表2.1.4 数据Logit 变换及权重家庭年收入x 实际购买mi 签订意向ni 比例pi 逻辑变换Logit 权重ni*pi(1-pi) 1.500000 8 25 0.320000 -0.753772 5.440000 2.500000 13 32 0.406250 -0.379490 7.718750 3.500000 26 58 0.448276 -0.207639 14.344828 4.500000 22 52 0.423077 -0.310155 12.692308 5.500000 20 43 0.465116 -0.139762 10.697674 6.500000 22 39 0.564103 0.257829 9.589744 7.500000 16 28 0.571429 0.287682 6.857143 8.500000 12 21 0.571429 0.287682 5.142857 9.500000 10 150.6666670.6931473.333333表2.1.5 回归模型基本信息总样本 9 求解方法 加权最小二乘 仅常数项beta0 -0.095029 方程F 统计量 51.982160 F 分布自由度 1,7 方程检验p 值 0.000176 总平方和 8.798294 回归平方和 7.754112 残差平方和 1.044181表2.1.6 分组Logistic 回归系数检验序号均值 回归系数 系数标准误 t 统计量 自由度df 检验P 值 常数项2.837815 -0.848882 0.113578 -7.473994 7 0.000056 家庭年收入x14.901140 0.149323 0.020711 7.209865 70.000056表2.1.7 1][-X X T0.086479 -0.014517-0.014517 0.002876本例Logistic 模型的回归方程:xe x e pi 149323.0848882.0149323.0848882.01ˆ+-+-+=对于多分类无序自变量的Logistic 回归,即某个自变量为m 个水平的名义变量(如治疗方法A,B,C ),只需要引入m -1(2个)个哑变量,然后采用上述方法进行分析。