找准单位1的练习

合集下载

苏教版六年级上册数学 第5招 巧解单位“1”问题 知识点梳理重点题型练习课件

苏教版六年级上册数学 第5招 巧解单位“1”问题 知识点梳理重点题型练习课件
哥哥给弟弟钱时,单位“1”的量
爸爸给哥哥钱时, 单位“1”的量
计算二小参赛人数时,单位“1”的量
类 型 2 单位“1”未知
原价作为单位“1”, 未知,假设求解
类 型 3 把单位“1”统一成不变的总量 看作单位“1”的量
看作单位“1”的量
第二单元 分数乘法 第5招 巧解单位“1”问题

解答分数乘法实际问题时,要注意找准单位 “1”以及与单位“1”对应的具体数量,特别是当 一道题中出现多个单位“1”时,一定要找准题中 每个分率所对应的单位“1”,对于不同的单位 “1”,有时要注意转化 单位“1”。
看作单位“1”的量

类 型 1 单位“1”变化

第一单元寻找单位“1”和列出等量关系式“提高型”专项练习(解析版)人教版

第一单元寻找单位“1”和列出等量关系式“提高型”专项练习(解析版)人教版
【答案】 红花 90×(1+ )
【分析】我们通常把“比”后的量看作单位“1”,求比一个数多几分之几的数是多少,用乘法计算。据此解答。
【详解】由分析可知:
“红花有90朵,黄花的朵数比红花的朵数多 ”是把红花的朵数看作单位“1”。
黄花的数量是:
90×(1+ )
=90×
=120(朵)
【点睛】本题考查分数乘法的计算,找准单位“1”是解题的关键。
【详解】童话书比故事书多 ,是把故事书的本数看作单位“1”,并把单位“1”平均分成7份。童话书比故事书多的本数相当于其中的1份。
【点睛】本题考查判断单位“1”的方法,关键是找清楚分率比赛的是“谁”的几分之几,“谁”就是单位“1”。
12.“小强的身高是 m,比妈妈的身高矮 ”。这句话中把( )看作单位“1”,数量关系式是( )。
240÷ =420(棵)
则梨树棵树的 与桃树同样多,是将梨树的棵数看作单位“1”,如果桃树有240棵,则梨树有420棵。
【点睛】本题考查已知一个数的几分之几是多少,求这个数,明确用除法是解题的关键。
16.学校图书室今年新进图书300本,今年比去年增长了 ,是把()看作单位“1”,今年是去年的 。
【答案】去年新进图书的数量;
【点睛】在确定单位“1”,一般是“谁、占谁”是单位“1”。
11.童话书比故事书多 ,是把( )看作了单位“1”,并把单位“1”平均分成( )份。童话书比故事书多的本数相当于其中的( )份。
【答案】 故事书的本数 7 1
【分析】根据题意,童话书比故事书多 ,童话书比故事书多的数量是故事书的 ,所以是把故事书看作单位“1”,结合题意分析解答即可。
【分析】根据判断单位“1”的方法:一般是把“比、占、是、相当于”后面的量看作单位“1”,即分数“的”字前面的量看作单位“1”,进行解答即可。

分数应用题——找准单位“1”和转换单位“1”

分数应用题——找准单位“1”和转换单位“1”

分数应用题——找准单位“1”和转换单位“1”
一、解题思路:在稍复杂的分数应用题中,常常会出现多个单位“1”的量,这时就需要看清各个不同的单位“1”之间的联系,把它们转化成统一的单位“1”来解答。

二、例题分析:甲乙丙各有图书若干本,丙的图书比甲少2
5,丙的图书又比乙多2
3
,已知甲
的本数比乙的本数多320本。

则甲乙丙各有图书多少本?
解析:由“甲的本数比乙的本数多320本”可知乙为单位“1”,由“丙的图书又比乙多2
3

可知丙的对应分率为1+2
3=5
3
,又因为“丙的图书比甲少2
5
”可知甲的对应分率为
5 3÷(1—2
5
)=25
9
,320本图书的对应分率就是甲的对应分率减去乙的对应分率,即25
9
—1=16
9

乙的本数(单位“1”)=320÷16
9
=180,这样甲和丙的本数就可以求出来了。

三、我来试试:
1、饲养场养着牛、羊、猪,牛的头数是羊的4
5,羊的头数是猪的3
5
,牛的头数是猪的几分
之几?
2、梨的个数是苹果的3
4,橘子的个数是梨的5
3
倍,橘子和梨共有90个,梨有多少个?
3、学校美术兴趣小组和电脑兴趣小组共102人,美术组人数的2
9和电脑组人数的1
4
相等,
美术组和电脑组各有多少人?
4、某校女生人数比全校人数的2
5多40人,男生人数是女生人数的4
3
,这所学校共有多少人?
5、三堆货物共重2900千克,已知甲堆比乙堆多1
2,丙堆比甲堆少1
4
,三堆货物各有多少?。

最全的单位“1”专项训练

最全的单位“1”专项训练

单位“1”专项训练一、理解分数中的单位“1”1. 1/4的意义:把单位“1”平均分成()份,表示这样的()份。

2.3/10千克的意义:把1千克平均分成()份,表示这样的()份,或者把3千克平均分成()份,表示这样的()份。

3. 修路队计划修路4千米,已经修了这条路的3/4。

修了多少千米?单位“1”是(),把单位“1”分成了()份,已经修了()份,修了()千米。

二、找出隐含的单位“1”1.李师傅计划生产1200个零件,实际完成了5/4,李师傅实际加工了多少个零件?李师傅实际完成了()的5/4,把()平均分成()份,实际加工了()*()=()个零件。

2.六年三班共有学生40人,期中男生占3/4,男生有多少人?男生占()的3/4,把()平均分成()份,男生人数计算公式为()*()=()。

3.一件衣服,原价100元,现降价4/5出售,现价占原价的(),现价()元。

4.水结成冰体积增大1/11,补充完整为:水结成冰体积增大()的1/11,把()平均分成()份,增大体积占()份。

三、分析比较,找出相似题的不同点1.(1)一批水泥,计划每天用去1/5吨,实际每天比计划多用去1/4吨,实际每天用去()吨;(2)一批水泥,计划每天用去1/5吨,实际每天比计划多用去1/4,实际每天用去()吨。

这两道题一样吗?那里不一样?2.一根木棍长9米,第一次截去2/3,第二次截去2/3米,两次共截去()米。

四、找准总数和部分数1.如我国人口约占世界人口的1/5。

()是总数,()是部分数,()是单位“1”。

2.食堂买来100千克白菜,吃了2/5,吃了多少千克?()是总数,()是部分数,()是单位“1”,()*()=()千克五、利用分率找单位“1”(紧挨在分数(分率)“的”字前的量是单位“1”)1.10的3/5是(),单位“1”是(),平均分成()份,求()份。

2.小红有20本书,小明的书是小红的3/4,小明有()本书,单位“1”是()。

小学六年级数学分数应用题解题技巧及练习

小学六年级数学分数应用题解题技巧及练习

【解题步骤】一、正确的找单位“1”是解决分数应用题的前提。

不管什么样的分数应用题,题中必有单位“1”。

正确的找到单位“1”是解答分数应用题的前提和首要任务。

分数应用题中的单位“1”分两种形式出现:1、有明显标志的:(1)男生人数占全班人数的4/7 (2)杨树棵数是柳树的3/5(3)小明的体重相当于爸爸的1/2 (4)苹果树比梨树多1/5条件中“占”“是”“相当于”“比”后面,分率前面的量是本题中的单位“1”。

2、无明显标志的:(1)一条路修了200米,还剩2/3没修。

这条路全长多少千米?(2)有200张纸,第一次用去1/4,第二次用去1/5。

两次共用去多少张?(3)打字员打一部5000字的书稿,打了3/10,还剩多少字没打?这3道题中的单位“1”没有明显标志,要根据问题和条件综合判断。

(1)中应把“一条路的总长”看作单位“1”(2)题中应把“200张纸”看作单位“1”(3)题中应把“5000个字”看作单位“1”。

二、正确的找对应关系是解分数应用题的关键。

每道分数应用题都有数量和分率的对应关系,正确的找到所求数量(或分率)和哪个分率(或数量)对应是解分数应用题的关键。

1、画线段图找对应关系。

(1)池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?(2)池塘里有12只鸭,鹅的只数是鸭的1/3。

池塘里有多少只鹅?(3)池塘里有4只鹅,正好是鸭的只数的1/3。

池塘里有多少只鸭?用线段图表示一下这3道题的关系。

从画的图可以看出,画线段图是正确找对应关系的有效手段。

通过画线段图可以帮助学生理解数量关系,同时也可得出如下数量关系式:分率对应量÷单位“1”的量=分率单位“1”的量×分率=分率对应量分率对应量÷分率=单位“1”的量2、从题里的条件中找对应关系一桶水用去1/4后正好是10克。

这桶水重多少千克?水的3/4 = 10三、根据数量关系式解答分数应用题“三步法”掌握以上关系和数量关系式,解分数应用题可以按以下三步进行:1、找准单位“1”的量;2、找准对应关系3根据数量关系式列式解答四、有效练习,建立模型,提升解分数应用题的能力。

分数应用题中的单位1问题的专项练习

分数应用题中的单位1问题的专项练习

分数应用题中的单位"1" 专项练习【基本原则】一、基本思路:分数的意义,“把单位1平均分成若干份,表示这样的一份或几份的数,叫分数”。

所以单位1的判定,就是看把谁平均分了,就把谁看作单位1.谁的几分之几,谁就把谁看作单位1。

.如一桶油用去14,男生占全班的25,桃树棵数相当于梨树棵树的34,一台电视机降价15。

男生比女生多全班的18.把全班人数看作单位1。

.在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多12。

理解为男生比女生多女生的12,所以把女生人数为标准,看作单位“1”,看在谁的基础上增加或减少,那个基础量就是单位“1”例如,水结成冰后体积增加了1 10,把水看作单位“1”,冰融化成水后,体积减少了112。

把冰看作单位“1”二、单位“1”的应用题:单位1的量×分率=分率对应量;分率对应量÷分率=单位1的量三、说明单位“1”在“是”、“比”、“占”,“相当于”后,分率前。

已知单位“1”用乘法,未知单位“1”用除法,用具体数÷对应分率=单位“1”的量。

【详细说明】正确找准单位“1”,是解答分数(百分数)应用题的关键。

每一道分数应用题中总是有关键句(含有分率的句子)。

如何从关键句中找准单位“1”,我觉得可以从以下这些方面进行考虑。

一、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”。

再如,食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”。

解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。

二、两种数量比较分数应用题中,两种数量相比的关键句非常多。

第二单元第5招 巧解单位“1”问题六年级上册数学苏教版

第二单元第5招 巧解单位“1”问题六年级上册数学苏教版

类 型 1 单位“1”变化
1.哥哥又将爸爸给自己的钱的15给了弟弟,弟弟现在有 多少元?
爸爸给哥哥时,爸爸的钱是单位“1” 哥哥给弟弟时,哥哥的钱是单位“1”
40+200×15×15=48(元) 答:弟弟现在有 48 元。
2. 在九月份的推普周活动中,某市举行“小学生听读写 大赛”。一小参加比赛的有 64 人,二小参赛的人数 比一小多18,三小参赛的人数比二小少18,三小有多 少人参加听读写大赛?
学生,果果花的钱是另外三个人所花总钱数的37,丫丫
花的钱是另外三个人所花总钱数的15,阳阳花的钱是另
外三个人所花总钱数的14,其余的都是乐乐花的钱。乐
乐花了多少钱?
三个单位“1”不一样
目前已知的只有所花总钱数,因此把60元看ቤተ መጻሕፍቲ ባይዱ单位“1” 果果花的钱是 60 元的3+3 7,也就是130; 丫丫花的钱是 60 元的1+1 5,也就是16; 阳阳花的钱是 60 元的1+1 4,也就是15。
第5招 巧解单位“ 1”问题
学习第2单元后使用
SJ 六年级上册
解答分数乘法实际问题时,要 注意找准单位“1”以及与单位“1”对应的具体数 量,特别是当一道题中出现多个单位“1”时,一定 要找准题中每个分率所对应的单位“1”,对于不同 的单位“1”,有时要注意转化 单位“1”。
经典例题
四名同学一共花了 60 元买了一些文具捐给希望小学的
同例题,以300个零件为单位“1”
300×1-125-15-145=120(个) 答:丁生产了 120 个零件。
5.甲、乙、丙、丁四个筑路队共修 1200 米长的一段路,
甲队修的占其他三个队修的总长度的37,乙队修的占 其他三个队修的总长度的14,丁队修的占其他三个队 修的总长度的123。丙队修了多少米的路? 1200×1-130-15-125=440(米) 答:丙队修了 440 米的路。

分数应用题中的单位1问题的专项练习

分数应用题中的单位1问题的专项练习

分数应用题中的单位"1" 专项练习【大体原则】一、大体思路:分数的意义,“把单位1平均分成若干份,表示如此的一份或几份的数,叫分数”。

因此单位1的判定,确实是看把谁平均分了,就把谁看做单位1.谁的几分之几,谁就把谁看做单位1。

.如一桶油用去14,男生占全班的25,桃树棵数相当于梨树棵树的34,一台电视机降价15。

男生比女生多全班的18.把全班人数看做单位1。

.在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也确实是单位“1”。

例如:六(2)班男生比女生多12。

明白得为男生比女生多女生的12,因此把女生人数为标准,看做单位“1”,看在谁的基础上增加或减少,那个基础量确实是单位“1”例如,水结成冰后体积增加了110,把水看做单位“1”,冰融化成水后,体积减少了112。

把冰看做单位“1”二、单位“1”的应用题:单位1的量×分率=分率对应量;分率对应量÷分率=单位1的量三、说明单位“1”在“是”、“比”、“占”,“相当于”后,分率前。

已知单位“1”用乘法,未知单位“1”用除法,用具体数÷对应分率=单位“1”的量。

【详细说明】正确找准单位“1”,是解答分数(百分数)应用题的关键。

每一道分数应用题中老是有关键句(含有分率的句子)。

如何从关键句中找准单位“1”,我感觉能够从以下这些方面进行考虑。

一、部份数和总数在同一整体中,部份数和总数作比较关系时,部份数通常作为比较量,而总数则作为标准量,那么总数确实是单位“1”。

例如我国人口约占世界人口的1/5,世界人口是总数,我国人口是部份数,因此,世界人口确实是单位“1”。

再如,食堂买来100千克白菜,吃了2/5,吃了多少千克?在那个地址,食堂一共买来的白菜是总数,吃掉的是部份数,因此100千克白菜确实是单位“1”。

解答这种分数应用题,只要找准总数和部份数,确信单位“1”就很容易了。

二、两种数量比较分数应用题中,两种数量相较的关键句超级多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何找分数应用题中的单位"1"
解答分数应用题的关键: 正确找准单位“1”。

从关键句中找准单位“1”, 关键句:含有分率的句子。

一、部分和整体
在同一整体中,部分和整体作比较关系时,部分通常作为比较量,而整体则作为标准量,那么总数就是单位“1”。

例如:1、男生占全班的45
,全班是整体(标准量),男生是部分,所以,全班就是单位“1”。

2、食堂买来100千克白菜,吃了25
,吃了多少千克?在这里,食堂一共买来的白菜是整体,吃掉的是部分,所以100千克白菜就是单位“1”。

解答这类分数应用题,只要找准整体数和部分数,确定单位“1”就很容易了。

练习 1、一桶油用去35 , 单位”1”是( ), ( )×35 =( )
2、修一条公路,已修全长的25 ,单位”1”是( ), ( ) ×25
=( ) 3、一本书,已看23
,单位”1”是( ), ( ) ×( )=( ) 4、全校学生人数的15 是一年级,单位”1”是( ), ( ) ×( )=( ) 二、两种数量比较
分数应用题中,两种数量相比的关键句非常多。

1、含有“占”、“是”、“相当于”词的句子。

占谁的几分之几、是谁的几分之几、相当于谁的几分之几谁就是单位“1”。

例如:一个长方形的宽是长的25。

在这关键句中,很明显是以长的为标准,宽和长相比较,也就是说长是单位“1”。

长×( )=( )
又如,今年的产量相当于去年的59。

那么相当于去年的产量,也就是去年产量为单位“1”。

练习:鸭的只数是鸡的45 ,( )×( )=( )
四年级的人数占五年级的23
, ( )×( )=( ) 白兔只数的25
相当于黑兔只数,( )×( )=( ) 2、在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多15。

就是以女生人数为标准(单位“1”) 关键词是多,可以转化成两个是字句。

女生×( )=多的人数 女生×( )=男生人数
练习 实际用水量比原计划节约19。

( )×( )=( ),( )×( )=( ) 足球比排球多14 。

( )×( )=( ), ( )×( )=( )。

相关文档
最新文档