热力学与统计物理练习题

合集下载

热力学及统计物理试题及答案

热力学及统计物理试题及答案
极端低温时系统的熵:S=0
4.对弱简并的非相对论费米气体,求:
(1)粒子数分布的零级近似f0与一级修正项Δf1;
(2)证明:与零级近似相比,粒子数的相对修正量和内能的相对修正量均正比于 。
解:费米气体分布函数为:
(1)

(2)
5.金属中的电子可以视为自由电子气体,电子数密度n,
(1)简述:T=0K时电子气体分布的特点,并说明此时化学势μ0的意义;
解:(1)单粒子的配分函数为:
处于基态的粒子数为:
处于激发态的粒子数为:
温度为T时处于激发态的粒子数与处于基态的粒子数之为:
极端高温时:ε0《kT, , 即处于激发态的粒子数与处于基态的粒子数基本相同;
极端低温时:ε0》kT, , 即粒子几乎全部处于基态。
(2)系统的内能:
热容量:
(3)极端高温时系统的熵:
( klnΩ)。
3.玻色统计与费米统计的区别在于系统中的粒子是否遵从(泡利不相容原理 )原理,其中(费米)系统的分布必须满足0 ≤ fs ≤ 1。
4.玻色系统和费米系统在满足( 经典极限条件(或e-α<<1) 或eα>>1)条件时,可以使用玻尔兹曼统计。
5. 给出内能变化的两个原因,其中( )项描述传热,( )项描述做功。
9.如果系统的分布函数为ρs,系统在量子态s的能量为Es,用ρs和Es表示:系统的平均能量为( ),能量涨落为( )(如写成 也得分)。
10.与宏观平衡态对应的是稳定系综,稳定系综的分布函数ρs具有特点( dρs/ dt=0 或与时间无关等同样的意思也得分 ),同时ρs也满足归一化条件。
二.计算证明题(每题10分,共60分)
能量值: 0,ω,2ω,3ω,…

热力学与统计物理题库

热力学与统计物理题库

热力学与统计物理题库《热力学与统计物理》练习题一简答题1.单元复相系的平衡条件;2.熵增原理3.能量均分定理4.热力学第一定律; 5.节流过程6.热力学第二定律的克氏表述计算题1. 1 mol 理想气体,在C 027的恒温下体积发生膨胀,由20大气压准静态地变到1大气压。

求气体所作的功和所吸的热。

2.求证(a )0<H P S ; (b) 0>??? ????UV S3.试证明在相变中物质摩尔内能的变化为 (1)p dTu L T dp=-如果一相是气相,可看作理想气体,另一相是凝聚相,试将公式简化。

4. 1 mol 范氏气体,在准静态等温过程中体积由1V 膨胀至2V ,求气体在过程中所作的功。

5.试证明,在相同的压力降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程中的温度降落。

6.蒸汽与液相达到平衡。

设蒸汽可看作理想气体,液相的比容比气相的比容小得多,可以略而不计。

以dvdT表在维持两相平衡的条件下,蒸汽体积随温度的变化率。

试证明蒸汽的两相平衡膨胀系数为111dv L v dT T RT=- ? ?????7. 在C 025下,压力在0至1000atm 之间,测得水的体积为:3623118.0660.715100.04610V p p cm mol ---=-?+??,如果保持温度不变,将1 mol 的水从1 atm 加压至1000 atm ,求外界所作的功。

8.试讨论以平衡辐射为工作物质的卡诺循环,计算其效率。

9.在三相点附近,固态氨的饱和蒸汽压(单位为大气压)方程为3754ln 18.70p T =- 液态的蒸汽压方程为 3063ln 15.16p T=-试求三相点的温度和压力,氨的气化热和升华热,在三相点的熔解热10. 在C 00和1atm 下,空气的密度为300129.0-?cm g 。

空气的定压比热11238.0--??=K g cal C p ,41.1=γ。

今有327cm 的空气,(i)若维持体积不变,将空气由C 00加热至C 020,试计算所需的热量。

完整版热力学统计物理试题

完整版热力学统计物理试题

简述题1.写出系统处在平衡态的自由能判据。

一个处在温度和体积不变条件下的系统,处在牢固平衡态的充要条件是,对于各种可能的有限虚变动,所引起的自由能的改变均大于零。

即F0 。

2.写出系统处在平衡态的吉布斯函数判据。

一个处在温度和压强不变条件下的系统,处在牢固平衡态的充要条件是,对于各种可能的有限虚变动,所引起的吉布斯函数的改变均大于零。

即G0 。

3.写出系统处在平衡态的熵判据。

一个处在内能和体积不变条件下的系统,处在牢固平衡态的充要条件是,对于各种可能的有限虚变动,所引起的熵变均小于零。

即S 04.熵的统计讲解。

由波耳兹曼关系S k g ln可知,系统熵的大小反响出系统在该宏观状态下所拥有的可能的微观状态的多少。

而可能的微观状态的多少,反响出在该宏观平衡态下系统的凌乱度的大小。

故,熵是系统内部凌乱度的量度。

5.为什么在常温或低温下原子内部的电子对热容量没有贡献不考虑能级的精巧结构时,原子内的电子激发态与基态的能量差为1~10 eV ,相应的特点4 5温度为 10 ~ 10 K。

在常温或低温下,电子经过热运动获得这样大的能量而跃迁到激发态的概率几乎为零,平均而言电子被冻结基态,因此对热容量没有贡献。

6.为什么在常温或低温下双原子分子的振动对热容量贡献可以忽略由于双原子分子的振动特点温度 3 kT << k θv,振子经过θ ~10K,在常温或低温下v热运动获得能量 h k θv从而跃迁到激发态的概率极小,因此对热容量的贡献可以忽略。

7.能量均分定理。

对于处在平衡态的经典系统,当系统的温度为T 时,粒子能量的表达式中的每一个独立平方项的平均值为12k T 。

8等概率原理。

对于处在平衡态的孤立系统,系统的各种可能的微观状态出现的概率是相等的。

9.概率密度 ( q, p,t ) 的物理意义、代表点密度 D ( q, p,t ) 的物理意义及两者的关系。

(q, p,t ) : 在 t 时辰,系统的微观运动状态代表点出现在相点(q, p) 邻域,单位相空间体积内的概率。

热力学统计物理-基础题库

热力学统计物理-基础题库

Q 一、选择题:(每题 3 分)下列选项正确的是().(热力学系统的平衡状态及其描述)(容易)A . 与外界物体有能量交换但没有物质交换的系统称为绝热系统。

B . 与外界物体既有能量交换又有物质交换的系统称为封闭系统。

C . 与外界物体既没有能量交换又没有物质交换的系统称为孤立系统。

D . 热力学研究的对象是单个的微观粒子。

答案:B.简单系统的物态方程的一般形式为().(物态方程)(容易)A. f ( p ,V ) = 0 ;B. f ( p ,V ,T ) = C ;C. f ( p ,V ,T ) = 0 ;D. f ( p ,V ) = C ;答案:C.下列关于状态函数的定义正确的是().(焓自由能吉布斯函数)(容易)A . 系统的焓是: H = U - pV ;B . 系统的自由能函数是: F = U + TS ;C . 系统的吉布斯函数是: G = U - TS + pV ;D . 系统的熵函数是: S = ;T答案:C.状态函数焓的全微分表达式为dH 为 ( ).(内能焓自由能和吉布斯函数的全微分)(中等)A. TdS - pdV ;B. TdS + Vdp ;C. -SdT - pdV ;D. -SdT + Vdp答案:B.内能函数的全微分表达式为dU 为 ( ). (内能焓自由能和吉布斯函数的全微分)(中等)A. TdS -pdV ;B. TdS +Vdp ;C. -SdT -pdV ;D. -SdT +Vdp答案:A.自由能函数的全微分表达式为dF 为 ( ). (内能焓自由能和吉布斯函数的全微分)(中等)A. TdS -pdV ;B. TdS +Vdp ;C. -SdT -pdV ;D. -SdT +Vdp答案:C.吉布斯函数的全微分表达式为dG 为 ( ). (内能焓自由能和吉布斯函数的全微分)(中等)A. TdS -pdV ;B. TdS +Vdp ;C. -SdT -pdV ;D. -SdT +Vdp答案:D.下列关于状态函数全微分正确的是().(内能焓自由能和吉布斯函数的全微分)(中等)A.内能: dU =TdS -pdV ;B.焓: dH =TdS -Vdp ;C.自由能: dF =-SdT +pdV ;D.吉布斯函数: dG =-SdT -Vdp ;答案:A.下面几个表达式中错误的是( ).(热量和焓)(容易).∂∂p ∂TCp =T∂TA.CVB.CV =∂U; V=∂S; V∂HC. C = ;p∂SD. ;p答案:B.下面关于热力学第零定律的表述错误的是()。

热力学与统计物理试题

热力学与统计物理试题

热力学与统计物理试题一、选择题1. 热力学第一定律表明,一个系统内能的微小改变等于它与周围环境交换的热量与它做的功之和。

若一个气体绝热膨胀,其内能的变化量为:A. 正值B. 负值C. 零D. 无法确定2. 理想气体状态方程为 \( pV = nRT \),其中 \( p \) 代表压力,\( V \) 代表体积,\( n \) 代表物质的量,\( R \) 是气体常数,\( T \) 代表温度。

若温度和物质的量保持不变,而压力增加,则体积的变化为:A. 增加B. 减小C. 不变D. 先增加后减小3. 熵是热力学中用来描述系统无序度的物理量。

在一个孤立系统中,熵的变化趋势是:A. 持续增加B. 持续减少C. 保持不变D. 在特定条件下增加或减少4. 麦克斯韦关系是热力学中描述状态函数之间关系的一组方程。

对于一个理想气体,其等体过程中的温度与熵的关系是:A. 正比B. 反比C. 无关D. 非线性关系5. 统计物理中,微观状态与宏观状态之间的关系是通过什么原理来描述的?A. 能量均分原理B. 等概率原理C. 熵最大原理D. 能量最小原理二、填空题1. 热力学第二定律可以表述为,在一个自发的过程中,熵总是倾向于增加,这个过程是________的。

2. 理想气体的内能只与温度有关,与体积和压力________。

3. 在热力学循环中,卡诺循环的效率是由两个热库的温度决定的,其效率公式为 \( \eta = 1 - \frac{T_{c}}{T_{h}} \),其中 \( T_{c} \) 是________的温度,\( T_{h} \) 是________的温度。

4. 统计物理中,一个系统的宏观状态可以通过多个不同的________来实现。

5. 按照玻尔兹曼熵的定义,一个系统的熵与它的微观状态数目的对数成正比,数学表达式为 \( S = k_B \ln W \),其中 \( k_B \) 是________常数。

高考物理热力学与统计力学题目训练卷

高考物理热力学与统计力学题目训练卷

高考物理热力学与统计力学题目训练卷在高考物理中,热力学与统计力学是重要的知识点板块。

为了帮助同学们更好地掌握这部分内容,提高解题能力,以下为大家精心准备了一份题目训练卷。

一、选择题1、一定质量的理想气体,在保持温度不变的情况下,体积增大,则()A 气体分子的平均动能增大B 气体分子的平均动能减小C 单位时间内气体分子对器壁单位面积的碰撞次数减少D 单位时间内气体分子对器壁单位面积的碰撞次数增加答案:C解析:温度是分子平均动能的标志,温度不变,分子平均动能不变,A、B 选项错误。

理想气体体积增大,单位体积内分子数减少,单位时间内气体分子对器壁单位面积的碰撞次数减少,C 选项正确,D 选项错误。

2、对于一定质量的理想气体,下列说法正确的是()A 若气体的压强和体积都不变,其内能也一定不变B 若气体的温度不断升高,其压强也一定不断增大C 若气体从外界吸收了热量,其内能一定增加D 若气体对外做功,其内能一定减少答案:A解析:对于一定质量的理想气体,若压强和体积都不变,则温度也不变,内能不变,A 选项正确。

气体的温度不断升高,若体积同时增大,压强不一定增大,B 选项错误。

气体从外界吸收热量,若同时对外做功,内能不一定增加,C 选项错误。

气体对外做功,若同时吸收热量,内能不一定减少,D 选项错误。

3、下列过程中,可能发生的是()A 某工作物质从高温热源吸收 20kJ 的热量,全部转化为机械能,而没有产生其他任何影响B 打开一高压密闭容器,其内气体自发溢出后又自发跑回容器,恢复原状C 利用其他手段,使低温物体温度更低,高温物体的温度更高D 将两瓶不同液体自发混合,然后又自发地各自分开答案:C解析:根据热力学第二定律,不可能从单一热源吸收热量全部转化为机械能而不产生其他影响,A 选项错误。

气体自发溢出后不能自发跑回容器恢复原状,B 选项错误。

利用其他手段,可以使低温物体温度更低,高温物体温度更高,C 选项正确。

热力学与统计物理 - 习题课一 2024-11-18

热力学与统计物理 - 习题课一 2024-11-18

第一章 习题10.(a)等温条件下,气体对外作功为22ln 2V VVVdVW pdV RT RT V===⎰⎰ln 2Q W RT =-=- ()0U ∆=(b)等压条件下,由PV RT =,得RTP V =所以 o o o o o o RT V P V V P W ==-=)2( 当体积为2V 时 22P VPV T T R R=== 1252TP P T Q C dT C T RT ===⎰11.(1) ()521 2.110P Q C n T T cal =-=⨯⎪⎭⎫⎝⎛==25041000n (2) 51.510VU nC T cal ∆=∆=⨯ (3)4610W Q U cal =-∆=⨯ (4) 因为0W =,所以51.510Q U cal =∆=⨯12.由热力学第肯定律Q d W d dU += (1)对于准静态过程有PdV W d -=对志向气体V dU C dT =气体在过程中汲取的热量为dTC Q d n =由此()n V C C dT PdV -= (2)由志向气体物态方程RT n PV += (3) 且 P VC C n R +-= 所以 ()()n V P V dT dVC C C C T V-=- (4) 对志向气体物态方程(3)求全微分有dV dP dT V P T+= (5)(4)与(5)联立,消去dTT ,有()()0n V n P dP dVC C C C P V-+-= (6)令n Pn V C C n C C -=-,可将(6)表示为0dV dPn V P += (7)若,,n V P C C C 均为常量,将(7)式积分即得nPV C = (8)式(8)表明,过程是多方过程.14. (a) 以T,P 为电阻器的状态参量,设想过程是在大气压下进行的,假如电阻器的温度也保持为27C 不变,则电阻器的熵作为状态函数也保持不变.(b) 若电阻器被绝热壳包装起来,电流产生的焦耳热Q 将全部被电阻器汲取而使其温度由i T 升为f T ,所以有2()P f imC T T i Rt -= 2600f i Pi RtT T K mC =+= (1卡 = 4.1868焦耳)139.1ln-•===∆⎰K cal T T mC TdT mC S ifT T p p fi15.依据热力学第肯定律得输血表达式Q d W d dU += (1)在绝热过程中,有0=Q d ,并考虑到对于志向气体dT C dU v = (2)外界对气体所作的功为:pdV w d -=,则有0=+pdV dT C v (3)由物态方程nRT pV =,全微分可得nRdT Vdp pdV =+ (4)考虑到对于志向气体有)1(-=-=γv v p C C C nR ,则上式变为dTC Vdp pdV v )1(-=+γ (5)把(5)和(3)式,有0=+pdV Vdp γ (6)所以有 V p V p sγ-=⎪⎭⎫⎝⎛∂∂ (7)若m 是空气的摩尔质量,m +是空气的质量,则有V m +=ρ和m m n +=ss s VV p p ⎪⎪⎭⎫⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ρρ ssV p m V p ⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂+2ρ (8)将式(7)代入(8)式,有+=⎪⎪⎭⎫ ⎝⎛∂∂m pV p sγρ (9) 由此可得+=⎪⎪⎭⎫ ⎝⎛∂∂=m pV p v sγρ有物态方程RT m m nRT pV +==,代入上式,得m RTmpVv γγ==+17.(1) 0C 的水与温度为100C 的恒温热源接触后水温升为100C ,这一过程是不行逆过程.为求水、热源和整个系统的熵变,可以设想一个可逆过程,通过设想的可逆过程来求不行逆过程前后的熵变。

热力学与统计物理期末题库

热力学与统计物理期末题库

热力学与统计物理期末习题一、简答题1.什么是孤立系?什么是热力学平衡态?2.请写出熵增加原理?并写出熵增加原理的数学表达式?3.说明在S ,V 不变的情形下,平衡态的U 最小。

4.试解释关系式 ∑∑+=l l l l l l da d a dU εε 的物理意义?5.什么是玻色-爱因斯坦凝聚,理想玻色气体出现凝聚体的条件是什么?6.什么是热力学系统的强度量?什么是广延量?7.什么是热动平衡的熵判据?什么是等概率原理?请写出单元复相系的平衡条件。

8.写出吉布斯相律,并判断盐的水溶液的最大自由度数。

9.写出玻耳兹曼关系,并说明熵的统计意义。

10.请分别写出正则分布的量子表达式和经典表达式?11.简述卡诺定理及其推论。

12.什么是特性函数?若自由能F为特性函数,其自然变量是什么?13.说明一般情况下,不考虑电子对气体热容量贡献的原因。

14.写出热力学第二定律的数学表述,并简述其物理意义。

15.试讨论分布与微观状态之间的关系?16.请写出麦克斯韦关系。

17.什么是统计系综?18.利用能量均分定理,写出N个CO分子理想气体的内能与热容量(不考虑振动),并简要说明在常温范围,振动自由度对热容量贡献接近于零的原因。

19.简述经典统计理论在理想气体中遇到的困难。

20.理想玻色气体出现凝聚体的条件是什么?凝聚体有哪些性质?21.试给出热力学第一定律的语言描述和数学描述。

22.试给出热力学第二定律的语言描述和数学描述。

二、填空题1.均匀系统中与系统的质量或物质的量成正比的热力学量,称为 。

2.在等温等容过程中,系统的自由能永不 。

(填增加、减少或不变)3.体在节流过程前后,气体的 不变;理想气体经一节流过程,其焦汤系数=⎪⎪⎭⎫ ⎝⎛∂∂Hp T 。

4.一级相变的特点是 。

5.在满足经典极限条件1>>αe 时,玻色系统、费米系统以及玻耳兹曼系统的微观状态数满足关系 。

6.玻尔兹曼分布的热力学系统的内能U 的统计表达式是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热力学与统计物理练习题一、填空题1、在范德瓦耳斯方程中, 是考虑分子之间的斥力而引进的改正项,是考虑到分子之间的Van22而引进的改正项。

2、在等压过程中,引进一个函数H 名为焓则其定义为,在此过程中焓的变化为,这正是等压过程中系统从外界吸收的热量。

3、所在工作于一定温度之间的热机,以的效率为最高,这是著名的。

4、一个系统的初态A 和终态B 给定后,积分与可逆过程的路径无关,克劳修斯根据这个性质引进一个态函数熵,它的定义是 ,其中A 和B 是系统的两个平衡态。

5、在热力学中引入了一个态函数有时把TS 叫做,由于F 是一个常用的函数,需要TS U F -=一个名词,可以把它叫做。

二、判断题1、系统的各宏观性质在长时间内不发生任何变化,这样的状态称为热力学平衡态。

( )2、温度是表征物体的冷热程度的,温度的引入和测量都是以热力学定律为基础的。

( )3、所谓第一类永动机,就是不需要能量而永远运动的机器。

( )4、自然界中不可逆过程是相互关联的,我们可以通过某种方法把两个不可逆过程联系起来。

()5、对于处在非平衡的系统,可以根据熵的广延性质将整个系统的熵定义为处在局域平衡的各部分的熵之和。

()三、计算题(一)已知厄密算符B A ˆ,ˆ,满足1ˆˆ22==B A,且0ˆˆˆˆ=+A B B A ,求1、在A 表象中算符Aˆ、B ˆ的矩阵表示; 2、在A 表象中算符Bˆ的本征值和本征函数;3、从A 表象到B 表象的幺正变换矩阵S 。

(二)线性谐振子在0=t 时处于状态线性谐振子在0=t 时处于状态)21exp(3231)0,(22x x x ααπαψ-⎥⎦⎤⎢⎣⎡-=,其中μωα=,求1、在0=t 时体系能量的取值几率和平均值。

关高中规范2、0>t 时体系波函数和体系能量的取值几率及平均值(三)一体系由三个全同的玻色子组成, 玻色子之间无相互作用. 玻色子只有两个可能的单粒子态. 问体系可能的状态有几个?(四)将质量相同而温度分别为和的两杯水在等压下绝热的混合,求熵变。

T 1T2(五)试计算单原子分子的定压热容量与定容热容量之比。

四、问答题1、厄密算符的本征值和本征矢有什么特点?2、什么样的状态是束缚态、简并态和偶宇称态?3、全同玻色子的波函数有什么特点?并写出两个玻色子组成的全同粒子体系的波函数。

4、在一维情况下,求宇称算符Pˆ和坐标x 的共同本征函数。

5、简述测不准关系的主要内容,并写出时间t 和能量E 的测不准关系。

五、简述题1、简述理想气体卡诺循环四个过程,并说明其吸或放热的多少。

2、简述热力学第二定律的三种表述。

六、证明题1、证明1)()((-=∂∂∂∂∂∂VT T P T V PVT2、证明在理想气体在绝热过程中常量=PV γ3、求证绝热压缩系数与等温压缩系数之比等于定容热容量与定压热容量之比。

k S k T4、试利用固体热容量的爱因斯坦理论,证明(为爱因斯坦特征温度)。

)1()(223-=e eTCT EE Nk TVEθθθθE 练习题答案一、填空题1、nb ,吸收力2、VP U H ∆+∆=VP U H ∆+∆=∆3、可逆机,卡诺定理4、⎰BAT dQ ⎰=-BAA B TdQS S 5、束缚能 自由能二、判断1、√2、√3、×4、√5、√三、计算题(一)、1、由于1ˆ2=A,所以算符A ˆ的本征值是1±,因为在A 表象中,算符A ˆ的矩阵是对角矩阵,所以,在A 表象中算符Aˆ的矩阵是:⎪⎪⎭⎫ ⎝⎛-=1001)(ˆA A设在A 表象中算符B ˆ的矩阵是⎪⎪⎭⎫ ⎝⎛=22211211)(ˆb b b b A B ,利用0ˆˆˆˆ=+A B B A 得:02211==b b ;由于1ˆ2=B ,所以⎪⎪⎭⎫ ⎝⎛002112b b ⎪⎪⎭⎫ ⎝⎛002112b b 10012212112=⎪⎪⎭⎫ ⎝⎛=b b b b ,21121b b =∴;由于B ˆ是厄密算符,B Bˆˆ=+,∴⎪⎪⎪⎭⎫ ⎝⎛0101212b b ⎪⎪⎪⎭⎫ ⎝⎛=010*12*12b b *12121b b =∴令δi e b =12,(δ为任意实常数)得B ˆ在A 表象中的矩阵表示式为:⎪⎪⎭⎫ ⎝⎛=-00)(ˆδδi i e e A B 2、在A 表象中算符Bˆ的本征方程为:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-βαλβαδδ00i i e e 即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-βαλαβδδi i e e ⇒ ⎩⎨⎧=-=+--00λβαβλαδδi i e e α和β不同时为零的条件是上述方程的系数行列式为零,即 0=---λλδδi i ee ⇒ 012=-λ 1±=∴λ对1=λ有:⎪⎪⎭⎫ ⎝⎛=+121δϕi Be ,对1-=λ有:⎪⎪⎭⎫ ⎝⎛-=-121δϕi B e 所以,在A 表象中算符Bˆ的本征值是1±,本征函数为⎪⎪⎭⎫ ⎝⎛121δi e 和⎪⎪⎭⎫⎝⎛-121δi e 3、从A 表象到B 表象的幺正变换矩阵就是将算符Bˆ在A 表象中的本征函数按列排成的矩阵,即⎪⎪⎭⎫⎝⎛-=-1121δδi i e e S (二)、解:1、0=t 的情况:已知线谐振子的能量本征解为:ω )21(+=n E n )2,1,0( =n ,)()exp(!2)(22x H x n x n n n ααπαϕ-=当1,0=n 时有:)exp()(220x x απαϕ-=,)exp()(2)(221x x x ααπαϕ-=于是0=t 时的波函数可写成:)(32)(31)0,(10x x x ϕϕψ-=,容易验证它是归一化的波函数,于是0=t 时的能量取值几率为:31)0,21(0==ω E W ,32)0,23(1==ω E W ,能量取其他值的几率皆为零。

能量的平均值为:ω67323110=+=E E E 2、0>t 时体系波函数)23exp()(32)2exp()(31),(10t ix t i x t x ωϕωϕψ---=显然,哈密顿量为守恒量,它的取值几率和平均值不随时间改变,故0>t 时体系能量的取值几率和平均值与0=t 的结果完全相同。

(三)、解:由玻色子组成的全同粒子体系,体系的波函数应是对称函数。

以i q 表示第i )3,2,1(=i 个粒子的坐标,根据题设,体系可能的状态有以下四个:(1))()()(312111)1(q q q s φφφϕ=;(2))()()(322212)2(q q q sφφφϕ=(3)[)()()()()()()()()(311221312211322111)3(q q q q q q q q q C s φφφφφφφφφϕ++=; (4)=)4(s ϕ])()()()()()()()()([113222322112312212q q q q q q q q q C φφφφφφφφφ++(四)解:两杯水等压绝热混合后,终态温度以T 和P 为状态参量,两杯水的初态分别为221T T +()和();终态为(,P )。

据热力学基本方程,P T,1P T ,2221T T +TPdVdU dS +=在压强不变时PdVdU dH +=故TdTT dH dS C P ==积分后两杯水的熵变为⎰++==∆2121122ln11T T TT dTT T T C CS P P ⎰++==∆2221222ln 12T T TT dT T T T C C S PP总熵变等于两杯水熵变之和TT T T C S S P S 21221421ln)(+=∆+∆=∆(五)解:单原子分子只有平动,其能量)(21222p p p zyx m++=ω、管路敷设技术敷设技术中包含线槽、管架等多项方式,气课件中调试资料试卷试验方案以及系统启动方案;对高中资料试卷技术,并且拒绝动作,来避免不必要高中资料根据能量均分定理,在温度为T 时,单原子分子的平均能量为kT23=ω单原子分子理想气体的内能为NkT U 23=定容热容量为:C V NkC V 23=由热力学工式为可求得定容热容量C C C P V P Nk ,=-Nk C P 25=因此定压热容量与定容热容量之比为γ667.135===CC VP γ四、问答题一、1、厄密算符的本征值是实数,本征矢是正交、归一和完备的。

2、在无穷远处为零的状态为束缚态;简并态是指一个本征值对应一个以上本征函数的情况;将波函数中坐标变量改变符号,若得到的新函数与原来的波函数相同,则称该波函数具有偶宇称。

3、全同玻色子的波函数是对称波函数。

两个玻色子组成的全同粒子体系的波函数为:[])()()()(2112212211q q q q S ϕϕϕϕφ+=4、宇称算符P ˆ和坐标x 的对易关系是:P x x P ˆ2],ˆ[-=,将其代入测不系知,只有当0ˆ=Px 时的状态才可能使Pˆ和x 同时具有确定值,由)()(x x -=δδ知,波函数)(x δ满足上述要求,所以)(x δ是算符Pˆ和x 的共同本征函数。

5、设Fˆ和G ˆ的对易关系k ˆi F ˆG ˆG ˆF ˆ=-,k 是一个算符或普通的数。

以F 、G 和k 依次表示F ˆ、G ˆ和k 在态ψ中的平均值,令 F F ˆFˆ-=∆,G G ˆG ˆ-=∆,则有4222k )G ˆ()F ˆ(≥⋅∆∆,这个关系式称为测不准关系。

时间t 和能量E 之间的测不准关系为:2≥∆⋅∆E t 五、简述1、答:(1)等温膨胀过程这个过程中气体吸收热量为:Q 1VV T QLn R 1211=(2)绝热膨胀过程这个过程中气体吸收热量为零(3)等温压缩过程此过程中气体放出热量为VV T QLn R 4322(4)绝热压缩过程此过程中气体吸收热量为02、简述热力学第二定律的三种表述(1)克氏表述:不可能把热量从低温物体传到高温物体而不引起其它变化。

(2)开氏表述:不可能人单一热源吸热使之完全变成有用功而不引起其变化。

(3)第二类永动机是不可能制成的。

六、证明题1-4题答案见教材。

相关文档
最新文档