热力学与统计物理复习总结级相关试题

合集下载

(完整word版)热力学与统计物理期末复习题

(完整word版)热力学与统计物理期末复习题

热力学统计物理1、请给出熵、焓、自由能和吉布斯函数的定义和物理意义解:熵的定义:S B−S A=∫dQT ⟹B A dS=dQT沿可逆过程的热温比的积分,只取决于始、末状态,而与过程无关,与保守力作功类似。

因而可认为存在一个态函数,定义为熵。

焓的定义:H=U+pV焓的变化是系统在等压可逆过程中所吸收的热量的度量。

自由能的定义:F=U−TS自由能的减小是在等温过程中从系统所获得的最大功。

吉布斯函数的定义:G =F+pV= U – TS + pV在等温等压过程中,系统的吉布斯函数永不增加。

也就是说,在等温等压条件下,系统中发生的不可逆过程总是朝着吉布斯函数减少的方向进行的。

2、请给出热力学第零、第一、第二、第三定律的完整表述解:热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。

热力学第一定律:自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变。

热力学第二定律:克氏表述:不可能把热量从低温物体传到高温物体而不引起其他变化;开氏表述:不可能从单一热源吸热使之完全变成有用的功而不引起其他变化。

热力学第三定律:能氏定理:凝聚系的熵在等温过程中的改变随热力学温度趋于零,即limT→0(∆S)T=0绝对零度不能达到原理:不肯能通过有限的步骤使一个物体冷却到热力学温度的零度。

通常认为,能氏定理和绝对零度不能达到原理是热力学第三定律的两种表述。

3、请给出定压热容与定容热容的定义,并推导出理想气体的定压热容与定容热容关系式:C p−C V=nR解:定容热容: C V=(ðUðT )V表示在体积不变的条件下内能随温度的变化率;定压热容:C p=(ðUðT )p−p(ðVðT)P=(ðHðT)P表示在压强不变的情况下的熵增;对于理想气体,定容热容C V的偏导数可以写为导数,即C V=dUdT(1)定压热容C p的偏导数可以写为导数,即C P=dHdT(2)理想气体的熵为 H=U+pV=U+nRT(3)由(1)(2)(3)式可得理想气体的定压热容与定容热容关系式:C p−C V=nR4、分别给出体涨系数α,压强系数β和等温压缩系数κT的定义,并证明三者之间的关系:α=κTβp解:体涨系数:α=1V (ðVðT)P,α 给出在压强不变的条件下,温度升高1 K所引起的物体的体积的相对变化;压强系数:β=1p (ðp ðT )v ,β 给出在体积不变的条件下,温度升高1 K 所引起的物体的体积的相对变化;等温压缩系数:κT =−1V (ðV ðp )T ,κT 给出在温度不变的条件下,增加单位压强所引起的物体的体积的相对变化;由于p 、V 、T 三个变量之间存在函数关系f (p ,T ,V )=0,其偏导数存在以下关系:(ðV ðp )T (ðp ðT )v (ðT ðV )P =−1 因此α, β, κT 满足α=κT βp5、分别给出内能,焓,自由能,吉布斯函数四个热力学基本方程及其对应的麦克斯韦关系式解:内能的热力学基本方程:dU =TdS −pdV对应的麦克斯韦关系式:(ðT ðV )S =−(ðp ðS )V 焓的热力学基本方程:dH =TdS +Vdp对应的麦克斯韦关系式:(ðT ðp )s =(ðV ðS )p 自由能的热力学基本方程:dF =−SdT +Vdp对应的麦克斯韦关系式:(ðS ðV )T =(ðp ðT )V 吉布斯函数的热力学基本方程:dG =−SdT −pdV对应的麦克斯韦关系式: (ðS ðp )T =−(ðV ðT )p 6、选择T ,V 为独立变量,证明:C V =T (ðS ðT )V ,(ðU ðV )T = T (ðp ðT )V −p 证明:选择T ,V 为独立变量,内能U 的全微分为dU =(ðU ðT )V dT +(ðU ðV )T dV (1) 又已知内能的热力学基本方程 dU =TdS −pdV (2)以T ,V 为自变量时,熵S 的全微分为dS =(ðS ðT )V dT +(ðS ðV )T dV (3) 将(3)式代入(2)式可得dU =T (ðS ðT )V dT +[T (ðS ðV )T −P]dV (4) 将(4)式与(1)式比较可得C V =(ðU ðT )V =T (ðS ðT )V (5) (ðU ðV )T = T (ðp ðT )V −p (6) 7、简述节流过程制冷,气体绝热膨胀制冷,磁致冷却法的原理和优缺点解:节流过程制冷:原理:让被压缩的气体通过一绝热管,管子的中间放置一多孔塞或颈缩管。

热力学与统计物理期末复习..

热力学与统计物理期末复习..
该结果在室温和高温范围与实验结果符合得很好,但在 低温下与实验不符,低温下固体的热容量随温度减小而 趋于零。 量子统计给出近似 CV 3Nk ( E )2 e T ,结论与实验结 T 果定性符合。
E
期末复习
12
9、简述能量均分定理;用能均分定理求自由电子的内能 和定容热容量;结果与实验结果有何差异?量子统计的 结果如何解释这些差异? 10、简述能量均分定理;用能均分定理求辐射场内能U 和定容热容量CV的结果与实验有何差异?量子统计的结 果如何解释这些差异?
p p V ( ) 0 T T
若pα > pβ ,则有δ V α >0。 这时不可逆过程导致压强大的相将膨胀,压强 小的相将被压缩,即压强差异将导致物质流动。
第三章 期末复习 单元系的相变
7
若热平衡已满足,但相平衡未能满足,熵增 加原理要求
n (

T



SC 2 Nk ln T Nk ln V 2 Nk[1 ln( h
2 0
)]
3 V 3 5 2m k SQ Nk ln T Nk ln Nk[ ln( 2 )] 2 N 2 3 h
试讨论这两个熵的性质。(P212~213)
期末复习 3
3、简述熵判据;写出单元两相系的热学平衡条件、力学 平衡条件和相变平衡条件。如果在一个孤立系统内部引入 内能、体积和摩尔数的虚变动 δ Uα 、 δVα 和 δnα 所引起 的熵变为
期末复习
期末复习
1
一 期末考试题型
1 判断题(每小题2分,共20分)
2 填空题(每空2分,共20分)
3 简述题(每小题8分,共16分) 4 计算与证明题(5个小题,共44分)

热力学及统计物理试题及答案

热力学及统计物理试题及答案
极端低温时系统的熵:S=0
4.对弱简并的非相对论费米气体,求:
(1)粒子数分布的零级近似f0与一级修正项Δf1;
(2)证明:与零级近似相比,粒子数的相对修正量和内能的相对修正量均正比于 。
解:费米气体分布函数为:
(1)

(2)
5.金属中的电子可以视为自由电子气体,电子数密度n,
(1)简述:T=0K时电子气体分布的特点,并说明此时化学势μ0的意义;
解:(1)单粒子的配分函数为:
处于基态的粒子数为:
处于激发态的粒子数为:
温度为T时处于激发态的粒子数与处于基态的粒子数之为:
极端高温时:ε0《kT, , 即处于激发态的粒子数与处于基态的粒子数基本相同;
极端低温时:ε0》kT, , 即粒子几乎全部处于基态。
(2)系统的内能:
热容量:
(3)极端高温时系统的熵:
( klnΩ)。
3.玻色统计与费米统计的区别在于系统中的粒子是否遵从(泡利不相容原理 )原理,其中(费米)系统的分布必须满足0 ≤ fs ≤ 1。
4.玻色系统和费米系统在满足( 经典极限条件(或e-α<<1) 或eα>>1)条件时,可以使用玻尔兹曼统计。
5. 给出内能变化的两个原因,其中( )项描述传热,( )项描述做功。
9.如果系统的分布函数为ρs,系统在量子态s的能量为Es,用ρs和Es表示:系统的平均能量为( ),能量涨落为( )(如写成 也得分)。
10.与宏观平衡态对应的是稳定系综,稳定系综的分布函数ρs具有特点( dρs/ dt=0 或与时间无关等同样的意思也得分 ),同时ρs也满足归一化条件。
二.计算证明题(每题10分,共60分)
能量值: 0,ω,2ω,3ω,…

(完整版)热力学与统计复习题

(完整版)热力学与统计复习题

复习提纲一、填空题:1.特性函数是指在________选择自变量的情况下,能够表达系统_________的函数。

2.能量均分定理说:对于处在温度为T 的平衡状态的经典系统,粒子能量函数中的每一个________的平均值等于___________。

3.自然界的一切实际宏观过程都是_________过程,无摩擦的准静态过程是______ _过程。

4.熵增加原理是说,对于绝热过程,系统的熵_____________。

5.卡诺定理指出:工作于相同的高温热源和相同的低温热源之间的一切可逆机,其效率都____________, 与______________无关。

6.绝对零度时电子的最大能量称为___________________。

7.孤立系统经过足够长时间,其 不随时间改变,其所处的状态为热力学平衡态。

8.内能是 函数。

9.一般工作于两个一定温度热源之间的热机效率不大于 。

10.TH V P ∂⎛⎫= ⎪∂⎝⎭ 。

11.三维自由粒子的μ空间是 维空间。

12.体积V 内,能量在d εεε-+范围内自由粒子的可能状态数为 。

13.多元单相系的化学反应平衡条件是 。

14.克拉伯龙方程的表达式为 。

15.玻色系统中粒子的最概然分布为 。

二、选择题:1. 假设全同近独立子系统只有2个粒子,3个个体量子态。

那么下面说法错误的是:( )A. 如果该系统是玻尔兹曼系统,那么该系统共有9个系统微观状态。

B. 如果该系统是费米系统,那么该系统共有6个系统微观状态。

C. 如果该系统是费米系统,那么该系统共有3个系统微观状态。

D. 如果该系统是玻色系统,那么该系统共有6个系统微观状态。

2.关于热力学和统计物理平衡态说法错误的是: ( )A. 一个宏观的平衡状态包含了大量的系统的微观状态。

B. 它是一个动态的平衡,宏观量存在涨落,但是热力学理论不能够考虑涨落。

C. 宏观量都有对应的微观量。

D. 虽然系统的宏观量不随时间发生变化,但是它不一定就是一个平衡态。

完整版热力学统计物理试题

完整版热力学统计物理试题

简述题1.写出系统处在平衡态的自由能判据。

一个处在温度和体积不变条件下的系统,处在牢固平衡态的充要条件是,对于各种可能的有限虚变动,所引起的自由能的改变均大于零。

即F0 。

2.写出系统处在平衡态的吉布斯函数判据。

一个处在温度和压强不变条件下的系统,处在牢固平衡态的充要条件是,对于各种可能的有限虚变动,所引起的吉布斯函数的改变均大于零。

即G0 。

3.写出系统处在平衡态的熵判据。

一个处在内能和体积不变条件下的系统,处在牢固平衡态的充要条件是,对于各种可能的有限虚变动,所引起的熵变均小于零。

即S 04.熵的统计讲解。

由波耳兹曼关系S k g ln可知,系统熵的大小反响出系统在该宏观状态下所拥有的可能的微观状态的多少。

而可能的微观状态的多少,反响出在该宏观平衡态下系统的凌乱度的大小。

故,熵是系统内部凌乱度的量度。

5.为什么在常温或低温下原子内部的电子对热容量没有贡献不考虑能级的精巧结构时,原子内的电子激发态与基态的能量差为1~10 eV ,相应的特点4 5温度为 10 ~ 10 K。

在常温或低温下,电子经过热运动获得这样大的能量而跃迁到激发态的概率几乎为零,平均而言电子被冻结基态,因此对热容量没有贡献。

6.为什么在常温或低温下双原子分子的振动对热容量贡献可以忽略由于双原子分子的振动特点温度 3 kT << k θv,振子经过θ ~10K,在常温或低温下v热运动获得能量 h k θv从而跃迁到激发态的概率极小,因此对热容量的贡献可以忽略。

7.能量均分定理。

对于处在平衡态的经典系统,当系统的温度为T 时,粒子能量的表达式中的每一个独立平方项的平均值为12k T 。

8等概率原理。

对于处在平衡态的孤立系统,系统的各种可能的微观状态出现的概率是相等的。

9.概率密度 ( q, p,t ) 的物理意义、代表点密度 D ( q, p,t ) 的物理意义及两者的关系。

(q, p,t ) : 在 t 时辰,系统的微观运动状态代表点出现在相点(q, p) 邻域,单位相空间体积内的概率。

高考物理热力学与统计力学题目训练卷

高考物理热力学与统计力学题目训练卷

高考物理热力学与统计力学题目训练卷在高考物理中,热力学与统计力学是重要的知识点板块。

为了帮助同学们更好地掌握这部分内容,提高解题能力,以下为大家精心准备了一份题目训练卷。

一、选择题1、一定质量的理想气体,在保持温度不变的情况下,体积增大,则()A 气体分子的平均动能增大B 气体分子的平均动能减小C 单位时间内气体分子对器壁单位面积的碰撞次数减少D 单位时间内气体分子对器壁单位面积的碰撞次数增加答案:C解析:温度是分子平均动能的标志,温度不变,分子平均动能不变,A、B 选项错误。

理想气体体积增大,单位体积内分子数减少,单位时间内气体分子对器壁单位面积的碰撞次数减少,C 选项正确,D 选项错误。

2、对于一定质量的理想气体,下列说法正确的是()A 若气体的压强和体积都不变,其内能也一定不变B 若气体的温度不断升高,其压强也一定不断增大C 若气体从外界吸收了热量,其内能一定增加D 若气体对外做功,其内能一定减少答案:A解析:对于一定质量的理想气体,若压强和体积都不变,则温度也不变,内能不变,A 选项正确。

气体的温度不断升高,若体积同时增大,压强不一定增大,B 选项错误。

气体从外界吸收热量,若同时对外做功,内能不一定增加,C 选项错误。

气体对外做功,若同时吸收热量,内能不一定减少,D 选项错误。

3、下列过程中,可能发生的是()A 某工作物质从高温热源吸收 20kJ 的热量,全部转化为机械能,而没有产生其他任何影响B 打开一高压密闭容器,其内气体自发溢出后又自发跑回容器,恢复原状C 利用其他手段,使低温物体温度更低,高温物体的温度更高D 将两瓶不同液体自发混合,然后又自发地各自分开答案:C解析:根据热力学第二定律,不可能从单一热源吸收热量全部转化为机械能而不产生其他影响,A 选项错误。

气体自发溢出后不能自发跑回容器恢复原状,B 选项错误。

利用其他手段,可以使低温物体温度更低,高温物体温度更高,C 选项正确。

热力学与统计物理复习总结级相关试题

热力学与统计物理复习总结级相关试题

《热力学与统计物理》考试大纲第一章 热力学的基本定律基本概念:平衡态、热力学参量、热平衡定律温度,三个实验系数(α,β,T κ)转换关系,物态方程、功及其计算,热力学第一定律(数学表述式)热容量(C ,C V ,C p 的概念及定义),理想气体的内能,焦耳定律,绝热过程及特性,热力学第二定律(文字表述、数学表述),可逆过程克劳修斯不等式,热力学基本微分方程表述式,理想气体的熵、熵增加原理及应用。

综合计算:利用实验系数的任意二个求物态方程,熵增(ΔS )的计算。

第二章 均匀物质的热力学性质基本概念:焓(H ),自由能F ,吉布斯函数G 的定义,全微公式,麦克斯韦关系(四个)及应用、能态公式、焓态公式,节流过程的物理性质,焦汤系数定义及热容量(Cp )的关系,绝热膨胀过程及性质,特性函数F 、G ,空窖辐射场的物态方程,内能、熵,吉布函数的性质。

综合运用:重要热力学关系式的证明,由特性函数F 、G 求其它热力学函数(如S 、U 、物态方程)第三章、第四章 单元及多元系的相变理论该两章主要是掌握物理基本概念:热动平衡判据(S 、F 、G 判据),单元复相系的平衡条件,多元复相系的平衡条件,多元系的热力学函数及热力学方程,一级相变的特点,吉布斯相律,单相化学反应的化学平衡条件,热力学第三定律标准表述,绝对熵的概念。

统计物理部分第六章 近独立粒子的最概然分布基本概念:能级的简并度,μ空间,运动状态,代表点,三维自由粒子的μ空间,德布罗意关系(k P =,=ωε),相格,量子态数。

等概率原理,对应于某种分布的玻尔兹曼系统、玻色系统、费米系统的微观态数的计算公式,最概然分布,玻尔兹曼分布律(l l l e a βεαω--=)配分函数(∑∑-==-s l l s l e e Z βεβεω1),用配分函数表示的玻尔兹曼分布(l l l e Z N a βεω-=1),f s ,P l ,P s 的概念,经典配分函数(⎰⎰-=du e h Z l r βε 011)麦态斯韦速度分布律。

热力学与统计物理_试题及答案

热力学与统计物理_试题及答案
极端低温时系统的熵:S=0
4.对弱简并的非相对论费米气体,求:
(1)粒子数分布的零级近似f0与一级修正项Δf1;
(2)证明:与零级近似相比,粒子数的相对修正量和内能的相对修正量均正比于 。
解:费米气体分布函数为:
(1)

(2)
5.金属中的电子可以视为自由电子气体,电子数密度n,
(1)简述:T=0K时电子气体分布的特点,并说明此时化学势μ0的意义;
一. 填空题(共40分)
1.N个全同近独立粒子构成的热力学系统,如果每个粒子的自由度为r,系统的自由度为( Nr )。系统的状态可以用( 2Nr )维Г空间中的一个代表点表示。
2 对于处于平衡态的孤立系统,如果系统所有可能的微观状态数为Ω,则每一微观状态出现的概率为( 1/Ω),系统的熵为
( klnΩ)。
9.如果系统的分布函数为ρs,系统在量子态s的能量为Es,用ρs和Es表示:系统的平均能量为( ),能量涨落为( )(如写成 也得分)。
10.与宏观平衡态对应的是稳定系综,稳定系综的分布函数ρs具有特点(dρs/ dt=0 或与时间无关等同样的意思也得分),同时ρs也满足归一化条件。
二.计算证明题(每题10分,共60分)
T>0K时,只有在μ附近kT量级范围内的电子可跃迁到高能级,对CV有贡献,设这部分电子的数目为Neff, 则 。每一电子对CV的贡献为3kT/2, 则金属中自由电子对Cv的贡献为
晶格的热容量为Cv=3Nk,
6.固体的热运动可以视为3N个独立简正振动,每个振动具有各自的简正频率ωi,内能的表达式为: ,式中的求和遍及所有的振动模式,实际计算时需要知道固体振动的频谱。
解:(1)单粒子的配分函数为:
处于基态的粒子数为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=
V (T CP
1)
,若体账系数
1 T
,则气体经
节流过程后将( )
①温度升高
②温度下降 ③温度不变 ④压强降低
4、空窖辐射的能量密度 u 与温度 T 的关系是( )
① u aT 3
② u aV 3T ③ u aVT 4 ④ u aT 4
5、熵增加原理只适用于( )
①闭合系统
②孤立系统 ③均匀系统 ④开放系统
②等压过程
③绝热过程 ④多方过程
11、卡诺循环过程是由( )
①两个等温过程和两个绝热过程组成
②两个等压过程和两个绝热过程组成
③两个等容过程和两个绝热过程组成
④两个等温过程和两个绝热过程组成
12、下列过程中为可逆过程的是( )
①准静态过程 ②气体绝热自由膨胀过程 ③无摩擦的准静态过程 ④热
传导过程
13、理想气体在节流过程前后将( )
17、玻尔兹曼关系 S=KlnΩ只适用于平衡态。( )
18、T=0k 时,金属中电子气体将产生巨大的简并压,它是泡利不相容原理及电子气 的高密度所致。( )
三、填空题
1、孤立系统的熵增加原理可用公式表示为(
)。
2、一孤立的单元两相系,若用指标α、β表示两相,则系统平衡时,其相变平衡条
件可表示为(
)。
6、在等温等容的条件下,系统中发生的不可逆过程,包括趋向平衡的过程,总是朝
着( )
①G 减少的方向进行
②F 减少的方向进行
③G 增加的方向进行
④F 增加的方向进行
7、从微观的角度看,气体的内能是( )
①气体中分子无规运动能量的总和
②气体中分子动能和分子间相互作用势能的总和
③气体中分子内部运动的能量总和
第七章 玻尔兹曼统计
基本概念:熟悉 U、广义力、物态方程、熵 S 的统计公式,乘子α、β的意义,
玻尔兹曼关系(S=KlnΩ),最可几率 Vm,平均速度V ,方均根速度Vs ,能量均分 定理。
综合运用: 能运用玻尔兹曼经典分布计算理想气体的配分函数内能、物态方程和熵;能运
1
用玻尔兹曼分布计算谐振子系统(已知能量ε=(n+ 2 ) )的配分函数内能和
19、光子气体处于平衡态时,分布在能量为εs 的量子态 s 的平均光子数为( )
1 ① e s 1
1
② e KT 1
1 ③ e s 1
1
④ e KT 1
20、由 N 个单原子分子构成的理想气体,系统的一个微观状态在 空间占据的相体 积是( )
① h3N
② h6N
③h3
④h6
21、服从玻耳兹曼分布的系统的一个粒子处于能量为εs 的量子态 S 的概率是( )
到 相时所吸收的(
)。
8、在一般情况下,整个多元复相系不存在总的焓,仅当各相的(

相同时,总的焓才有意义。
9、如果某一热力学系统与外界有物质和能量的交换,则该系统称为

)。
10、热力学基本微分方程 dU=(
)。
11、单元系开系的热力学微分方程 dU=(
)。
12 、 单 相 化 学 反 应 的 化 学 平 衡 条 件 可 表 示 为
③ s
④ s
1
二、判断题
1、无摩擦的准静态过程有一个重要的性质,即外界在准静态过程中对系统的作用力,
可以用描写系统平衡状态的参量表达出来。( )
CP 1 2、在 P-V 图上,绝热线比等温线陡些,是因为 r= CV 。( ) 3、理想气体放热并对外作功而压强增加的过程是不可能的。( ) 4、功变热的过程是不可逆过程,这说明热要全部变为功是不可能的。( ) 5、绝热过程方程对准静态过程和非准表态过程都适用。( ) 6、在等温等容过程中,若系统只有体积变化功,则系统的自由能永不增加。( ) 7、多元复相系的总焓等于各相的焓之和。( ) 8、当孤立系统达到平衡态时,其熵必定达到极大值。( ) 9、固相、液相、气相之间发生一级相变时,有相变潜热产生,有比容突变。 10、膜平衡时,两相的压强必定相等。( ) 11、粒子和波动二象性的一个重要结果是微观粒子不可能同时具有确定的动量和坐 标。( )
①压强不变
②压强降低 ③温度不变 ④温度降低
14、气体在经准静态绝热过程后将( )
①保持温度不变 ②保持压强不变 ③保持焓不变 ④保持熵不变
15、熵判据是基本的平衡判据,它只适用于( )
①孤立系统
②闭合系统 ③绝热系统 ④均匀系统
16、描述 N 个三维自由粒子的力学运动状态的μ空间是( )
①6 维空间
④气体中分子无规运动能量总和的统计平均值
8、若三元Ф相系的自由度为 2,则由吉布斯相律可知,该系统的相数Ф是( )
①3
②2
③1
④0
9、根据热力学第二定律可以证明,对任意循环过程 L,均有
① L T
0
② L T
0

L
T
=0

L
T
=S
10、理想气体的某过程服从 PVr=常数,此过程必定是( )
①等温过程
① Ps
1 N
e s
② Ps e s
③ Ps
1 N
e s
④ Ps e s
22、在 T=0K 时,由于泡利不相容原理限制,金属中自由电子从能量ε=0 状态起
依次填充之 (0)为止, (0)称为费米能量,它是 0K 时电子的( )
①最小能量
②最大能量 ③平均能量 ④内能
23、平衡态下,温度为 T 时,分布在能量为εs 的量子态 s 的平均电子数是( )

)。
13、在 s、v 不变的情形下,平衡态的(
)最小。
14、在 T、V 不变的情形下,可以利用(
据。
Байду номын сангаас
15、设气体的物态方程为 PV=RT,则它的体胀系数 =(
16、当 T→0 时,物质的体胀系数 (
17、当 T→0 时,物质的 CV(
18、单元系相图中的曲线称为(
终点称为(
)。
)作为平衡判
)。 )。 )。 ),其中汽化曲线的
热容量。
第八章 玻色统计和费米统计
基本概念:
光子气体的玻色分布,分布在能量为εs 的量子态 s 的平均光子数
fs
1
( e KT 1 ),T=0k 时,自由电子的费米分布性质(fs=1),费米能量 (0),费
米动量 PF,T=0k 时电子的平均能量,维恩位移定律。
综合运用:掌握普朗克公式的推导;T=0k 时,电子气体的费米能量 (0)计算,
《热力学与统计物理》考试大纲
第一章 热力学的基本定律 基本概念:平衡态、热力学参量、热平衡定律
温度,三个实验系数(α,β, T )转换关系,物态方程、功及其计算,热力
学第一定律(数学表述式)热容量(C,CV,Cp 的概念及定义),理想气体的内能, 焦耳定律,绝热过程及特性,热力学第二定律(文字表述、数学表述),可逆过程克 劳修斯不等式,热力学基本微分方程表述式,理想气体的熵、熵增加原理及应用。 综合计算:利用实验系数的任意二个求物态方程,熵增(ΔS)的计算。
②3 维空间 ③6N 维空间 ④3N 维空间
17、服从玻尔兹曼分布的系统的一个粒子处于能量为εl 的概率是( )

Pl=
1 Z1
e l
② Pl=Z1l el

Pl=
1 N
e l

Pl=
1 Z1
e l
18、T=0k 时电子的动量 PF 称为费米动量,它是 T=0K 时电子的( )
①平均动量
②最大动量 ③最小动量 ④总动量
3、吉布斯相律可表示为 f=k+z-Ф,则对于二元系来说,最多有(

相平衡。
4、热力学系统 由初始状态过渡到平衡态所需的时间称为

)。
5、热力学第二定律告诉我们,自然界中与现象有关的实际过程都是(
)。
6、热力学第二定律的普遍数学表达式为(
)。
dP L 7、克拉珀珑方程 dT Tv 中,L 的意义表示 1mol 物质在温度不变时由 相转变
Z1

l
e l l
s
e s
a N e l
),用配分函数表示的玻尔兹曼分布( l
Zl 1
),
Z1
fs,Pl,Ps 的概念,经典配分函数(
1 h0r
e l du )麦态斯韦速度分布律。
综合运用:
能计算在体积 V 内,在动量范围 P→P+dP 内,或能量范围ε→ε+dε内,粒子
的量子态数;了解运用最可几方法推导三种分布。
统计物理部分 第六章 近独立粒子的最概然分布
基本概念:能级的简并度, 空 间,运动状态,代表点,三维自由粒子的 空 间,德布罗意关系(=,P k ),相格,量子态数。
等概率原理,对应于某种分布的玻尔兹曼系统、玻色系统、费米系统的微观态
数 的 计 算 公 式 , 最 概 然 分 布 , 玻 尔 兹 曼 分 布 律 ( al l e l ) 配 分 函 数
④h2N
28、由两个粒子构成的费米系统,单粒子状态数为 3 个,则系统的微观状态数为
()
①3 个
②6 个
③9 个
④12 个
29、由两个玻色子构成的系统,粒子的个体量子态有 3 个,则玻色系统的微观状态
数为( )
①3 个
②6 个
③9 个
④12 个
30、微正则分布的量子表达式可写为( )
① s e
② s e
fs
1
u

e KT 1
fs
1

e KT 1
相关文档
最新文档