高考数学专题: 函数大题零点问题突破

高考数学专题: 函数大题零点问题突破
高考数学专题: 函数大题零点问题突破

高考数学专题突破:函数大题中的零点问题

对于函数零点问题,其解题策略一般是转化为两个函数图象的交点. 对于两个函数的选择,有3种情况:一平一曲,一斜一曲,两曲(凸性一般要相反).其中以一平一曲的情况最为常见.

分离参数法是处理零点问题的常见方法,其本质是选择一平一曲两个函数;部分题目直接考虑函数()f x 的图象与x 轴的交点情况,其本质是选择一平一曲两个函数;部分题目利用零点存在性定理并结合函数的单调性处理零点,其本质是选择一平一曲两个函数.

函数的凸性

1.下凸函数定义

设函数()f x 为定义在区间(),a b 上的函数,若对(),a b 上任意两点1x ,2x ,总有

()()121222f x f x x x f ++??≤ ???

,当且仅当12x x =时取等号,则称()f x 为(),a b 上的下凸函数.

2.上凸函数定义

设函数()f x 为定义在区间(),a b 上的函数,若对(),a b 上任意两点1x ,2x ,总有

()()121222f x f x x x f ++??≥ ???

,当且仅当12x x =时取等号,则称()f x 为(),a b 上的上凸函数.

3.下凸函数相关定理

定理:设函数()f x 为区间(),a b 上的可导函数,则()f x 为(),a b 上的下凸函数?()f x '为(),a b 上的

递增函数?()0f x ''≥且不在(),a b 的任一子区间上恒为零. 4.上凸函数相关定理

定理:设函数()f x 为区间(),a b 上的可导函数,则()f x 为(),a b 上的上凸函数?()f x '为(),a b 上的递减函数?()0f x ''≤且不在(),a b 的任一子区间上恒为零.

【例1】已知函数()()e ln x f x x m =-+.

(1)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (2)当2m ≤时,证明:()0f x >. 【解析】(1)()1

e x

f x x m

'=-

+,由0x =是()f x 的极值点,可得()00f '=,解得1m =.于是()()e ln 1x f x x =-+,定义域为()1,-+∞,()1

e 1x

f x x '=-

+,则()()

2

1e 01x f x x ''=+>+,所以()f x '在()1,-+∞上递增,

又因为()00f '=,所以当10x -<<时()0f x '<,当0x >时()0f x '>,所以()f x 在()1,0-上递减,在()0,+∞上递增.

【证明】(2)法1:()f x 定义域为(),m -+∞,()1

e x

f x x m '=-

+,()()

2

1e 0x f x x m ''=+>+,于是()f x '在(),m -+∞上递增.又因为当x m +→-时,()f x '→-∞,当x →+∞时,()f x '→+∞,所以()0f x '=在

(),m -+∞上有唯一的实根0x ,当0m x x -<<时,()0f x '<,当0x x >时,()0f x '>,所以()f x 在()

0,m x -上递减,在()0,x +∞上递增,所以当0x x =时,()f x 取得最小值.

由()00f x '=可得001

e 0x x m

-

=+,即()00ln x m x +=-,于是()()000000011

e ln 2x

f x x m x x m m m x m x m

=-+=

+=++-≥-++.当2m <时,()00f x >;当2m =时,等号成立的条件是01x =-,但显然()

11

e 012--

≠-+,所以等号不成立,即()00f x >.

综上所述,当2m ≤时,()()00f x f x ≥>.

法2:当2m ≤,(),x m ∈-+∞时,()()ln ln 2x m x +≤+,于是()()e ln 2x f x x ≥-+,所以只要证明

()()e ln 20x x x ?=-+>,()2,x ∈-+∞,就能证明当2m ≤时,()0f x >.

()1e 2x x x ?'=-

+,()()

2

1e 02x x x ?''=+>+,于是()x ?'在()2,-+∞上递增.又因为()1

110e ?'-=-<,()10102

?'=->,

所以()0x ?'=在()2,-+∞上有唯一的实根0x ,且()01,0x ∈-.当02x x -<<时,()0x ?'<,当0x x >时,()0x ?'>,所以()x ?在()02,x -上递减,在()0,x +∞上递增,所以当0x x =时,()x ?取得最小值.

由()00x ?'=可得001

e 02

x x -

=+,即()00ln 2x x +=-.于是()()()02

00000011

e ln 2022

x x x x x x x ?+=-+=+=>++,于是()()

00x x ??≥>. 综上所述,当2m ≤时,()0f x >.

法3:当2m ≤,(),x m ∈-+∞时,()()ln ln 2x m x +≤+,于是()()e ln 2x f x x ≥-+,所以只要证明

()e ln 20x x -+>(2x >-),就能证明当2m ≤时,()0f x >.

由ln 1x x ≤-(0x >)可得()ln 21x x +≤+(2x >-),又因为e 1x x ≥+(x ∈R ),且两个不等号不能同时成立,所以()e ln 2x x >+,即()e ln 20x x -+>(2x >-),所以当2m ≤时,()0f x >.

【例2】已知函数()()2e 2e x x f x a a x =+--. (1)讨论()f x 的单调性;

(2)若()f x 有两个零点,求a 的取值范围.

【解析】(1)()()()()

22e 2e 12e 1e 1x x x x f x a a a '=+--=+-,2e 10x +>. ①当0a ≤时,e 10x a -<,所以()0f x '<,所以()f x 在R 上递减. ②当0a >时,由()0f x '>可得1ln

x a >,由()0f x '<可得1ln x a <,所以()f x 在1,ln a ?

?-∞ ??

?上递减,

在1ln ,a ??

+∞ ???

上递增. (2)法1:①当0a ≤时,由(1)可知,()f x 在R 上递减,不可能有两个零点.

②当0a >时,()min 11ln 1ln f x f a a a ??

??==-+ ?????,令()()min

g a f x =????,则()2110g a a a '=+>,所以()g a 在()0,+∞上递增,而()10g =,所以当1a ≥时,()()min 0g a f x =??≥??,从而()f x 没有两个零点.

当01a <<时,1ln 0f a ??< ???,()22110e e e a a f -=++->,于是()f x 在11,ln a ?

?- ???上有1个零点;因为

()2

333333ln 1121ln 11ln 10f a a a a a a a a ??????????????-=-+----=---> ? ? ? ? ? ? ??

?????????????,且31ln 1ln a a ????

-> ? ?????,所以

()f x 在1ln ,a ??

+∞ ???

上有1个零点.

综上所述,a 的取值范围为()0,1.

法2:()2222e e 2e 0e e 2e e e x x

x

x

x

x

x x x a a x a a x a ++--=?+=+?=+.令()22e e e x x x

x g x +=+,则

()

()()()()

()

()()

()

222

2

222e 1e e 2e 2e e e 2e 1e 1e

e

e

e

x

x x x x x x x x x

x x

x x x g x ++-++++-'=

=-

++,令()e 1x h x x =+-,则

()e 10x h x '=+>,所以()h x 在R 上递增,

而()00h =,所以当0x <时,()0h x <,当0x >时,()0h x >, 于是当0x <时,()0g x '>,当0x >时,()0g x '<,所以()g x 在(),0-∞上递增,在()0,+∞上递减.()01g =,当x →-∞时,

()g x →-∞,当x →+∞时,()0g x +→.若()f x 有两个零点,则y a =与()g x 有两个交点,所以a 的取

值范围是()0,1.

法3:设e 0x t =>,则ln x t =,于是()22e 2e 02ln x x a a x at at t t +--=?+=+?

2

2ln t t a t t +=+,令()22ln t t G t t t +=+,则()()()()()222122ln 21t t t t t t G t t t ??++-++ ???'==+ ()()

()

2

2

211ln t t t t

t +-+-

+,令()1ln H t t t =-+,则()1

10H t t

'=+>,

所以()H t 在()0,+∞上递增,而()10H =,所以当01t <<时,

()0H t <,()0G t '>,当1t >时,()0H t >,()0G t '<,所以

()G t 在()0,1上递增,在()1,+∞上递减.()11G =,当0t +→时,()G t →-∞,当t →+∞时,()0G t +→.若()f x 有两个零点,则y a =与()G t 有两个交点,所以a 的取值范围是()0,1.

法4:设e 0x t =>,则ln x t =,于是()22e 2e 02ln 0x x a a x at at t t +--=?+--=?

()ln 12t a t t +-=

.令()()12k t a t =+-,()ln t

t t

?=,则()f x 有两个零点等价于()y k t =与()y t ?=有两个交点.因为()2

1ln t

t t ?-'=,由()0t ?'>可得0e t <<,由()0t ?'<可得e t >,所以()t ?在()0,e 上递增,

在()e,+∞上递减,()1

e e ?=,当x →+∞时,()0t ?+→.()y k t =是斜率为a ,过定点()1,2A --的直线.

当()y k t =与()y t ?=相切的时候,设切点()00,P t y ,则有

()00

0002

ln 121ln t y t y a t t

a t ?=???

=+-??-?=??,消去a 和0y ,可得()000200

ln 1ln 12t t t t t -=+-, 即()()00021ln 10t t t ++-=,即00ln 10t t +-=.令()ln 1p t t t =+-,

显然()p t 是增函数,且()10p =,于是01t =,此时切点()1,0P ,斜率1a =.所以当()y k t =与()y t ?=有两个交点时,01a <<,所以a 的取值范围是()0,1.

法5:()()

20e e 2e x x x f x a x =?+=+,令()()

2e e x x M x a =+,()2e e x x m x =+,()2e x n x x =+,则

()f x 有两个零点?()M x 与()n x 的图象有两个不同交点.

()()002m n ==,所以两个函数图象有一个交点()0,2.令()()()2e e x x T x m x n x x =-=--,则

()()()22e e 12e 1e 1x x x x T x '=--=+-,由()0T x '>可得0x >,由()0T x '<可得0x <,于是()T x 在(),0-∞上递减,在

()0,+∞上递增,而()00T =,所以()()m x n x ≥,因此()m x 与()n x

相切于点()0,2,除切点外,()m x 的图象总在()n x 图象的上方.

由(1)可知,0a >.

当1a >时,将()m x 图象上每一点的横坐标固定不动,纵坐标变为原来的a 倍,就得到了()M x 的图象,此时()M x 与()n x 的图象没有交点.当1a =时,()m x 的图象就是()M x 的图象,此时()M x 与()n x 的图象只有1个交点.当01a <<时,将()m x 图象上每一点的横坐标固定不动,纵坐标变为原来的a 倍,就得到了()M x 的图象,此时()M x 与()n x 的图象有两个不同交点.

综上所述,a 的取值范围是()0,1.

法6:()()()

20e e 2e e 12e x x x x x x f x a x a =?+=+?+-=

,令()()e 12x

p x a =+-,()e

x x q x =,则()f x 有两个零点?()p x 与()q x 的图象有两个不同交点.

()1e

x x

q x -'=

,由()0q x '>可得1x <,由()0q x '<可得1x >,所以()q x 在(),1-∞上递增,在()1,+∞上递减,当x →+∞时,()0q x +→.

由(1)可知,0a >,所以()p x 是下凸函数,而()q x 是 上凸函数.当()p x 与()q x 相切时,设切点为()00,P x y ,则有

()

00

000000e 12e 1e e x

x x x y a x y x a ?=+-??

?

=??

-?=??

,消去a ,0y 可得()000

0021e 12e e x x x x x -+-=,即()()

0002e 1e 10x x x ++-=,即00e 10x x +-=.令()e 1x W x x =+-,显然()W x 是增函数,而()00W =,于是00x =,此时切点()0,0P ,

1a =.所以当()p x 与()q x 的图象有两个交点时,01a <<,所以a 的取值范围是()0,1.

【例3】设函数()2e ln x f x a x =-.

(1)讨论()f x 的导函数()f x '的零点的个数; (2)证明:当0a >时,()2

2ln

f x a a a

≥+. 【解析】(1)()f x 的定义域为()0,+∞,()22e x a

f x x

'=-

. ()f x '的零点的个数?22e x x a =的根的个数?()22e x g x x =与y a =在()0,+∞上的交点的个数.

因为()()2221e 0x g x x '=+>,所以()g x 在()0,+∞上递增,又因为()00g =,x →+∞时,()g x →+∞,所以当0a ≤时,()g x 与y a =没有交点,当0a >时,()g x 与y a =有一个交点.

综上所述,当0a ≤时,()f x '的零点个数为0,当0a >时,()f x '的零点个数为1.

【证明】(2)由(1)可知,()f x '在()0,+∞上有唯一的零点0x ,当00x x <<时,()0f x '<,当0

x x >时,()0f x '>,所以()f x 在()00,x 上递减,在()0,x +∞上递增,所以当0x x =时,()f x 取得最小值,且最小值为()0f x .

因为0202e 0x a x -

=,所以020e 2x a x =

,00ln ln 22

a

x x =-,所以()02000000

2e ln ln 22ln 2ln 2222x a a a

a f x a x a x ax a a a x x a ??=-=

--=+-≥+ ???. 【例4】设函数设()21n n f x x x x =+++-L ,n ∈*N ,2n ≥. (1)求()2n f ';

(2)证明:()n f x 在20,3??

???

内有且仅有一个零点(记为n a ),且1120233n

n a ??<-< ???.

【解析】(1)因为()112n n f x x nx -'=+++L ,所以()121222n n f n -'=+?++?L …①.由

()2222222n n f n '=+?++?L …②,①-②,得()21212222n n n f n -'-=++++-?=L ()12212112

n

n n n n --?=---,所以()()2121n n f n '=-+. 【证明】(2)因为()010f =-<,22213322211121202

3339

13

n

n n f ????-?? ???????

??????=

-=-≥-=> ? ? ???

????-,由零点存

在性定理可知()n f x 在20,3??

???内至少存在一个零点.又因为()1120n n f x x nx -'=+++>L ,所以()n f x 在

20,3?? ???内递增,因此()n f x 在20,3??

???

内有且只有一个零点n a . 由于()()111n n x x f x x

-=

--,所以()()

1101n

n n n n n

a a f a a -=

-=-,由此可得1

1122

n n n a a +=

+,即11122n n n

a a +-=.因为2

03n a <<,所以1

11120223n n n a ++??<< ???,所以1

111212022333n n

n n

a ++??

??

<<= ? ?????

,所以1120233n

n a ??

<-< ???

【例5】已知函数()e x f x =和()()ln g x x m =+,直线l :y kx b =+过点()1,0P -且与曲线()y f x =相切.

(1)求切线l 的方程;

(2)若不等式()ln kx b x m +≥+恒成立,求m 的最大值;

(3)设()()()F x f x g x =-,若函数()F x 有唯一零点0x ,求证:0112

x -<<-.

【解析】(1)设直线l 与函数()f x 相切于点()

11,e x A x ,则切线方程为()111e e x x y x x -=-,即

1111e e e x x x y x x =-+,因为切线过点()1,0P -,所以11110e e e x x x x =--+,解得10x =,所以切线l 的方程为

1y x =+.

(2)设()()1ln h x x x m =+-+,()1

x m h x x m

+-'=

+.当(),1x m m ∈--时,()0h x '<,当()1,x m ∈-+∞时,()0h x '>,所以()h x 在1x m =-时取极小值,也是最小值.因此,要原不等式成立,则

()120h m m -=-≥,所以m 的最大值是2.

【证明】(3)由题设条件知,函数()1

e x F x x m

'=-

+(x m >-),令()()H x F x '=,则()()

2

1

e 0x H x x m '=+

>+,于是()H x 在(),m -+∞上单调递增.因为当x m +→-时,()F x '→-∞,当

x →+∞时,()F x '→+∞,所以()0F x '=有唯一的实根,设为1x ,则当()1,x m x ∈-时,()0F x '<,当

()1,x x ∈+∞时,()0F x '>,于是()F x 有唯一的极小值1x ,也是最小值.当x m +→-时,()F x →+∞,当x →+∞时,()F x →+∞.因此函数()F x 有唯一零点的充要条件是其最小值为0,即()00F x =(01x x =),

所以()00e ln 0x x m -+=,又因为001

e x x m

=

+,所以00e 0x x +=.设()e x x x ?=+,则()e 10x x ?'=+>,

所以()x ?在(),m -+∞上单调递增,又因为1

211

e 022?-??-=-> ???

,()1110e ?-=-<,由零点存在性定理可

知01

12

x -<<-.

【例6】设函数()2e 2ln x f x k x x x ??

=-+ ???

(k 为常数,e 2.71828=???是自然对数的底数).

(1)当0k ≤时,求函数()f x 的单调区间;

(2)若函数()f x 在()0,2内存在两个极值点,求k 的取值范围.

【解析】(1)函数()f x 的定义域为()0,+∞,()32e 2e 21x x x f x k x x

x -??

'=--+= ??? ()()

3

2e x x kx x --.当0k ≤时,e 0x kx ->,

所以当02x <<时,()0f x '<,当2x >时,()0f x '>.所以()f x 的递减区间为()0,2,递增区间为()2,+∞.

(2)函数()f x 在()0,2内存在两个极值点()0f x '?=在()0,2内有两个不同的根. 法1:问题e 0x kx ?-=在()0,2内有两个不同的根.设()e x h x kx =-,则()e x h x k '=-. 当1k ≤时,()0h x '>,所以()h x 在()0,2上递增,所以()h x 在()0,2内不存在两个不同的根. 当1k >时,由()0h x '>可得ln x k >,由()0h x '<可得ln x k <,所以()h x 的最小值为

()()ln 1ln h k k k =-.e 0x

kx -=在()0,2内有两个不同的根()()()()2

0102e 20ln 1ln 0

0ln 2g g k g k k k k ?=>?=->???=-

,解得2e e 2k <<.

综上所述,k 的取值范围为2e e,2??

???

法2:问题e x k x ?=在()0,2内有两个不同的根y k ?=与()e x

g x x

=在()0,2内有两个不同的交点.

()()22

1e e e x

x x x x g x x x --'==,当01x <<时,()0g x '<,当1x >时,()0g x '>.()1e g =,()2

e 22

g =,当0x +→时,()g x →+∞.画出()g x 在()0,2内的图象,可知要使y k =与()g x 在()0,2内有两个不同的

交点,k 的取值范围为2e e,2??

???

用好零点”,证明函数不等式 高考数学压轴题之函数零点问题

“用好零点”,证明函数不等式 类型一设而不求,应用函数零点存在定理 例1.【四川省泸州市2019届高三二诊】已知函数. (1)若曲线在点处的切线与轴正半轴有公共点,求的取值范围; (2)求证:时,. 类型二设而不求,应用不等式性质 例2.【广东省揭阳市2019届高三一模】已知函数(,e是自然对数的底,) (1)讨论的单调性; (2)若,是函数的零点,是的导函数,求证:. 类型三代入零点,利用方程思想转化证明零点之间的关系 例3.【湖南师大附中2019届高三月考试题(七)】已知函数,其中为常数. (1)讨论函数的单调性; (2)若有两个相异零点,求证:. 类型四利用零点性质,构造函数证明参数范围 例4.【山东省临沂市2019届高三2月检测】已知函数. (1)判断的单调性; (2)若在(1,+∞)上恒成立,且=0有唯一解,试证明a<1. 1.【广东省揭阳市2019届高三一模】设函数, (1)讨论的单调性; (2)若函数有两个零点、,求证:. 2.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】已知函数有两个零点. 求实数a的取值范围;

若函数的两个零点分别为,,求证:. 3.【宁夏银川市2019年高三下学期检测】已知函数. (1)当时,求函数的单调区间; (2)当 时,证明: (其中为自然对数的底数). 4.已知函数f (x )=lnx+a (x ﹣1)2 (a >0). (1)讨论f (x )的单调性; (2)若f (x )在区间(0,1)内有唯一的零点x 0,证明:. 5. 已知函数f (x )=3e x +x 2 ,g (x )=9x ﹣1. (1)求函数φ(x )=xe x +4x ﹣f (x )的单调区间; (2)比较f (x )与g (x )的大小,并加以证明. 6. 已知函数f (x )=lnx ﹣x+1,函数g (x )=ax?e x ﹣4x ,其中a 为大于零的常数. (Ⅰ)求函数f (x )的单调区间; (Ⅱ)求证:g (x )﹣2f (x )≥2(lna ﹣ln2). 7.【山东省济南市2019届高三3月模拟】已知函数,其导函数 的最大值 为. (1)求实数的值; (2)若 ,证明: . 8.【山东省日照市2017届高三下学期一模】设(e 为自然对数的底数), . (I)记,讨论函单调性; (II)令 ,若函数G(x )有两个零点. (i)求参数a 的取值范围; (ii)设 的两个零点,证明 . 9.已知函数()()()2 ln 10f x x a x a =+->. (1)讨论()f x 的单调性; (2)若()f x 在区间()0,1内有唯一的零点0x ,证明: 3 12 0e x e - -<<. 10.已知函数()1x f x e ax =--,其中e 为自然对数的底数, a R ∈

专题复习之--函数零点问题

专题复习之--函数零点问题 (一)零点所在区间问题(存在性,根的分布) 1.函数()lg 3f x x x =+-的零点所在区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,+∞) 变式:函数b x a x f x -+=)(的零点))(1,(0Z n n n x ∈+∈,其中常数b a ,满足 23,32==b a , 则=n ( ) A. 0 B.1 C.2- D.1- 2.已知a 是实数,函数2 ()223f x ax x a =+--,如果函数()y f x =在区间[]11-,上有零点,则a 的取值范围是____________. (二)零点个数问题(重点,常用数形结合) 3.函数()44f x x x = ++-的零点有 个. 4.讨论函数2()1f x x a =--的零点个数. 5.若存在区间[,]a b ,使函数[]()2(,)f x k x x a b =+ +∈的值域是[,]a b ,则实数k 的范围 是__________. 6. 已知偶函数)(x f 满足)()2(x f x f =-,且当10<≤x 时,x x f =)(,则x x f lg )(=的零点个数是________. 7.(选作思考)函数f (x )=234 20122013123420122013x x x x x x ??+-+-+-+ ?? ? cos2x 在区间[-3,3]上的零点的个数为_________.

(三)复合函数与分段函数零点问题(由里及外,画图分析) 8.已知函数???<≥=) 0()-(log )0(3)(3x x x x f x ,函数)()()()(2R t t x f x f x g ∈++=.关于)(x g 的 零点,下列判断不正确... 的是( ) A.若)(,41x g t =有一个零点 B.若)(,4 12-x g t <<有两个零点 C.若)(,2-x g t =有三个零点 D.若)(,2-x g t <有四个零点 变式一:设定义域为R 的函数1251,0()44,0 x x f x x x x -?-≥?=?++0)()-2(0) x x f x x x x ?=?-≤? 则关于x 的函数1)(3-)(2y 2+=x f x f 的零点的个数为______. 变式三:已知函数(0)()lg()(0) x e x f x x x ?≥=?-0 B. b >-2且c <0 C. b <-2且c =0 D. b 2c=0≥-且

导数压轴题之隐零点问题专辑含答案纯word版

导数压轴题之隐零点问题 导数压轴题之隐零点问题(共13题) 1.已知函数f(x)=(ae x﹣a﹣x)e x(a≥0,e=2.718…,e为自然对数的底数),若f(x)≥0对于x∈R恒成立. (1)求实数a的值; (2)证明:f(x)存在唯一极大值点x0,且. 【解答】(1)解:f(x)=e x(ae x﹣a﹣x)≥0,因为e x>0,所以ae x﹣a﹣x≥0恒成立, 即a(e x﹣1)≥x恒成立, x=0时,显然成立, x>0时,e x﹣1>0, 故只需a≥在(0,+∞)恒成立, 令h(x)=,(x>0), h′(x)=<0, 故h(x)在(0,+∞)递减, 而==1, 故a≥1, x<0时,e x﹣1<0, 故只需a≤在(﹣∞,0)恒成立, 令g(x)=,(x<0), g′(x)=>0, 故h(x)在(﹣∞,0)递增,

而==1, 故a≤1, 综上:a=1; (2)证明:由(1)f(x)=e x(e x﹣x﹣1), 故f'(x)=e x(2e x﹣x﹣2),令h(x)=2e x﹣x﹣2,h'(x)=2e x﹣1, 所以h(x)在(﹣∞,ln)单调递减,在(ln,+∞)单调递增, h(0)=0,h(ln)=2eln﹣ln﹣2=ln2﹣1<0,h(﹣2)=2e﹣2﹣(﹣2)﹣2=>0, ∵h(﹣2)h(ln)<0由零点存在定理及h(x)的单调性知, 方程h(x)=0在(﹣2,ln)有唯一根, 设为x0且2e x0﹣x0﹣2=0,从而h(x)有两个零点x0和0, 所以f(x)在(﹣∞,x0)单调递增,在(x0,0)单调递减,在(0,+∞)单调递增, 从而f(x)存在唯一的极大值点x0即证, 由2e x0﹣x0﹣2=0得e x0=,x0≠﹣1, ∴f(x0)=e x0(e x0﹣x0﹣1)=(﹣x0﹣1)=(﹣x0)(2+x0)≤() 2=, 取等不成立,所以f(x0)<得证, 又∵﹣2<x0<ln,f(x)在(﹣∞,x0)单调递增 所以f(x0)>f(﹣2)=e﹣2[e﹣2﹣(﹣2)﹣1]=e﹣4+e﹣2>e﹣2>0得证, 从而0<f(x0)<成立. 2.已知函数f(x)=ax+xlnx(a∈R) (1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围; (2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,

专题03 “用好零点”,证明函数不等式-2019年高考数学压轴题之函数零点问题(原卷版)

专题三“用好零点”,证明函数不等式 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕高考压轴题中已知零点(零点个数),证明函数不等式问题,例题说法,高效训练. 【典型例题】 类型一设而不求,应用函数零点存在定理 例1.【四川省泸州市2019届高三二诊】已知函数. (1)若曲线在点处的切线与轴正半轴有公共点,求的取值范围; (2)求证:时,. 类型二设而不求,应用不等式性质 例2.【广东省揭阳市2019届高三一模】已知函数(,e是自然对数的底,) (1)讨论的单调性; (2)若,是函数的零点,是的导函数,求证:. 类型三代入零点,利用方程思想转化证明零点之间的关系 例3.【湖南师大附中2019届高三月考试题(七)】已知函数,其中为常数. (1)讨论函数的单调性; (2)若有两个相异零点,求证:. 类型四利用零点性质,构造函数证明参数范围 例4.【山东省临沂市2019届高三2月检测】已知函数. (1)判断的单调性; (2)若在(1,+∞)上恒成立,且=0有唯一解,试证明a<1. 【规律与方法】 应用函数的零点证明不等式问题,从已知条件来看,有两类,一类是题目中并未提及函数零点,二一

类是题目中明确函数零点或零点个数;从要求证明的不等式看,也有两种类型,一类是求证不等式是函数值的范围或参数的范围,二一类是求证不等式是零点或零点的函数值满足的不等关系. 1.由于函数零点存在定理明确的是函数值满足的不等关系,所以,通过设出函数的零点,利用函数零点存在定理,可建立不等关系,向目标不等式靠近,如上述类型一;也可以利用不等式的性质,向目标不等式靠近,如上述类型二,这两类问题突出的一点是“设而不求”. 2. 当求证不等式是零点或零点的函数值满足的不等关系时,则注意将零点代入函数式,构建方程(组),进一步确定零点之间的关系,然后在通过求导、分离参数、构造函数等手段. 【提升训练】 1.【广东省揭阳市2019届高三一模】设函数, (1)讨论的单调性; (2)若函数有两个零点、,求证:. 2.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】已知函数有两个零点. 求实数a的取值范围; 若函数的两个零点分别为,,求证:. 3.【宁夏银川市2019年高三下学期检测】已知函数. (1)当时,求函数的单调区间; (2)当时,证明:(其中为自然对数的底数). 4.已知函数f(x)=lnx+a(x﹣1)2(a>0). (1)讨论f(x)的单调性; (2)若f(x)在区间(0,1)内有唯一的零点x0,证明:. 5. 已知函数f(x)=3e x+x2,g(x)=9x﹣1. (1)求函数φ(x)=xe x+4x﹣f(x)的单调区间; (2)比较f(x)与g(x)的大小,并加以证明. 6. 已知函数f(x)=lnx﹣x+1,函数g(x)=ax?e x﹣4x,其中a为大于零的常数. (Ⅰ)求函数f(x)的单调区间; (Ⅱ)求证:g(x)﹣2f(x)≥2(lna﹣ln2). 7.【山东省济南市2019届高三3月模拟】已知函数,其导函数的最大值

高中数学专题练习-函数零点问题

高中数学专题练习-函数零点问题 [题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围. 常考题型精析 题型一 零点个数与零点区间问题 例1 (1)(·湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} (2)(2015·北京)设函数f (x )=??? 2x -a ,x <1,4(x -a )(x -2a ),x ≥1. ①若a =1,则f (x )的最小值为________; ②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法; (2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 变式训练1 (·东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3 D.4 题型二 由函数零点求参数范围问题 例2 (·天津)已知函数f (x )=??? |x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实数 a 的取值范围为________. 点评 利用函数零点的情况求参数值或取值范围的方法:

函数导数压轴题隐零点的处理技巧

函数导数压轴题隐零点的处理技巧 些年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的,不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。 本专题通过几个具体的例题来体会隐性零点的处理步骤和思想方法。 一、隐性零点问题示例及简要分析: 1.求参数的最值或取值范围 例1(2012年全国I卷)设函数f(x)=e x﹣ax﹣2. (1)求f(x)的单调区间; (2)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值. 解析:(1)(略解)若a≤0,则f′(x)>0,f(x)在R上单调递增; 若a>0,则f(x)的单调减区间是(﹣∞,ln a),增区间是(ln a,+∞). (2)由于a=1,所以(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1. 故当x>0时,(x﹣k)f′(x)+x+1>0等价于k< 1 1 x x e + - +x(x>0)(*), 令g(x)= 1 1 x x e + - +x,则g′(x)= 2 (2) (1) x x x e e x e -- - , 而函数f(x)=e x﹣x﹣2在(0,+∞)上单调递增,①f(1)<0,f(2)>0, 所以f(x)在(0,+∞)存在唯一的零点.故g′(x)在(0,+∞)存在唯一的零点. 设此零点为a,则a∈(1,2).当x∈(0,a)时,g′(x)<0;当x∈(a,+∞)时,g′(x)>0.所以g(x)在(0,+∞)的最小值为g(a). ③所以g(a)=a+1∈(2,3).由于(*)式等价于k<g(a),故整数k的最大值为2. 点评:从第2问解答过程可以看出,处理函数隐性零点三个步骤: ①确定零点的存在范围(本题是由零点的存在性定理及单调性确定); ②根据零点的意义进行代数式的替换; ③结合前两步,确定目标式的范围。

复合函数零点问题专题训练

复合函数零点问题专题训练 1.定义域和值域均为[-a,a](常数a>0)的函数y=f(x)和y=g(x)的图像如图所示,给出下列四个命题中: (1)方程f[g(x)]=0有且仅有三个解;(2)方程g[f(x)]=0有且仅有三个解;(3)方程f[f(x)]=0有且仅有九个解;(4)方程g[g(x)]=0有且仅有一个解。 那么,其中正确命题的个数是 () A .1 B.2 C.3 D.4(第1 题图) 解:选B.(1)方程f[g (x )]=0有且仅有三个解;g (x )有三个不同值,由于y=g (x )是减函数,所以有三个解,正确; (2)方程g[f (x )]=0有且仅有三个解;从图中可知,f (x )∈(0,a )可能有1,2,3个解,不正确; (3)方程f[f (x )]=0有且仅有九个解;类似(2)不正确; (4)方程g[g (x )]=0有且仅有一个解.结合图象,y=g (x )是减函数,故正确.2.已知函数1)(+=x xe x f , 若函数2)()(2 ++=x bf x f y 恰有四个不同的零点,则实数b 的取值范围是 ( ) A.) 22,(--∞ B.) 2,3(-- C.) 3,(--∞ D.(] 2 2,3--解:用求导方法得,f(x)在x =-1取得最大值1,在x=0取得最小值0,故01时,f(x)=a,有1个解,2)()(2 ++=x bf x f y 恰有四个不同的零点,则 2 t +bt+2=0有两个不等根,1个在(0,1)内,另1个根大于1,令g(t)= 2 t +bt+2,于是得, ⊿>0且g (0)>0且g(1)<0,解得b <-3,故选C .思考:已知函数1 )(+=x xe x f ,若函数2)()(2 ++=x bf x f y 恰有6个不同的零点,则 实数b 的取值范围是 ( ) 3.(2013四川,理10)设函数f (x (a ∈R ,e 为自然对数的底数),若曲线 a a x y f(x)O a a a a x y g(x) O a a

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析 一、函数与方程基本知识点 1、函数零点:(变号零点与不变号零点) (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。 若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(f ,所以由根的存在性定理可知,函数x x x f 2 )1ln()(-+=的零点所在的大致区间是(1,2),选B (二)求解有关函数零点的个数(或方程根的个数)问题。 函数零点的存在性定理,它仅能判断零点的存在性,不能求出零点的个数。对函数零点的个数问题,我们可以通过适当构造函数,利用函数的图象和性质进行求解。如:

专题03 直击函数压轴题中零点问题(解析版)

一、解答题 1.(2020·湖南省高三考试)设函数()()2 1f x x bx b R =-+∈,()()() ,0,0f x x F x f x x ?>? =? ->??. (1)如果()10f =,求()F x 的解析式; (2)若()f x 为偶函数,且()()g x f x kx =-有零点,求实数k 的取值范围. 【答案】(1)()2221,0 21,0 x x x F x x x x ?-+>=?-+-=?-+-

高中数学专题---隐零点及卡根思想

高中数学专题--- 隐零点及卡根思想 基本方法: 导数解决函数综合性问题最终都回归于函数单调性的判断,而函数的单调性与其导数的零点有着紧密的联系,可以说导函数零点的判断、数值上的精确求解或估计成为导数综合应用中最为核心的问题. 导函数的零点,根据其数值上的差异,我们可以分为两类:一类是数值上能精确求解的,我们不妨称为“显零点”;另一类是能判断其存在但数值上无法精确求解的,我们不妨称为“隐零点”. (1)函数“隐零点”的存在性判断 对于函数“隐零点”的存在性判断,常采用下列两种方法求解:①若连续函数()f x 在(,)a b 上单调,且()()0f a f b ?,则()f x 在(,)a b 上存在唯一零点;②借助图像分析,即将函数()f x 的零点问题转化为方程()0f x =的解的判断,并通过合理的变形将方程转化为合适的形式在处理. (2)函数“隐零点”的虚设和代换 对于函数“隐零点”,由于无法求出其显性表达式,这给我们求解问题带来一定困难. 处理这类问题的基本方法为“虚设及代换”:在确定零点存在的条件下虚设零点0x ,再借助零点的表达式 进行合理的代换进而求解. (3)函数“隐零点”的数值估计-卡根思想 函数“隐零点”尽管无法求解,但是我们可以进行数值估计,最简单的方法即为判断其存在性的前提下利用二分法进行估计,估值范围越精确越容易解决问题. 对于“隐零点”的代数估计,可以通过单调函数构造函数不等式进行估计. 一、典型例题 1. 已知函数()22e x f x x x =+-,记0x 为函数()f x 极大值点,求证:()0124f x <<. 2. 已知函数()4ln (1)x f x x x += >. 若*k N ∈,且()1k f x x <+恒成立. 求k 的最大值. 二、课堂练习 1. 已知函数()2ln f x x x x x =--,证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<. 2. 已知函数ln 1()x f x ax x -= -. 若12a <<,求证:()1f x <-. 三、课后作业 1. 已知函数()ln f x x =,若关于x 的方程()()1f x m x =+,()m Z ∈有实数解,求整数m 的最大值. 2. 已知函数()22ln f x x =+,令()() 2xf x g x x =-在()2,+∞上的最小值为m ,求证:()67f m <<.

函数与导数压轴题中零点问题

导数压轴题零点问题练习题 一、解答题 1.(2020·省高三考试)设函数()()2 1f x x bx b R =-+∈,()()() ,0,0f x x F x f x x ?>? =? ->??. (1)如果()10f =,求()F x 的解析式; (2)若()f x 为偶函数,且()()g x f x kx =-有零点,数k 的取值围. 【答案】(1)()2221,0 21,0 x x x F x x x x ?-+>=?-+-=?-+-

专题05 挖掘“隐零点”,破解导数压轴题-2019年高考数学压轴题之函数零点问题(解析版)

专题五挖掘“隐零点”,破解导数压轴题 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕利用函数的“隐零点”,破解导数压轴问题,例题说法,高效训练. 【典型例题】 类型一挖掘“隐零点”,求参数的最值或取值范围 例1.【浙江省杭州第十四中学2019届高三12月月考】设函数,曲线y=f(x)在x=1处的切线与直线y=3x平行. (1)判断函数f(x)在区间和上的单调性,并说明理由; (2)当时,恒成立,求的取值范围. 【答案】(1)区间单调递增;(2) 【解析】 (1).∵f'(1)=1+b=3,∴b=2,则f'(x)=ln x+4x-1. 因为在单调递增,所以当时 即函数f(x)在区间单调递减;当时 即函数f(x)在区间单调递增; (2)因为,而在(0,1)上递增 存在使得

,当 时单调递减; 当时 单调递增 所以 又因为时则 所以则 类型二 挖掘“隐零点”,证明不等式 例2. 设函数2()ln x f x e a x =-,设()2 0,2a e ∈求证:当(]0,1x ∈时,2()2ln f x a a a ≥+ 【答案】见解析 【解析】()f x 的定义域为(]0,1,222'()2x x a xe a f x e x x -=-= 设2()2x x xe a ?=-,()22()242x x x xe x e ?'==+, 当(]0,1x ∈,()0x ?'>,即()x ?在区间(]0,1为增函数, (2(),2x a e a ??∈--? 又因为( )2 0,2a e ∈,所以2 (0)0,(1)20a e a ??=-<=-> 由零点存在定理可知'()f x 在(]0,1的唯一零点为0x 当0(0,)x x ∈时,'()0f x <,当(]0,1x x ∈,'()0f x > 故()f x 在0(0,)x 单调递减,在(]0,1x 单调递增, 所以当0x x =时,()f x 取得最小值,最小值为0200()ln x f x e a x =-, 由0 2020x x e a -=,即0 202x a e x = ,两边去对数得00ln ln 22 a x x =- 由于,所以00000222()2ln 22ln 2ln 22a a f x ax a ax a a a x a x a a = ++≥?=+

导数方法与技巧一(隐零点问题)

高三数学一轮复习第二十讲:导数的方法与技巧一(隐零点问题) 1.已知函数 ()()()ln ,f x x h x ax a R ==∈(1)若函数与的图像无公共点,试求实数的取值范围; ()f x ()g x a (2)是否存在实数,使得对任意的,都有函数的图像在的图像m 1,2x ??∈+∞ ??? ()m y f x x =+()x e g x x =的下方?若存在,求出最大整数的值;若不存在,请说明理由. m (参考数据:) ln 20.6931,ln 3 1.3956≈≈≈≈ 2.已知函数,其中,为自然对数的底数. ()()222 x a f x x e x =--a R ∈e (1)函数的图象能否与轴相切?若能求出实数的值;否则,说明理由. ()f x x a (2)若函数在上单调递增,求实数能取到的最大整数值. ()2y f x x =+R a

3.设函数. ()()ln ,21x f x x x g x x e x =-=?--(1)关于的方程在区间上有解,求实数的取值范围; x ()2103 f x x x m =-+[]1,3m (2)证明:当时,. 0x >()()g x f x ≥ 4.已知函数,若恒成立,求实数的取值范围. ()()()2 23,x f x e x a a R =--+∈()0,0x f x ≥≥a

5.已知函数. ()ln 1f x ax x =++(1)讨论函数零点的个数; ()f x (2)对任意的恒成立,求实数的取值范围. ()20,x x f x xe >≤a 6.已知函数. ()2 x f x e x ax =--(1)若函数在R 上单调递增,求实数的取值范围. ()f x a (2)若,证明:当时,. 1a =0x >()2 ln 2ln 2122f x ??>-- ??? (参考数据:) 2.71828,ln 20.69e ≈≈

(完整版)导数压轴题分类(6)---函数的隐零点问题(含答案)

导数压轴分类(6)---函数的隐零点问题 任务一、完成下面问题,总结隐零点问题的解题方法。 例1. [2013湖北理10] 已知a 为常数,函数)(ln )(ax x x x f -=有两个极值点21x x ,,且21x x <,则( ) A.)(1x f >0,)(2x f >21- B. )(1x f <0,)(2x f <2 1- C. )(1x f >0,)(2x f <21- D . )(1x f <0,)(2x f >21- 例2. [2012全国文21] 设函数2)(--=ax e x f x . (1)求函数)(x f 的单调区间; (2)若1=a ,k 为整数,且当x >0时,1)(')(++-x x f k x >0,求k 的最大值。 k 的最大值=2 任务二、完成下面问题,体验隐零点问题的解题方法的应用。 2.1 [2015北京海淀二模理18] 设函数2ln 1)(x x x f -=. (Ⅰ)求函数)(x f 的零点及单调区间; (Ⅱ)求证:曲线x x y ln = 存在斜率为6的切线,且切点的纵坐标0y <1- 提示解析:(Ⅰ)函数)(x f 的零点为x e =,单调减区间32(0,)e ;单调增区间32(,)e +∞; (Ⅱ)x x y ln =存在斜率为6的切线即存在点000ln (,)x x x 处导数为6,于是020 1ln 6x x -=,即2001ln 60x x --=,令2()1ln 6f x x x =--为增函数,易判断所以01(,1)2x ∈,所以20000000 ln 1616x x y x x x x -===-为减函数,所以0001 2|231x y y =<=-=-

函数零点问题专题

函数零点问题专题 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

专题复习之--函数零点问题 (一)零点所在区间问题(存在性,根的分布) 1.函数()lg 3f x x x =+-的零点所在区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,+∞) 2.已知a 是实数,函数2()223f x ax x a =+--,如果函数()y f x =在区间 []11-,上有零点,则a 的取值范围是____________. (二)零点个数问题(重点,常用数形结合) 3.函数()4f x x =+-的零点有 个. 4.讨论函数2()1f x x a =--的零点个数. 5. 若存在区间[,]a b ,使函数[]()(,)f x k x a b =∈的值域是[,]a b ,则实数k 的范围是__________. 6. 已知偶函数)(x f 满足)()2(x f x f =-,且当10<≤x 时,x x f =)(,则x x f lg )(=的零点个数是________. (三)复合函数与分段函数零点问题(由里及外,画图分析) 7:设定义域为R 的函数2lg (>0)()-2(0) x x f x x x x ?=?-≤? 则关于x 的函数1)(3-)(2y 2+=x f x f 的零点的个数为______. 8:已知函数(0)()lg()(0)x e x f x x x ?≥=?-

隐零点问题

隐零点问题 有一种零点客观存在,但不可解,然而通过研究其取值范围、利用其满足的等量关系实现消元、换元以及降次达到解题的目的.这类问题就是隐零点问题. 类型一 根据隐零点化简求范围 典例1. 已知函数的图像在点(其中为自然对数的底数)处的切线斜率为3. ()ln f x ax x x =+x e =e (1)求实数的值; a (2)若,且对任意恒成立,求的最大值; k Z ∈() 1 f x k x <-1x >k 【答案】 3【解析】解析:(1),由解得; ()'1ln f x a x =++()3f e =1a =(2),,, ()ln f x x x x =+()ln ()11f x x x x k g x x x +< =--@2 2ln '()(1)x x g x x --= -令,有,那么. ()2ln h x x x =--1 '()10h x x =- >()(1)1h x h >=-不妨设,由,,则可知,且. 0()0h x =(3)0h <(4)0h <0(3,4)x ∈00ln 2x x =-因此,当时,,;当时,,; ()0h x >()'0g x >0x x >()0h x <()'0g x <0x x <即可知, []000000min 00(ln 1)(1) ()()11 x x x x g x g x x x x +-== ==--所以,得到满足条件的的最大正整数为3. 0k x ≤k

类型二 根据隐零点分区间讨论 典例2 已知函数,为何值时,方程有唯一解. 2()2ln (0)f x x t x t =->t ()2f x tx =【答案】 (,0){1}-∞ 【解析】 , 222ln 22(ln )x t x tx t x x x -=?+=当时,有; ln 0x x +=t R ∈设,;又,,不妨设, ()ln u x x x =+1'()10u x x =+ >(1)10u =>11 ()10u e e =-<00ln 0x x +=则可知. 01(,1)x e ∈当时,得到; , ln 0x x +≠22()ln x t g x x x =+@222 2ln (12ln )'()(ln )(ln )x x x x x x x g x x x x x -+-+== ++令,易知,且时,;时,; ()12ln g x x x =-+(1)0g =1x >()0g x >1x <()0g x < 综上可知在区间上为减函数,在区间上为增函数;画图函数图像: ()g x 00(0,),(,1)x x (1,)+∞ 因此,可知所求的范围为. t (,0){1}-∞

高考数学专题复习函数隐性零点的处理技巧

高考数学专题复习函数隐性零点的处理技巧 近些年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的, 不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。 本专题通过几个具体的例题来体会隐性零点的处理步骤和思想方法。 一、隐性零点问题示例及简要分析: 1.求参数的最值或取值范围 例1(2012年全国I 卷)设函数f (x )=e x ﹣ax ﹣2. (1)求f (x )的单调区间; (2)若a=1,k 为整数,且当x >0时,(x ﹣k )f ′(x )+x+1>0,求k 的最大值. 解析:(1)(略解)若a≤0,则f ′(x )>0,f (x )在R 上单调递增; 若a >0,则f (x )的单调减区间是(﹣∞,lna ),增区间是(lna ,+∞). (2)由于a=1,所以(x ﹣k )f′(x )+x+1=(x ﹣k )(e x ﹣1)+x+1. 故当x >0时,(x ﹣k )f ′(x )+x+1>0等价于k < 1 1 -+x e x +x (x >0)(*), 令g (x )=1 1 -+x e x +x ,则g′(x )=2)1()2(---x x x e x e e , 而函数f (x )=e x ﹣x ﹣2在(0,+∞)上单调递增,①f (1)<0,f (2)>0, 所以f (x )在(0,+∞)存在唯一的零点.故g ′(x )在(0,+∞)存在唯一的零点. 设此零点为a ,则a ∈(1,2).当x ∈(0,a )时,g ′(x )<0;当x ∈(a ,+∞)时,g ′(x )>0.所以g (x )在(0,+∞)的最小值为g (a ).

专题06 重温高考压轴题----函数零点问题集锦-2020年高考数学压轴题之函数零点问题(原卷版)

专题六 重温高考压轴题----函数零点问题集锦 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题精选高考压轴题及最新高考模拟压轴题,形成函数零点问题集锦,例题说法,高效训练,进一步提高处理此类问题的综合能力. 【典型例题】 类型一 已知零点个数,求参数的值或取值范围 例1.【2018年理新课标I 卷】已知函数 .若g (x )存在2个零 点,则a 的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 例2.【2018年理数全国卷II 】已知函数. (1)若,证明:当时, ; (2)若 在 只有一个零点,求. 类型二 利用导数确定函数零点的个数 例3.【2018年全国卷II 文】已知函数. (1)若,求 的单调区间; (2)证明: 只有一个零点. 类型三 挖掘“隐零点”,证明不等式 例4.【2017课标II ,理】已知函数()2 ln f x ax ax x x =--,且()0f x ≥. (1)求a ; (2)证明:()f x 存在唯一的极大值点0x ,且()2 202e f x --<<. 类型四 利用函数单调性,确定函数零点关系 例5.【2016高考新课标1理】已知函数2 ()(2)e (1)x f x x a x =-+-有两个零点. (I )求a 的取值范围;

高中数学函数零点问题及例题解析2018年高三专题复习-函数

高中数学2017-2018高三专题复习 -函数(3)函数零点问题及例题解析 一、函数与方程基本知识点 1、函数零点:(变号零点与不变号零点) (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。 若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(f ,所以由根的存在性定理可知,函数x x x f 2 )1ln()(-+=的零点所在的大致区间是(1,2),选B (二)求解有关函数零点的个数(或方程根的个数)问题。

相关文档
最新文档