医学基础化学最全的总结
医学基础化学最全的总结

医学基础化学最全的总结医学基础化学是医学专业的关键学科之一,它为医学研究提供了基础理论和方法,也为临床诊疗提供了必要的支持。
以下是医学基础化学的最全总结。
一、基本概念1. 物质:物质是构成宇宙万物的基本要素,具有质量和体积,可以分为元素、化合物和混合物等多种形式。
2. 元素:元素是一种由相同原子构成的物质,不可分解为其他物质,目前已知元素共118种。
3. 原子:原子是物质中最小的单位,由质子、中子和电子三种基本粒子组成,具有特定的核电荷数和电子数。
4. 分子:分子是由两个或更多原子结合形成的物质,可分为同种原子形成的分子和不同种原子形成的分子。
5. 化合物:化合物是由两种或更多原子结合而成的物质,有固定的化学组成和化学性质,可以通过化学反应进行分解。
6. 溶液:溶液是由溶质和溶剂形成的混合物,其中溶质通常是少量固体或气体,溶剂则是液体。
7. 酸碱:酸是指具有一定酸性的物质,能够在水中释放氢离子;碱是指具有一定碱性的物质,能够在水中释放氢氧离子。
8. pH值:pH值是衡量溶液酸碱性强弱的指标,通常在0-14范围内变化,pH值越小表示酸性越强,越大则表示碱性越强。
9. 化学反应:化学反应是指化合物或元素发生化学变化并生成新的物质,可以分为酸碱反应、氧化还原反应、配位反应等多种类型。
二、主要内容1. 元素周期表:元素周期表是由化学元素按照原子序数排列而成的表格,它将元素划分为周期、族等多种类别,方便了对元素性质的研究和应用。
2. 化学键:化学键是分子中原子之间相互连接的力,包括共价键、离子键、金属键等多种形式。
3. 溶液浓度:溶液浓度是指单位体积或质量的溶液中所含溶质的量,可以通过质量分数、体积分数、摩尔浓度等方式进行描述。
4. 氧化还原反应:氧化还原反应是指含氧化物和还原物的物质之间交换氧原子或电子,形成新的化合物的反应,是生命活动和环境污染等许多方面的重要反应类型。
5. 酸碱反应:酸碱反应是指酸和碱在水中相互作用产生盐和水的反应,常用于中和酸性或碱性物质,是常见的化学反应类型。
医学大一生化知识点总结

医学大一生化知识点总结生化学是医学专业的基础科学之一,它研究生物体内分子和化学反应的过程。
对于医学生而言,掌握生化学知识是打好医学基础的重要一步。
本文将针对医学大一生化学课程中的重点知识点进行总结,帮助医学生更好地理解和掌握这些知识。
一、细胞和组织的基本结构与功能1. 细胞膜:细胞膜是细胞的外界环境与细胞内环境之间的隔离屏障,具有选择通透性和受体功能。
2. 细胞器:包括内质网、高尔基体、线粒体、溶酶体等,各自承担着不同的功能,如合成蛋白质、合成脂类、能量供应等。
3. 组织:由相同类型的细胞按照一定的排列方式组成,包括上皮组织、结缔组织、肌肉组织和神经组织等。
二、碳水化合物代谢与调节1. 糖代谢:糖分解途径包括糖酵解和糖异生,其中糖酵解主要发生在胞质中,产生能量(ATP);糖异生主要发生在肝脏中,利用非糖物质合成糖类。
2. 胰岛素与葡萄糖调节:胰岛素是由胰岛β细胞分泌的激素,主要调节血糖水平,促进葡萄糖的摄取和利用,并抑制葡萄糖的合成与释放。
三、脂质代谢与调节1. 脂肪酸代谢:脂肪酸是脂类的重要组成部分,它们可以通过脂肪酸合成和β氧化途径进行代谢。
2. 胆固醇代谢:胆固醇是一种重要的脂质,在体内主要合成于肝脏,参与细胞膜结构、激素合成等多种生物学过程。
3. 脂蛋白代谢:脂蛋白是运输脂类的载体,包括乳糜微粒、低密度脂蛋白、高密度脂蛋白等,它们在胆固醇的运输和代谢中起着重要的作用。
四、蛋白质代谢与调节1. 蛋白质的合成:蛋白质由氨基酸组成,通过转录和翻译过程合成。
转录是将DNA模板转录为mRNA,而翻译是在核糖体上将mRNA翻译为蛋白质。
2. 蛋白质的降解:蛋白质降解主要通过蛋白酶的作用,将蛋白质分解为氨基酸,进而参与能量供应和新蛋白质的合成。
3. 激素对蛋白质代谢的调节:包括生长激素、甲状腺激素、胰岛素等,它们能够影响蛋白质的合成和降解过程。
五、核酸代谢与遗传物质的表达调控1. 核酸的结构与功能:核酸包括DNA和RNA,DNA是遗传物质的主要组成部分,RNA则在遗传信息的转录和翻译中起着重要的作用。
医学基础化学大一知识点总结归纳

医学基础化学大一知识点总结归纳化学作为一门基础科学,对于医学专业学生来说,是一门极为重要的课程。
通过学习化学,我们可以了解人体内各种化学反应以及生物分子的结构和功能,为将来的临床工作打下坚实的基础。
在大一的学习中,我们接触到了众多的医学基础化学知识点,下面将对这些知识点进行总结归纳。
一、化学元素及其周期表化学元素是构成物质的基本单位,周期表是对这些元素进行分类和排列的依据。
大一的化学课程中,我们学习了周期表的基本结构和常见元素的性质。
周期表的排列按照元素的原子序数递增,相邻元素在性质上有很大的相似性。
二、原子结构与化学键原子是化学反应的基本参与者,了解其结构对我们分析化学反应至关重要。
原子由原子核和电子组成,原子核包括质子和中子,而电子则围绕核心旋转。
化学键是原子之间的连接,常见的化学键包括离子键、共价键和金属键等。
三、化学反应和化学方程式化学反应是物质转变的过程,通过化学方程式可以描述反应物和生成物之间的关系。
化学方程式包括反应物、生成物和反应条件等信息,从中我们可以了解反应的类型、反应的方向以及所需的能量变化等。
在医学中,了解不同化学反应对于解析体内物质转化过程具有重要意义。
四、化学计量学和化学计算在化学实验和分析中,需要进行化学计量学和化学计算。
化学计量学是指通过化学方程式确定化学反应物质的相对摩尔比例关系。
化学计算包括摩尔质量、摩尔浓度、溶液的配制方法以及反应的收率等。
掌握化学计量学和化学计算方法,可以帮助我们进行药物计算、药物配方和药物浓度的计算等。
五、溶液和溶解度溶液是指由溶质和溶剂组成的均匀混合物,溶解度指的是单位溶剂中最多可以溶解的溶质的量。
溶液的浓度可以通过质量浓度、摩尔浓度和体积分数等来表示。
在医学领域,我们需要了解溶液的配制和调整,以便正确使用和制备一些药物。
六、酸碱中和反应酸碱中和反应是指酸和碱反应生成盐和水的反应。
通过酸碱指数和pH值的概念,我们可以了解溶液的酸碱性质。
临床医学专业基础化学实验教学总结

临床医学专业基础化学实验教学总结【摘要】本文总结了临床医学专业基础化学实验教学的实践经验。
在介绍了背景情况,研究目的以及意义。
在详细阐述了教学内容安排、实验设备与试剂准备、实验操作流程、实验数据处理以及实验效果评价。
结论部分总结了实验教学的优点,指出了存在的不足之处,并展望了未来的发展方向。
通过本文的分析,可以为临床医学专业基础化学实验教学提供借鉴和参考,促进教学效果的提升,培养出更多优秀的临床医学人才。
【关键词】临床医学专业、基础化学、实验教学、实验内容、实验设备、试剂准备、实验操作、数据处理、实验效果、优点、不足、发展方向。
1. 引言1.1 背景介绍临床医学专业基础化学实验教学是医学教育的重要组成部分,通过实验教学可以帮助学生深入理解化学知识在临床医学中的应用。
随着医学技术的不断发展,临床医学对于化学知识的要求也越来越高,因此加强基础化学实验教学对于培养具有临床实践能力的医学生至关重要。
在过去的实验教学中,往往存在实验内容与临床实际应用之间的脱节现象,学生往往难以将理论知识与实际操作相结合。
对临床医学专业基础化学实验教学进行总结和改进势在必行。
通过对教学内容的重新安排、实验设备与试剂的准备与更新、实验操作流程的优化、实验数据处理的规范化以及实验效果的评价,可以提高学生对化学知识的理解和应用能力,为其将来的临床实践奠定坚实基础。
1.2 研究目的研究目的:本文旨在对临床医学专业基础化学实验教学进行总结,通过深入分析教学内容安排、实验设备与试剂准备、实验操作流程、实验数据处理以及实验效果评价,来探讨该实验教学在提高学生实际操作能力和科研素养方面的作用。
通过对实验教学的优点和不足之处进行评价,以及展望未来发展方向,旨在为临床医学专业基础化学实验教学提供参考,促进教学质量的持续提升,培养更多具有扎实理论基础和实践能力的优秀医学人才。
1.3 意义在临床医学专业中,基础化学实验教学具有重要的意义。
通过基础化学实验教学,可以帮助学生掌握基本的实验技能和操作方法,培养他们的实践能力和解决问题的能力。
医学生基础化学大一知识点总结

医学生基础化学大一知识点总结大一医学生基础化学知识点总结在医学生物学学科中,化学是一门重要的基础学科,对于学习生物化学和药理学等后续课程的理解和应用具有至关重要的意义。
在大一学习阶段,我们学习了一些基础的化学知识,这些知识将成为我们未来学习和实践的基础。
本文将总结医学生大一阶段所学习的基础化学知识点,以帮助大家更好地复习和理解。
1. 原子结构和周期表1.1 原子结构:原子由原子核和绕核运动的电子组成。
原子核由质子和中子组成,电子以能级的形式存在。
1.2 原子质量单位:原子质量单位(amu)是一个无量纲的物理常数,常用于表示原子质量。
1.3 周期表:周期表是化学元素按照原子序数和元素性质排列的表格。
它分为周期和族,周期表上的元素有特定的周期趋势和族趋势。
2. 化学键和分子结构2.1 化学键:原子通过化学键连接在一起形成分子或者晶体。
共价键和离子键是最常见的两种化学键。
2.2 分子结构:分子结构指的是分子中原子的相对排列方式,包括分子的几何构型和键长、键角等参数。
3. 化学方程式和化学计量3.1 化学方程式:化学反应可用化学方程式表示,化学方程式由反应物、生成物和反应条件组成。
化学方程式反映了物质的物质转化过程和化学反应的平衡。
3.2 化学计量:化学反应中,反应物和生成物的摩尔比例关系称为化学计量关系。
通过化学计量关系,可以计算物质的反应量和生成量。
4. 氧化还原反应4.1 氧化还原反应:又称为红ox化和还原reduction反应,是指物质中电子的转移过程。
有氧化剂和还原剂两个参与反应的物质。
4.2 氧化态和还原态:氧化还原反应中,物质的氧化态指的是物质中元素的最高化合价,还原态指的是物质中元素的最低化合价。
5. 酸碱中和反应和pH值5.1 酸碱中和反应:酸和碱反应生成盐和水的反应称为酸碱中和反应。
5.2 pH值:pH值是用来衡量溶液酸碱性的指标。
pH值越小,溶液越酸性;pH值越大,溶液越碱性;pH值为7,溶液为中性。
医学生基础化学大一知识点

医学生基础化学大一知识点在医学专业学习的过程中,化学是一门重要的基础科学课程。
作为医学生,了解和掌握大一基础化学的知识点,对于学习后续的医学课程和扎实的临床实践都至关重要。
本文将介绍医学生大一基础化学的主要知识点。
一、原子和分子化学的基础是原子和分子的认识。
原子是化学中最小的粒子,由质子、中子和电子组成。
质子带正电荷,中子电中性,而电子带负电荷。
原子的结构决定了元素的性质和行为。
多个原子结合在一起形成分子,分子可以是同种元素的组合,也可以是不同元素的组合。
二、化学式和化合物化学式是用来表示化合物的符号表示法。
其中,分子式用元素符号表示分子中原子的种类和数量,例如H2O表示水分子,CO2表示二氧化碳分子。
离子式用来表示离子化合物,离子是带电荷的原子或原子团。
在化学中,化合物是由两种或更多种元素以确定的比例结合而成的物质。
根据化学键的种类,化合物分为离子化合物和共价化合物。
离子化合物是由正、负离子通过离子键结合而成,如NaCl为氯化钠。
共价化合物是由两个或更多个非金属原子通过共用电子对而结合,如H2O为水。
三、化学反应化学反应是发生化学变化的过程。
化学反应的主要特征是物质的性质发生了变化,产生了新的物质。
化学反应包括以下几种类型:1. 氧化还原反应:也称为氧化反应或还原反应,涉及到电子的转移,如金属被氧气氧化的反应。
2. 酸碱中和反应:酸碱反应是指酸和碱反应生成盐和水的过程,如盐酸和氢氧化钠反应生成氯化钠和水。
3. 沉淀反应:在溶液中,两种离子结合形成难溶于水的化合物,从而产生沉淀。
4. 代谢反应:生物体内发生的化学反应,比如葡萄糖的分解过程。
四、溶液和浓度溶液是由溶质和溶剂组成的均匀混合物。
溶质是被溶解的物质,溶剂是溶解溶质的物质。
在医学中,理解溶液和浓度的概念非常重要。
浓度表示的是溶液中溶质的相对含量,常用的浓度单位包括摩尔浓度、质量浓度和体积浓度。
摩尔浓度是以溶质的摩尔数占溶液体积的比例来表示的,质量浓度则以溶质质量占溶液体积的比例表示,体积浓度是以溶质体积占溶液体积的比例表示。
大专医用化学知识点总结

大专医用化学知识点总结在医学领域中,化学知识的运用十分广泛。
从医疗设备的制造,到药物的研发和治疗过程中的化学原理都需要大量的化学知识。
本文将从医用化学的基本概念、药物化学、生物化学以及临床化学四个方面进行总结。
一、医用化学的基本概念1. 原子结构和元素周期表原子是物质的基本单位,由质子、中子和电子组成。
元素周期表是按原子序数排列的化学元素的表格。
掌握元素周期表的结构和元素的性质对于理解化学反应和物质组成十分重要。
2. 化学键和化合物化学键是原子之间的相互作用力,包括离子键、共价键和金属键。
化合物是由两种或两种以上原子通过化学键结合而成的物质。
理解化学键和化合物的形成对于理解药物分子的结构和作用机制有极大帮助。
3. 酸碱和 pH 值酸碱是溶液中氢离子和氢氧根离子的浓度的概念。
pH 值描述了溶液的酸碱程度,pH 值越小溶液越酸,值越大溶液越碱。
了解酸碱和 pH 值对于理解体内环境和理解药物在不同 pH 值下的稳定性和溶解性非常重要。
4. 动力学和热力学动力学研究化学反应的速率和机理,热力学研究化学反应的热能变化和平衡态。
了解动力学和热力学对于理解药物代谢和分解的过程有极大帮助。
二、药物化学1. 药物的分类和特性药物的分类包括按作用机制分,按来源分,按化学结构分等。
不同分类方法对于说明药物的特性和临床应用具有重要作用。
2. 药物的分子结构和作用机制药物的分子结构决定了其物化性质和作用机制。
理解药物的分子结构和作用机制有助于解释其药效和不良反应。
3. 药物的合成和质量控制药物的合成需要具备一定的有机合成化学知识,合成过程中还需要进行反应条件和产物纯度的控制。
质量控制需要掌握化学分析的方法和仪器操作的技能。
4. 药物的代谢和毒性药物在人体内经过吸收、分布、代谢和排泄的过程,掌握药物的代谢动力学对于合理用药和降低毒性十分重要。
三、生物化学1. 生物大分子的结构和功能生物大分子包括蛋白质、核酸、多糖和脂质,它们在细胞代谢和生命活动中发挥着重要的作用。
医用基础化学大一知识点总结归纳

医用基础化学大一知识点总结归纳医用基础化学是医学专业中的一门重要课程,它为学生提供了一系列基础化学知识,帮助他们深入了解人体组成和功能。
下面是医用基础化学大一知识点的总结归纳。
1. 原子结构和元素周期表原子是化学物质的基本单位,由电子、质子和中子组成。
元素周期表是对所有已知元素按照一定的规律进行排列,便于我们了解元素的性质和特点。
2. 化学键和化学反应化学键是原子之间的结合力,常见的化学键有离子键、共价键和金属键。
化学反应是指物质之间的变化,包括酸碱中和、氧化还原、水解等。
3. 水和溶液水是生命的基础,也是许多生物和化学反应发生的媒介。
溶液是由溶质和溶剂组成的,常见的溶剂包括水、醇类和醚类。
4. 酸和碱酸是指具有产生H+离子的性质,碱是指具有产生OH-离子的性质。
酸碱中和是指将酸和碱按照一定的比例混合,使pH值接近7。
5. 有机化学基础有机化合物是由碳元素组成的化合物,它们广泛存在于生物体内。
有机化学基础包括有机化合物的命名规则、结构分析和反应特点。
6. 生化反应生化反应是指生物体内发生的化学反应,包括代谢、酶促反应和细胞信号传导等。
理解生化反应可以帮助医学专业的学生更好地理解生物体的功能和疾病机制。
7. 蛋白质和核酸蛋白质是生物体内最重要的大分子,它们参与了几乎所有生物过程。
核酸是生物体内负责遗传信息传递的分子,包括DNA和RNA。
8. 药物化学基础药物化学基础涉及药物的结构、性质和作用机制。
了解药物化学基础可以帮助医学专业的学生更好地理解药物的治疗原理和药物相互作用机制。
以上是医用基础化学大一知识点的总结归纳。
通过学习这些知识,学生将能够更好地理解人体的化学组成和功能,为将来的临床工作打下坚实的基础。
希望本文对医学专业的学生有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
稀溶液的依数性难挥发性非电解质稀溶液的四种依数性,它们均与溶液的质量摩尔浓度成正比,与溶质的本性无关。
∆p = Kb B ∆T f = K f b B (难点)∆T b = K b b Bᴨ = RTb B (重点)根据依数性,可求出溶质的相对分子量,已知一种依数性,可推算其他几种依数性。
非电解质:渗透浓度 = 物质的量浓度 电解质 :渗透浓度 = i ×物质的量浓度混合溶液的渗透浓度 = 非电解质渗透浓度 + 电解质渗透浓度 稀溶液 bB ≈ cB临床上规定渗透浓度在280~320 mmol ·L-1的溶液为等渗溶液。
渗透现象产生的条件:有半透膜及膜两侧有渗透浓度差存在。
测定小分子溶质的相对分子质量多用(凝固点降低法) 测定蛋白质等大分子化合物的摩尔质量常用(渗透压法)常见等渗溶液: 50 g ·L-1 葡萄糖溶液, 9.0 g ·L -1 NaCl 溶液, 12.5 g ·L -1 NaHCO 3溶液等。
渗透浓度cos(mmol ·L-1):渗透活性物质(溶液中能够产生渗透效应的溶质粒子)的物质的量浓度。
电解质溶液计算电解质溶液依数性的校正因子 i 与解离度的关系: α = i -1 (适用于1-1AB 型) 离子强度是溶液中所有离子产生的电场强度的量度: I= 21Σb i z i 2 298K 时 I 与γ±的关系:lg γ± = –0.509 |z + z –| (适用于I < 0.01mol • kg–1的极稀水溶液)活度与理论浓度的关系 a = γ•c c酸碱质子理论: 酸碱的定义、共轭关系、反应实质、酸碱的强度。
质子酸、质子碱、两性物质的判断;共轭酸碱对。
H 2PO 4--的共轭酸:H 3PO 4 H 2PO 4-的共轭碱:HPO 42- [Fe(H2O)6]3+的共轭碱:[Fe(OH)(H2O)5]2+酸解离常数K a 、碱解离常数K b 的影响因素:本性、温度。
影响酸碱平衡的因素:浓度(稀释定律)、同离子效应和盐效应。
弱酸、弱碱的解离平衡:部分解离;分步电离,以第一步为主。
解离度α的影响因素:本性、温度、浓度。
同离子效应的定性判断、定量计算。
有关离子浓度的计算(重点) 一元酸碱: 近似式、最简式及使用条件。
多元酸碱: 按一元酸碱计算。
两性物质二元弱酸的酸根阴离子浓度近似等于Ka 2难溶电解质的沉淀溶解平衡(重点)溶度积与溶解度的关系和换算溶度积规则沉淀溶解平衡的移动。
Ip = Ksp 饱和溶液 平衡状态 Ip < Ksp 不饱和溶液 沉淀溶解 Ip > Ksp 过饱和溶液 沉淀析出 开始沉淀: Ip = Ksp沉淀完全:剩余离子浓度c ≤1.0×10-5 mol ·L -1 Ksp 的表达式以及Ksp 与溶解度的相互换算; 有同离子效应存在时溶解度的计算.掌握AB 型、A 2B 或AB 2型和A 3B 或AB 3型的计算公式。
胶体分散系胶体的分散相粒子大小为1~100 nm 溶胶的基本性质 光学性质:Tyndall 效应 动力学性质:Brown 运动 电学性质:电泳、电渗 胶团结构 :胶粒(胶核 + 吸附层)+ 扩散层-+-+•-••xCl Cl x n nFeO OH Fe x m })(])({[3溶胶的稳定性因素:胶粒带电、胶粒表面水合膜的保护作用及Brown 运动 溶胶的聚沉:电解质的聚沉作用、溶胶的相互聚沉、高分子物质的敏化作用缓冲溶液缓冲溶液的组成和作用缓冲作用机制:抗酸、抗碱成分通过平衡移动,达到保持溶液pH 值基本不变。
pH 值的计算(重点)共三种表示形式pH = pK a + lg共轭酸共轭碱公式的校正:用活度表示浓度校正因子 lg γB - /γHB 与溶液的离子强度及共轭酸的电荷数有关。
影响缓冲溶液pH 值的因素:温度、缓冲比、稀释等。
缓冲容量(重点) :β = 2.303×总c B HB ]][[-当缓冲比为1时,β极大= 0.576 c 总 c 总 : 总浓度较大,缓冲容量较大。
缓冲比: 越趋近1,缓冲容量越大。
缓冲范围:pH = pKa ± 1缓冲比在1:10 至10 :1之间变化时,才具有一定缓冲作用,所对应的pH 值为缓冲有效区间。
缓冲溶液的配制及计算。
人体血液正常pH 范围:7.35 ~ 7.45血液中重要的无机盐缓冲系:H2CO3 – HCO3-滴定分析基本概念及常用术语:滴定、标准溶液、试样、计量点及确定、滴定终点、滴定误差。
酸碱指示剂: (重点)变色原理、变色范围、选择原则。
一元强酸、弱酸的滴定:酸、碱浓度>10–4 mol •L –1 ;c = 0.1 mol •L –1,K a ≥10–7 。
pH 值的计算、滴定曲线的特点、突跃范围。
标定盐酸:碳酸钠或硼砂( Na 2B 4O 7·10H 2O ) 标定氢氧化钠:草酸或邻苯二甲酸氢钾(KHC 8H 4O 4 )一元弱酸、碱能被准确滴定的条件: c a K a ≥ 10–8 ; c b K b ≥10–8多元酸、碱的滴定:分步滴定条件:K i / K i+1> 104计量点的pH 值计算与指示剂的选择 滴定分析中的计量关系:a1n(A) =b 1 n(B)准确度和精密度:定义及两者的关系。
提高分析结果准确度的方法。
误差和偏差的概念及表示方法。
有效数字的概念、位数的确定、运算规则、修约规则。
修约:当实验测定值和计算值的有效位数确定之后,要对它后面的多余的数字进行取舍,这一过程称为修约(rounding ),通常按“四舍六入五留双”规则进行处理。
当约去数为 4时舍弃,为 6时则进位;当约去数为5而后面无其它数字时,若保留数是偶数(包括0) 则舍去,是奇数则进位, 使修约后的最后一位数字为偶数。
加减运算所得结果的有效数字位数以参加运算各数字中精度最低,即小数点后位数最少的数为准。
例如0.5362 + 0.25,和为0.79。
乘除运算所得结果的有效数字位数以参加运算各数字中相对误差最大, 即有效数字位数最少的数为准。
例如0.0121 × 25.64, 积为0.310。
可见分光光度法适用于微量及痕量组分的测定。
标准曲线法:配制一个溶液作吸收曲线获得λmax ; 配制一系列溶液作标准工作曲线; 测定未知溶液A x 获得C x 。
吸收光谱(吸收曲线):以波长λ为横坐标,吸光度A 为纵坐标所得的曲线。
吸收光谱中产生最大吸收所对应的波长称为λmax 。
吸收光谱的形状与浓度无关。
透光率T 与吸光度A :Lambert – Beer 定律A = εbc 或 A = ab ρ (ε = aMB )摩尔吸光系数ε或质量吸光系数a 的大小与被测物质本性、入射光波长、溶剂及温度有关。
吸光系数越大,测定的灵敏度越高。
提高测量灵敏度和准确度的方法⑴ 测定时调整 c 或 b ,使 T 在20~65%之间(A :0.2~0.7) ⑵ 选择适当的显色剂 ⑶ 选择合适的测定条件 ⑷ 空白溶液的选择 ⑸ 共存离子干扰的消除化学反应速率基本概念:化学反应速率、元反应、速率控制步骤、有效碰撞、活化分子、活化能、反应机理、反应分子数、反应级数、半衰期、催化剂、酶等。
碰撞理论认为,在气体反应中,反应物分子不断发生碰撞,在无数次的碰撞中,只有少数或极少数分子才能发生反应,能够发生化学反应的碰撞称为有效碰撞(effective collision )。
大部分不发生反应的碰撞叫做弹性碰撞(elastic collision )。
具有较高能量,能发生有效碰撞的分子叫做活化分子(activated molecule )。
活化分子具有的最低能量与反应物分子的平均能量之差称为活化能(activation energy )。
tlglg I I T A -=-=化学反应速率与反应的活化能密切相关。
当温度一定时,活化能越小,其活化分子数越大,单位体积内的有效碰撞次数越多,反应速率越快;反之活化能越大,活化分子数越小,单位体积内的有效碰撞次数越少,反应速率越慢。
碰撞理论比较直观,容易理解。
在具体处理时,把分子当成刚性球体,忽略了分子的内部结构,因此,对一些比较复杂的反应,常不能给予合理的解释。
反应速率的表示方法:用反应进度表示。
(与选何种物质表示无关,与方程式写法有关) 用指定物质表示:平均速率瞬时速率 v=同一反应用不同物质的浓度变化来表示时,数值不同,其速率数值比就等于反应式中各物质的系数比。
化学反应进行时所经历的途径或具体步骤称为反应机理(reaction mechaniam )。
由反应物微粒(分子、原子、离子或自由基)直接碰撞一步生成产物的反应,称为元反应(elementary reaction )。
由若干个元反应生成产物的反应称为复合反应(complex reaction )。
判断一个化学反应是元反应还是复合反应需经过反应机理的研究才能确定。
质量作用定律(mass action law ):当温度一定时,元反应的反应速率与各反应物的浓度幂之积成正比。
参加元反应的分子数目称为反应分子数(molecularity of reaction )。
对于复合反应而言,不存在反应分子数。
根据反应分子数的不同,可以把元反应分为单分子反应,双分子反应和三分子反应。
反应级数(order of reaction )是指在具有反应物浓度幂乘积形式的速率方程中,各反应物浓度幂中的指数。
所有反应物的级数之和,则为该反应的总级数。
若aA+bB=gG+dD 为元反应则:v=kc a (A)·c b (B) n=a+b a 、b 分别称为该反应对A 、B 的反应级数,反应的总级数为n 。
若aA+bB=gG+dD 为非元反应则:v=kc α(A)·c β(B) α、β 要通过实验来确定 n = α+ β 反应级数 一级反应二级反应零级反应基本方程式303.2lg lg 0,kt c c A A =-)11(10,A A c c t k -=kt c c A A =-0,直线关系t c A ~lg t c A~1t c A ~斜率 k - k k -半衰期k693.0 oA c k ,1kc A 20,k 的量纲 [时间]-1[浓度]-1·[时间]-1 [浓度]·[时间]-1van ’t Hoff 近似公式Arrhenius 方程式t)(c t )(c v ∆∆∆∆生成物反应物=-=vlim 0t →∆Tn 10T k k +12T T k k γn = =氧化还原反应与电极电位氧化值(不一定为整数)。