初三数学图形的相似知识点
中考数学知识点总结图形的相似

中考数学知识点总结图形的相似在中考数学中,图形的相似是一个重要的知识点。
它不仅在几何题目中频繁出现,也是解决实际问题的有力工具。
下面就让我们一起来详细了解一下图形相似的相关知识。
一、相似图形的概念相似图形是指形状相同,但大小不一定相同的图形。
比如说,两个正方形,它们的边长可能不同,但形状是一样的,这就是相似图形。
相似多边形对应角相等,对应边的比相等。
如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形就是相似多边形。
二、相似三角形1、相似三角形的判定(1)两角分别相等的两个三角形相似。
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(2)两边成比例且夹角相等的两个三角形相似。
如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
(3)三边成比例的两个三角形相似。
如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
(1)相似三角形对应边的比等于相似比。
(2)相似三角形对应角相等。
(3)相似三角形周长的比等于相似比。
(4)相似三角形面积的比等于相似比的平方。
三、相似三角形的应用1、测量高度在实际生活中,我们常常需要测量一些物体的高度,比如旗杆、建筑物等。
这时就可以利用相似三角形的知识来解决。
通过测量一些已知长度的线段和对应的角度,构建相似三角形,从而求出物体的高度。
2、测量距离相似三角形还可以用于测量距离。
比如,在河的一岸要测量到对岸某一点的距离,可以在这一岸选取两个点,构建相似三角形,通过测量已知边的长度和角度,来计算出河的宽度。
四、位似图形1、位似图形的概念如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心。
(1)位似图形上任意一对对应点到位似中心的距离之比等于位似比。
(2)位似图形的对应边互相平行或在同一条直线上。
3、位似图形的作图在位似图形的作图中,要先确定位似中心,然后根据位似比确定对应点的位置,最后连接各点得到位似图形。
初三数学相似知识点

初三数学相似知识点
1. 相似三角形:相似三角形是指具有相同形状但大小不同的三角形。
相似三角形的对
应边长成比例,对应角度相等。
2. 相似比例:相似三角形的边长比值称为相似比例。
如果两个三角形的对应边长分别
为a:b:c和ka:kb:kc,那么它们的相似比例为a:b:c。
3. 相似三角形定理:包括AAA相似定理、AA相似定理和对应角边比相等定理。
其中,AAA相似定理指出如果两个三角形的对应角度相等,那么它们相似;AA相似定理指出如果两个三角形的两个对应角度相等,那么它们相似;对应角边比相等定理指出如果
两个三角形的两个对应角度相等,并且对应边长之比相等,那么它们相似。
4. 相似三角形的性质:相似三角形的相似比例等于对应边长之比;相似三角形的相似
比例等于对应角度的正弦值、余弦值或正切值;相似三角形的高线、中线等与对应边
长成等比例;相似三角形的面积与边长平方成比例。
5. 相似三角形的应用:相似三角形的定理在解决实际问题中有很多应用,如利用相似
三角形进行测量、解决影子问题、求解高度、求解距离等。
6. 图形的相似:除了三角形,其他图形(如矩形、圆、椭圆等)也有相似的概念和相
似关系,可以利用相似关系解决相关问题。
这些内容是初三数学中关于相似的主要知识点,希望对你有帮助!如有其他问题,请
随时提问。
九年级数学图形相似知识点

九年级数学图形相似知识点在九年级数学课上,我们学习了许多有趣的数学知识,其中包括图形的相似性质。
相似是数学中重要的概念,它可以帮助我们更好地理解和分析各种图形之间的关系。
在本文中,我们将探讨九年级数学课程中涉及的一些重要的图形相似知识点。
一、相似图形的定义两个图形如果满足以下三个条件,我们就称它们是相似的。
1. 对应角相等:图形中相等的角分别对应相等。
2. 对应边成比例:图形中对应的边的长度成比例。
3. 相似比例:两个相似图形的边的长度的比值称为相似比例。
通过相似的定义,我们可以得出一些重要的结论。
例如,如果两个三角形相似,那么它们的对应边长比相等;如果两个正方形相似,那么它们的边长比也相等。
二、相似三角形的性质相似三角形是九年级数学课程中一个重要的概念。
我们经常用相似三角形来解决实际问题,尤其是涉及到测量和工程方面的计算。
下面是一些相似三角形的性质。
1. AAA相似定理:如果两个三角形的三个角分别相等,那么它们是相似的。
根据AAA相似定理,我们可以快速判断两个三角形是否相似。
只需确认它们的三个角分别相等即可。
2. SSS相似定理:如果两个三角形的对应边长成比例,那么它们是相似的。
SSS相似定理告诉我们,只要两个三角形的对应边长比例相等,那么它们就是相似的。
这些相似三角形的性质非常有用,可以帮助我们在实际问题中进行快速计算和推导。
例如,在测量不便的情况下,我们可以通过测量一个三角形的某些部分,然后利用相似三角形的性质来计算其他部分的长度。
三、相似比例的计算在相似图形中,相似比例是一个重要的概念。
我们经常使用相似比例来计算图形的各种长度和面积。
下面是一些常用的相似比例计算方法。
1. 边长比例计算:如果两个相似图形的边长比例为a:b,那么两个图形的面积比例为a²:b²。
这个计算方法告诉我们,如果两个相似图形的边长比例为a:b,那么它们的面积比例为a²:b²。
例如,如果一个三角形的边长比为2:3,那么它的面积比为4:9。
苏科版九年级数学下册第六章《图形的相似》知识点总结+易错点汇总

第六章《图形的相似》知识点一:比例线段1.比例线段:在四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a cb d=,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段. 2.比例的基本性质:(1)基本性质:a cb d =⇔ ad =bc ;(b 、d ≠0)(2)合比性质:a c b d =⇔a b b ±=c dd±;(b 、d ≠0) (3)等比性质:a cb d ==…=m n =k (b +d +…+n ≠0)⇔......a c mb d n++++++=k .(b+d …+n ≠0) 3.平行线分线段成比例定理:(1)两条直线被一组平行线所截,所得的对应线段成比例.即如图所示,若l 3∥l 4∥l 5,则AB DEBC EF=.(2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例.即如图所示,若AB ∥CD ,则OA OBOD OC=. (3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似. 如图所示,若DE ∥BC ,则△ADE ∽△ABC.4. 黄金分割:点C 把线段AB 分成两条线段AC 和BC ,如果AC AB ==5-12≈0.618,那么线段AB 被点C 黄金分割.其中点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.例1:把长为10cm 的线段进行黄金分割,那么较长线段长为 cm 。
知识点二 :相似三角形的性质与判定5. 相似三角形的判定:(1) 两角对应相等的两个三角形相似(AAA).如图,若∠A =∠D ,∠B =∠E ,则△ABC ∽△DEF. (2) 两边对应成比例,且夹角相等的两个三角形相似. 如图,若∠A =∠D ,AC ABDF DE=,则△ABC ∽△DEF. FE DC B A学 班级 姓名 考试号-----------------------------------------------------------密---------------------------------封----------------------------------线--------------------------------------(3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC∽△DEF.6.相似三角形的性质:(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方.(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例2:(1)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为 .(2) 如图,DE∥BC, AF⊥BC,已知S△ADE:S△ABC=1:4,则AF:AG= .【学习目标】1.加深了解比例的基本性质、线段的比、成比例线段,认识图形的相似、位似等概念和性质.2.理解相似图形的性质与判定、位似的性质与把一个图形放大或缩小,在同一坐标系下感受位似变换后点的坐标的变化规律.【重点难点】重点:利用相似三角形知识解决实际的问题;位似的应用及在平面直角坐标系中作位似图形.难点:如何把实际问题抽象为相似三角形、位似形这一数学模型.【知识回顾】1、相似三角形定义:_________________________.2、判定方法:__________________________3、相似三角形性质:(1)对应角相等,对应边成比例;(2)对应线段之比等于;(对应线段包括哪几种主要线段?)(3)周长之比等于;(4)面积之比等于.4、相似三角形中的基本图形.(1)平行型(X型,A型); (2)交错型;(3)旋转型;(4)母子三角形.5、位似形的性质: .6、将一个图形按一定的比例放大或缩小的步骤为: . 【综合运用】1.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC(2)若AB=4,AD=33,AE=3,求AF的长.2如图,在等腰三角形△ABC中,底边BC=60cm,高AD=40cm,四边形PQRS是正方形,S,R分别在AB,AC上,SR与AD相交于点E.(1)△ASR与△ABC相似吗?为什么?(2)求正方形PQRS的边长.【矫正补偿】如图1,已知矩形ABED,点C是边DE的中点,且AB = 2AD.(1)判断△ABC的形状,并说明理由;(2)保持图1中ABC固定不变,绕点C旋转DE所在的直线MN到图2中(当垂线段AD、BE在直线MN的同侧),试探究线段AD、BE、DE长度之间有什么关系?并给予证明.【完善整合】1.通过本节课的学习你有那些收获?2.你还有哪些疑惑?第六章《图形的相似》易错疑难易错点1 对黄金分割的概念理解不清而出现漏解AB ,点C是线段AB的黄金分割点,则AC的长为.1. 已知线段20易错点2 找不准三角形的对应关系2. 如图,ACD ∆和ABC ∆相似需具备的条件是() A.AC AB CD BC =; B. CD BCAD AC=C. 2AC AD AB =g ;D. 2CD AD BD =g易错点3 混淆相似三角形的性质,误认为相似三角形的面积比等于相似比 3. 如图,若ADE ABC ∆∆:,DE 与AB 相交于点D ,与AC 相交于点E ,2DE =,5BC =,20ABC S ∆=,求ADE S ∆的值.易错点4 不能区分“相似”写“:”的含义4. 如图,在矩形ABCD 中,10,4AB AD ==,点P 是边AB 上一点,连接,PD PC ,若APD ∆与BPC ∆相似,则满足条件的点P 有 个.第4题第5题5. 如图,ABC ∆中,90C ∠=︒,16BC =cm ,12AC =cm ,点P 从点B 出发,沿BC 以2 cm/s 的速度向点C 移动,点Q 从点C 出发,以1 cm/s 的速度向点A 移动,若点,P Q 分别从点,B C 同时出发,设运动时间为t s ,当t = 时,CPQ ∆与CBA ∆相似. 疑难点1 相似三角形的判定和性质的综合应用1. 如图是一块含30°角的直角三角板,它的斜边8AB =8cm ,里面空心DEF ∆的各边与ABC ∆的对应边平行,且各对应边间的距离都是1 cm ,那么DEF ∆的周长是( )A. 5cm ;B. 6cm ;C. (63)-cm ;D. (33)+cm第1题第2题2. 如图,已知矩形ABCD ,2,6AB BC ==,点E 从点D 出发,沿DA 方向以每秒1个单位长度的速度向点A 运动,点F 从点B 出发,沿射线AB 以每秒3个单位长度的速度运动,当点E 运动到点A 时,,E F 两点停止运动.连接BD ,过点E 作EH BD ⊥,垂足为H ,连接EF ,交BD 于点G ,交BC 于点M ,连接,CF EC .给出下列结论:①CDE CBF ∆∆:;②DBC EFC ∠=∠;③DE HGAB EH=;④GH 10.上述结论正确的个数为( )A.1B. 2C. 3D. 4 疑难点2 相似图形中的规律探索3.如图,在平面直角坐标系中,矩形AOCB 的两边,OA OC 分别在x 轴和y 轴上,且2,1OA OC ==.在第二象限内,将矩形AOCB 以原点O 为位似中心放大为原来的32倍,得到矩形111A OC B ,再将矩形111A OC B 以原点O 为位似中心放大32倍,得到矩形222A OC B ……依此类推,得到的矩形n n n A OC B 的对角线交点的坐标为 .第3题 第4题4.如图,已知正方形11ABC D 的边长为1,延长11C D 到1A ,以11A C 为边向右作正方形1122AC C D ,延长22C D 到2A ,以22A C 为边向右作正方形2233A C C D ……依此类推,若112A C =,且点12310,,,,,A D D D D …都在同一直线上,则正方形991010A C C D 的边长是 .疑难点3 相似三角形与函数等知识的综合5. 反比例函数y =的图象在第一象限的分支上有一点A (3,4),P 为x 轴正半轴上的一个动点,(1)求反比例函数解析式.(2)当P 在什么位置时,△OP A 为直角三角形,求出此时P 点的坐标.疑难点4 动态问题中的相似三角形6.如图,在直角坐标系中,点(0,4),(3,4),(6,0)A B C --,动点P 从点A 出发以1个单位长度/秒的速度在y 轴上向下运动,动点Q 同时从点C 出发以2个单位长度/秒的速度在x 轴上向右运动,过点P 作PD y ⊥轴,交OB 于点D ,连接DQ .当点P 与点O 重合时,两动点均停止运动.设运动的时间为t 秒.(1)当1t =时,求线段DP 的长;(2)连接CD ,设CDQ ∆的面积为S ,求S 关于t 的函数表达式,并求出S 的最大值; (3)运动过程中是否存在某一时刻,使ODQ ∆与ABC ∆相似?若存在,请求出所有满足要求的t 的值;若不存在,请说明理由参考答案例1. 5(5-1);例 2.(1)9:4;(2)1:2 综合运用:1.分析:(1)根据平行四边形的性质可得AD ∥BC ,AB ∥CD ,即得∠ADF =∠CED ,∠B +∠C =180°,再由∠AFE +∠AFD =180°,∠AFE =∠B ,可得∠AFD =∠C ,问题得证; (2)根据平行四边形的性质可得AD ∥BC ,CD =AB =4,再根据勾股定理可求得DE 的长,再由△ADF ∽△DEC 根据相似三角形的性质求解即可. 证明:(1)∵四边形ABCD 是平行四边形∴AD ∥BC ,AB ∥CD ∴∠ADF =∠CED ,∠B +∠C =180°∵∠AFE +∠AFD =180,∠AFE =∠B ∴∠AFD =∠C ∴△ADF ∽△DEC ; 解:(2)∵四边形ABCD 是平行四边形,∴AD ∥BC ,CD =AB =4。
九年级数学相似的知识点

九年级数学相似的知识点
1. 相似三角形:了解相似三角形的定义和性质,掌握判定两个三角形是否相似的几何条件,了解相似三角形的比例关系以及应用。
2. 相似多边形:了解相似多边形的定义和性质,掌握判断两个多边形是否相似的几何条件,了解相似多边形的比例关系以及应用。
3. 相似比例:学习相似比例的定义,掌握相似比例的计算和应用,了解相似比例与比例的关系。
4. 相似形状的尺寸关系:通过相似性的特点和比例关系,掌握计算相似形状的尺寸关系,实际应用中解决实际问题。
5. 相似图形的面积和体积:了解相似图形的面积和体积之间的关系,掌握计算相似图形的面积和体积的方法。
6. 相似三角形的三线合一定理:了解相似三角形的三线合一定理,掌握计算相似三角形的高、中线、角平分线以及重心、垂心和外心的方法。
7. 三角形的判定:了解判定三角形是否相似的几何条件,掌握相似三角形中角的性质和边的关系,应用相似三角形解决实际问题。
8. 相似函数的性质:了解相似函数的定义和性质,掌握相似函数的图像特点和变化规律,应用相似函数解决实际问题。
9. 相似变换:了解平移、旋转、翻折和缩放等相似变换的性质,掌握相似变换的基本概念、性质和运算法则,应用相似变换解决实际问题。
10. 相似图形中的角度关系:通过相似图形的角度关系,学习解决相似图形中的角度问题。
以上是九年级数学中与相似相关的知识点,希望对你有帮助!。
九年级数学相似的知识点

九年级数学相似的知识点1. 相似三角形:相似三角形是指具有相同形状但大小不同的三角形。
相似三角形的性质包括对应角相等、对应边成比例等。
通过相似三角形,可以解决一些几何问题,如计算不可测量的长度或距离。
2. 比例与相似:比例是指两个量之间的相对关系。
在相似三角形中,对应边的长度之比等于对应角的边之比。
比例与相似问题常用于解决物体的放大缩小、图形的变换等。
3. 相似多边形:相似多边形是指具有相同形状但大小不同的多边形。
相似多边形的性质包括对应角相等、对应边成比例等。
通过相似多边形,可以解决一些面积和体积比较的问题。
4. 黄金分割:黄金分割是指一条线段分割成两部分,较长部分与整体的比例等于整体与较短部分的比例。
黄金分割在艺术、建筑、设计等领域中广泛应用。
5. 图形的相似性变换:图形的相似性变换是指通过平移、旋转、镜像和缩放等变换操作使两个图形成为相似图形。
相似性变换常用于解决图形的构造、定位和证明问题。
6. 相似三角形的勾股定理:相似三角形的勾股定理是指在两个相似三角形中,两个直角边的平方的比等于两个斜边的平方的比。
7. 外接圆和内切圆:在相似三角形和相似多边形中,外接圆和内切圆分别是能够通过所有顶点(或顶点所在的边)的圆和能够被所有边(或边上的顶点)所切的圆。
外接圆和内切圆之间存在着一定的关系,如半径比例等。
8. 相似三角形的角平分线定理和中线定理:相似三角形的角平分线定理是指两个相似三角形中,两个对应角的角平分线也相似;相似三角形的中线定理是指两个相似三角形中,两个对应中位线也相似。
这些是九年级数学中与相似有关的知识点,希望对你有帮助!。
16初中数学“相似图形”知识点全解析

初中数学“相似图形”知识点全解析一、引言相似图形是初中数学中一个非常重要的概念,它是几何学的基础,对于培养学生的空间观念和几何直觉具有重要的作用。
本文将详细解析相似图形的概念、性质、判定方法以及应用,帮助学生更好地理解和掌握这一知识点。
二、相似图形的概念1.定义:如果两个图形对应角相等,对应边成比例,那么这两个图形叫做相似图形。
2.术语解析:在相似图形中,对应角相等的角叫做对应角,对应边成比例的边叫做对应边。
相似比是指对应边的长度之比。
三、相似图形的性质1.对应角相等:相似图形的对应角一定相等。
2.对应边成比例:相似图形的对应边之间的比例是恒定的,这个比例称为相似比。
3.面积比与相似比的关系:如果两个相似图形的相似比是k,那么它们的面积之比等于k²。
4.周长比与相似比的关系:相似图形的周长之比也等于相似比。
四、相似图形的判定方法1.三边对应成比例:如果两个三角形的三边对应成比例,那么这两个三角形相似。
2.两边对应成比例且夹角相等:如果两个三角形有两边对应成比例且夹角相等,那么这两个三角形相似。
3.两角对应相等:如果两个三角形有两个角对应相等,那么这两个三角形相似。
4.特殊角三角形的相似性:具有特殊角的三角形(如等腰三角形、直角三角形等)在满足一定条件时也可以判定为相似。
五、相似图形的应用1.几何证明:在几何证明中,利用相似图形的性质可以解决很多问题,如证明线段的比例关系、证明角的关系等。
2.实际问题解决:在实际生活中,很多问题可以通过建立数学模型并运用相似图形的知识进行解决。
例如,在建筑设计中,可以利用相似三角形的性质计算建筑物的高度或距离;在地理学中,可以利用相似图形的原理计算地球表面两点之间的距离等。
3.数学竞赛:在数学竞赛中,相似图形经常作为难题的考点出现。
掌握这一知识点可以提高学生的数学竞赛水平。
六、解题方法与技巧1.建立数学模型:在解决问题时,首先要根据问题的实际背景和条件建立数学模型,将问题转化为数学语言进行描述。
数学图形相似九年级知识点

数学图形相似九年级知识点数学中的图形相似是指两个或多个图形在形状上相似,即它们的对应角度相等,对应边的比例相等。
图形相似在几何学中有重要的应用,能够帮助我们分析和解决各种数学问题。
本文将介绍九年级数学中关于图形相似的知识点。
1. 判断图形相似的条件在九年级数学中,判断两个图形是否相似,需要满足以下三个条件:(1)对应角相等:两个图形的对应角度相等。
(2)对应边比例相等:两个图形中,对应边的长度之比相等。
(3)对应边平行:两个图形中,对应边之间相互平行。
2. 图形相似的性质图形相似具有以下性质:(1)对应角的性质:相似图形的对应角相等,即它们的内角相等,外角相等。
(2)对应边的比例:相似图形的对应边之比等于它们的周长、面积之比。
即若图形A与图形B相似,那么两个图形的对应边AB与A'B'的比例等于它们的周长或面积之比。
3. 相似三角形的定理在相似三角形中,我们可以应用以下定理来求解各种问题:(1)AAA相似定理:如果两个三角形的三个内角分别相等,则这两个三角形相似。
(2)AA相似定理:如果两个三角形的一个内角相等,并且两个三角形的对应边比例相等,则这两个三角形相似。
(3)SAS相似定理:如果两个三角形的一个内角相等,并且两个三角形的一个对边与这个角的对边的比例相等,则这两个三角形相似。
4. 图形相似应用图形相似在实际问题中有广泛的应用,比如:(1)计算高塔的高度:通过相似三角形的定理,我们可以计算高塔的高度。
例如,利用影子定理可以测量高塔的高度,其中就用到了相似三角形的概念。
(2)建模问题:在建模问题中,相似图形的概念可以帮助我们将实际物体或建筑的比例缩小或放大,以便进行实际测量或设计。
总结:数学图形相似是九年级数学中的重要知识点,它可以帮助我们分析和解决各种数学问题。
相似图形的判断条件、性质以及应用都需要我们掌握。
通过学习相似图形的知识,我们可以更好地理解几何学中的概念和应用,提升数学解题能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.各角分别相等、的两个多边形叫做相似多边形,根据这个定义,两个形一定是相似的.
2.正方形ABCD的边长为3,正方形A'B'C'D'的边长为2,则正方形ABCD与正方形A'B'C'D'的相似比为,正方形A'B'C'D'与正方形ABCD的相似比为.
3.下列判断正确的是()
A.两个对应角相等的多边形相似
B.两个对应边成比例的多边形相似
C.边数相同的正多边形都相似
D.有一组角对应相等的两个平行四边形相似
4.如果六边形ABCDEF∽六边形A1B1C1D1E1F1,∠B=52°,那么∠B1
等于()
A.128°
B.26°
C.52°
D.54°
一、相似三角形
(1)相似三角形的定义:若两个三角形的三角分别相等,三边成比例,则这两个三角形叫做相似三角形.相似三角形的定义是由相似多边形的定义迁移得到的.
(2)相似三角形的表示:如果ΔABC与ΔA'B'C'相似,就记作ΔABC∽Δ
A'B'C',符号“∽”读作“相似于”,利用“∽”表示两个图形相似时,对应顶点要写在对应的位置上,主要目的是为了指明对应角,对应边.
(3)相似比:两个三角形相似,对应边的比叫做相似比,相似比是有顺序的,若ΔABC与ΔA'B'C'的相似比为k,那么ΔA'B'C'与ΔABC的相似比为1/k [知识拓展]
(1)相似三角形与全等三角形的联系与区别:全等三角形的大小相等,形状相同,而相似三角形的形状相同,大小不一定相等,所以全等三角形是相似三角形的特例,相似比等于1∶1的两个相似三角形是全等三角形.
(2)两个等腰直角三角形一定相似,两个等边三角形一定相似。
(3)书写两个三角形相似时,注意对应点的位置要一致,即若ΔABC∽ΔDEF,则说明A的对应点是D,B的对应点是E,C的对应点是F.
(4)相似三角形的传递性:如果ΔABC∽ΔA'B'C', ΔA'B'C'∽ΔA″B″C″,那么ΔABC∽ΔA″B″C″.
1.定理:两角的两个三角形相似.
2.定理:两边且夹角的两个三角形相似.
3.定理:三边的两个三角形相似.
4.点C把线段AB分成两条线段AC和BC(如图),如
果,那么称线段AB被点C黄金分割,点C叫做线段AB
的,的比叫做黄金比.
5.黄金分割比值:若设AB=1,AC=x,则BC=1-x,由黄金分割的定义得方
2.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形
共有()
A.1对
B.2对
C.3对
D.4对
4.在△ABC与△A'B'C'中,AB=6,BC=12,AC=15,A'B'=8,B'C'=16,当
A'C'=时,△ABC∽△A'B'C'.
程:,解方程得,所以黄金比值为=≈.
6.点C是线段AB上的一个黄金分割点,且AC>BC,若AB=5 cm,则
AC=,BC=.
7.如图所示,点C是线段AB的黄金分割点,则点C应满足的条件是.(用
比例式表示)
8.若点P是AB的黄金分割点,则线段AP,PB(AP>PB),AB满足关系式:,
即AP是与的比例中项.
9.如图所示,已知ΔABC∽ΔADE,AD=6 cm,DB=3 cm,BC=9.9 cm,∠A=70°,∠
B=50°.求:
(1)∠ADE的大小;
(2)∠AED的大小;
(3)DE的长.
6利用相似三角形测高
方法一:利用阳光下的影子来测量旗杆的高度
思路一
【操作方法】一名学生在直立于旗杆影子的顶端处测出该同学的影长和此时旗杆的影长.
∵太阳的光线是平行的,∴AE∥CB,
∴∠AEB=∠CBD,
∵人与旗杆是垂直于地面的,
∴∠ABE=∠CDB=90°,
∴ΔABE∽ΔCDB.
∴,即CD= .
因此,只要测量出人的影长BE,旗杆的影长DB,再知道人的身高AB,就可以求出旗杆CD的高度了.
1.某建筑物在地面上的影长为36 m,同时高为1.2 m的标杆影长为2 m,那么该建筑物的高为m.
2.如图所示,身高为1.6 m的某学生想测量一棵大树的高度,她沿着树影BA由B 向A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,并测得BC=
3.2 m,CA=0.8 m,则树的高度为()
A.4.8 m
B.6.4 m
C.8 m
D.10 m
方法二:利用镜子的反射测旗杆的高度
【操作方法】选一名学生作为观测者.在他与旗杆之间的地面上平放一面镜子,固定镜子的位置,观测者看着镜子来回调整自己的位置,使自己能够通过镜子看到旗杆顶端.测出此时他的脚与镜子的距离、旗杆底部与镜子的距离就能求出旗杆的高度.
点拨:反射角=入射角.
∵反射角=入射角,∴∠AEB=∠CED.
∵AB⊥BD,CD⊥BD,
∴∠B=∠D=90°,∴ΔABE∽ΔCDE.
∴,∴CD= .
因此,测量出人与镜子的距离BE,旗杆与镜子的距离DE,再知道观测者的眼睛与地面的距离AB,就可以求出旗杆CD的高度。
4.如图,小华在地面上放置一个平面镜E来测量铁塔AB的高度,当
镜子与铁塔的距离EB=20 m,镜子与小华的距离ED=2 m时,小华刚
好从镜子中看到铁塔顶端点A.已知小华的眼睛距地面的高度
CD=1.5 m,则铁塔AB的高度是.
7相似三角形的性质
1.定理:相似三角形、、
都等于相似比.
2.定理:相似三角形的周长比等于,面积比等
于.
1.若△ABC与△DEF的相似比为1∶3,则△ABC与△DEF的面积比
为()
A.1∶3
B.1∶9
C.3∶1
D.1∶3
2.两个相似多边形的面积比是9∶16,其中较小多边形的周长为36
cm,则较大多边形的周长为()
A.48 cm
B.54 cm
C.56 cm
D.64 cm
4.两个相似三角形对应高之比为1∶2,那么它们对应中线之比为
()
A.1∶2
B.1∶3
C.1∶4
D.1∶8。