冬9(教师)三年级奥数:盈亏问题
三年级奥数盈亏问题ppt课件

什么是盈亏问题?
例 1
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
用绳子测井深,把绳子3折,井外余2米, 把绳子4折,还差1米才到井口,问井深多
少米?绳子长多少米?
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
分析:
绳子比3倍井深多2×3=6(米) 绳子比4倍井深少1×4=4(米) 解一:井深:(2×3+1×4)÷(4-3)=10(米) 绳长:10×3+2×3=36(米)
两次总共相差砖数: 7 + 2 = 9 (块)
解:
两次搬砖每人相差: 5 - 4 = 1 (块)
人数:
9÷1 = 9 (人)
共有砖:
4×9+7 = 43 (块)
或 5×9-2 = 43 (块)
答:这个班共有少先队员9人,要搬的砖共有43块。
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
你会了吗?
准确找出:“盈”了多少;“亏”了多少。
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
三年级奥数基本盈亏问题教学设计

时间分配
讲练结合,课本冋类型题
知识总结
教学设计
时间分配
本节课主要题型]
3分钟
1.人数不变,分的不一样多(盈盈、亏亏)
2人数变化,分的一样多(盈盈、亏亏)
解题思路:“作比较”。
1.两次分完后所剩进行比较,即“总差”
2.两次所分单个间的比较,即“单差”
3.找“总差”与“单差”的关系
板书设计
教学设计反思
问:是什么题型可以怎么分析题
答:盈盈,画图
问:现在人数确定了,但是不知道每人分了几个, 你们还会画吗(自己动手画、找同学上黑板画)
□□□多20张
□□□□□多12张
总差:20-12=8(张)(问产生差异的原因)
每人:8^2=4(张)
总共:4X3+20=32 (张)或4X5+12=32(张)
2.老师要给得满分的同学一些积分卡片,第一次 有3名同学得到奖励,每人一样多,发完后老师 还差6张;第二次又有2名同学得满分,分给他 们同样多的积分卡片后老师还差12张,算一算老 师一共有几张积分卡片
问:怎么办找谁帮忙分析题
答:盈亏图。
教法同上,带领、引导学生自主画图,自主分析 题型,规范答题
□……□少10个
匚1….□少50个
总差:50-10=40(个)
单差:4-2=2(个)
人数:40吃=20(人)
苹果:20X2+50=90 (个)或20^1+10=90 (个)
思路小结:咱们解这类题首先得分析是什么题型, 画盈亏图可以帮助咱们分析问题。“作比较”是 解这类题的关键:两次分的“总差”、单个分的
以下两类盈亏问题
1.人数变化,分的一样多
2.人数一样,分的不一样多
小学三年级奥数教学课件之盈亏问题

实例演示:小明的零花钱
收入
小明每周获得的零花钱金额
支出
小明每周的花费和开销
盈亏结果
小明是否盈利或亏损
盈利和亏损的比较
1
亏损
2
如何最小化亏损?
3
盈利
什么时候盈利最大化?
比较
盈利和亏损的差异和影响
盈利率的计算方法
学生将学习如何计算盈利率,并了解盈利率的重要性和应用场景。
实例演示:小红的售卖冰淇淋
成本
小红制作一份冰淇淋的成本
售价
小红卖出一份冰淇淋的价格
盈利率
小红的售卖冰淇淋的盈利率是多 少?
亏损率的计算方法
学生将学习如何计算亏损率,并了解亏损率在商业中的应用。
实例演示:小李的卖西瓜行动
1 进价
小李每个西瓜的进价
3 亏损率
小李卖西瓜的亏损率是多少?
2 售价
小李每个西瓜的售价
利润的计算方法
学生将学习如何计算利润,并理解利润在经济学中的重要性。
实例演示:小张的拍卖收益来自1 出价小张的拍卖出价
2 成交价
小张的拍卖物品的成交价 格
3 利润
小张的拍卖收益是多少?
小学三年级奥数教学课件 之盈亏问题
这个课件将帮助小学三年级学生理解盈亏的概念和重要性,学习计算盈亏的 方法,以及解决盈亏问题的实际应用和技巧。
盈亏概念介绍
什么是盈亏?为什么了解盈亏很重要?我们将从基本概念出发,帮助学生理解盈亏的本质。
盈亏的计算方法
学生将学习如何计算盈亏,包括利润、亏损、盈利率等关键指标的计算方法。
三年级奥数-盈亏问题

【例题5】
一些少先队员到山上去种一批树。如果每人种 16棵树,还有24棵树没种;如果每人种19棵 树,还有6棵树没种。问有多少名少先队员? 有多少棵树?
【练习5】
1.小虎在敌人窗外听房子里边敌人在分子弹: 一人说每人背45发还多260发;另一人说每 人背50发还多200发。求有多少敌人?有多少 发子弹?
精讲精练
【例题1】
幼儿园买了一批,如果每班分8个玩具,则多出2个 玩具;如果每班分10玩具,则少12玩具。幼儿园有 几个班?这批玩具有多少个?
【练习1】
1. 小明带了一些钱去买苹果,如果买3千克,则多出4 元;如果买6千克,则少了8元。苹果每千克多少元? 小明带了多少钱?
2,一个小组去山坡植树,如果每人栽4棵,还剩12 棵;如果每人栽8棵,则缺4棵。这个小பைடு நூலகம்有几人? 一共有多少棵树苗?
【例题3】
幼儿园老师给小朋友们分梨,如果每人分4个,则多 9个;如果每人分5个,则少6个。一共有多少个小朋 友?有多少个梨?
【练习3】
1,小明去买练习本,付给营业员的钱买4本多1元, 买6本少2元。小明付给营业员多少元?每本练习本 多少元?
2、老师吧一些铅笔奖给三好学生。每人5支 则多4支;每人7支则少4支。老师有多少支 铅笔?奖给多少个三好学生?
【例题2】
一个植树小组植树。如果每人植5棵,还剩14棵; 如果每人植7棵,就缺4棵。这个植树小组有多少 人?一共有多少棵树?
练习2
1、幼儿园把一些积木分给小朋友,如果每人 分2个,则剩下20个;如果每人分3个,则 差40个。幼儿园有多少小朋友?共有多少 个积木?
2.某校安排宿舍,如果每间6人,则16人没 有床位;如果每间8人,则多出10个床位, 宿舍有多少间?学生共有多少人?
(精品文档)三年级奥数之盈亏问题讲义

奥数盈亏问题把若干物体平均分给一定数量的对象,并不是每次都能正好分完。
如果物体还有剩余,就叫盈;如果物体不够分,少了,叫亏。
凡是研究盈和亏这一类算法的应用题就叫盈亏问题。
一般解法:(盈数+亏数)除以两次分配只能够每份的差=所分对象数,物品数可由其中一种分法的份数和盈亏数求出。
已知两个分配方案,一次分配有余,一次分配不足,求参加分配的人数及被分配的总量。
这样的问题通常叫做盈亏问题。
例1 一些小朋友分糖果,若每人分4粒则多9粒;若每人分5粒则少6粒。
问:有多少个小朋友?分多少粒糖?分析:由题目条件可以知道,小朋友的人数与糖的粒数是不变的。
比较两种分配方案,第一种方案每人分4粒就多9粒,第二种方案每人分5粒就少6粒,两种不同的方案一多一少相差9+6=15(粒)。
相差的原因在于两种方案的分配数不同,第一种方案每人分4粒,第二种方案每人分5粒,两次分配数之差为5-4=1(粒)。
每人相差1粒,多少人相差15粒呢?由此求出小朋友的人数为15÷1=15(人),糖果的粒数为4×15+9=69(粒)。
解:(9+6)÷(5-4)=15(人),4×15+9=69(粒)。
答:有15个小朋友,分69粒糖。
例2 一些小朋友分糖果,若每人分3粒则剩2粒;若每人分5粒则少6粒。
问:有多少个小朋友?多少粒糖果?分析:本题与例1基本相同,例1中两次分配数之差是5-4=1(粒),本题中两次分配数之差是5-3=2(粒)。
例1中,两种分配方案的盈数与亏数之和为9+6=15(粒),本题中,两种分配方案的盈数与亏数之和为2+6=8(粒)。
仿照例1的解法即可。
解:(6+2)÷(4-2)=4(人),3×4+2=14(粒)。
答:有4个小朋友,14粒糖果。
由例1、例2看出,所谓盈亏问题,就是把一定数量的东西分给一定数量的人,由两种分配方案产生不同的盈亏数,反过来求出分配的总人数与被分配东西的总数量。
三年级奥数--盈亏问题例题及标准答案

三年级奥数--盈亏问题例题及答案————————————————————————————————作者:————————————————————————————————日期:2三年级奥数盈亏问题例题及答案板块一、直接计算型盈亏问题【例 1】三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【巩固】明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?【巩固】老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?【巩固】有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?【巩固】学而思学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?.【巩固】幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢?【巩固】王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问儿童小提琴多少钱一把?王老师一共带了多少钱?【巩固】工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?【巩固】学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?【巩固】某学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?【巩固】秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?板块二、条件关系转换型盈亏问题【例 2】猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?【解析】猫妈妈的第一种方案盈8条鱼,第二种方案不盈不亏,所以盈亏总和是8条,两次分配之差是11101÷=(只),猫妈妈有810888⨯+=(条)鱼.-=(条),由盈亏问题公式得,有小猫:818【巩固】学而思学校三年级基础班的一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完,问:有多少位同学分多少个小玩具?【解析】第一种分配方案亏9个小玩具,第二种方案不盈不亏,所以盈亏总和是9个,两次分配之差是:⨯=(个).÷=(人),有小玩具9327 -=(个),由盈亏问题公式得,参与分玩具的同学有:919431【巩固】学而思学校买来一批小足球分给各班:如果每班分4个,就差66个,如果每班分2个,则正好分完,学而思小学一共有多少个班?买来多少个足球?【解析】第一种分配方案亏66个球,第二种方案不盈不亏,所以盈亏总和是66个,两次分配之差是422-=(个),由盈亏问题公式得,朝阳小学有:66233⨯=(个).÷=(个)班,买来足球33266【巩固】一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?【解析】第一种分配方案盈9粒糖,第二种方案不盈不亏,所以盈亏总和是9粒,两次分配之差是541-=(粒),由盈亏问题公式得,参与分糖的同学有:919⨯=(粒).÷=(人),有糖果9545【巩固】实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?【解析】没辆车坐60人,则多余15人,每辆车坐60+5=65人,则多出一辆车,也就是差65人.因此车辆数目为:(65+15)÷5=80÷5=16(辆).学生人数为:60×(16-1)+15=60×15+15=900+15=915(人).【例 3】甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2 张信纸,乙每封信用3 张信纸,一段时间后,甲用完了所有的信封还剩下20 张信纸,乙用完所有信纸还剩下10 个信封,则他们每人各买了多少张信纸?【解析】由题意,如果乙用完所有的信封,那么缺30 张信纸.这是盈亏问题,盈亏总额为(20+30)张信纸,两次分配的差为(3-2)张信纸,所以有信封(20+30)÷(3-2)=50(个),有信纸2×50+20=120(张).【例 4】幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。
三年级奥数第九讲 盈亏问题

第九讲盈亏问题“老猴子给小猴子分梨。
每只小猴子分6个梨,就多出12个梨;每只小猴子分7个梨,就少11个梨。
有几只小猴子和多少个梨?”这道应用题是已知两种分配的方法,一次分配有余,一次分配不足,求参加分配的数量及被分配的总量。
这样的应用题,通常叫做盈亏问题(有余时称盈,不足时称亏)。
解盈亏问题,常常采用比较的方法。
例题与方法例1.老猴子给小猴子分梨。
每只小猴子分6个梨,就多出12个梨;每只小猴子分7个梨,就少11个梨。
用几只小猴子和多少个梨?例2.丽丽阿姨给幼儿园小朋友分苹果。
如果每人分3个,多16个;如果每人分5个,那么就差4个。
有多少小朋友?有多少个苹果?例3.北京东路小学学生乘汽车到中山陵去春游。
如果每车坐65人,则有15人不乘车。
如果每车多坐5人,恰好多余了一辆车。
一共有几辆汽车?有多少学生?例4.小明的爷爷买回一筐梨,分给全家人。
如果小明和小妹每人分4个梨,其余每人分2个梨,还多出4个梨。
如果小明1人分6个梨,其余每人分4个梨,又差12个梨。
小明家有多少人?这筐梨子有多少个?第九讲盈亏问题练习与思考1.若干个同学去划船。
他们租了一些船,如果每船坐4人,则多5人。
如果每船坐5人,则船上有4个空位。
有多少个同学?多少条船?2.把一袋糖分给小朋友们。
如果每人分10粒糖,正好分完。
如果每人分16粒糖,就有3个小朋友分不到糖。
这袋糖共有多少粒?3.少先队员去植树。
如果每人各挖5个树坑,还有3个树坑没人挖。
如果其中2人各挖4个树坑,其余的人各挖6个树坑,就恰好挖全部的树坑。
少先队员一共挖了多少个树坑?4.奥林匹克学校招收了一批新生。
若编成每班55人的班级,还要招收30人。
若编成每班50人的班级,还需招收10名新生。
这次共招收了多少新生?5.用一根长绳测量进的深度。
如果绳子两折时,多5米。
如果绳子三折时,差4米。
求绳子长度的进深。
(提示:绳子两折多5米,表示绳子长度是进深的2倍多10米。
)6.用一根绳子绕树三圈,余三米。
(完整版)三年级奥数-盈亏问题

第4讲盈亏问题教学目标本讲主要学习三种类型的盈亏问题:1. 理解掌握条件转型盈亏问题:2. 理解掌握关系互换性盈亏问题;3. 理解掌握其他类型的盈亏问题,本节课要求老师首先上学生理解盈亏问题其本公式的含义,在通过例题让学生掌握解答应困问题的其本技巧,培养学生的思维分析能力。
经典精讲盈亏问题,故名思意有剩下就叫盈,不够分就叫亏,不同的方法分配物品时,经常会产程这种盈亏现象。
盈亏问题的关键是专注两次分配时盈亏总量的变化。
我们把盈亏问题分为三类:“一盈一亏”、“两盈”“两亏”。
1.“盈亏”型例如:学而思学校四年级基础班的同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?【分析】由题目条件知道,同学的人数与糖果的粒数不变,比较两种分配方案,第一种没人分4粒就多9粒,,第二种每人分5粒则少6粒,两种不同方案一多一少差9+6=15(粒),相差原理在于两种方案分配数不同,两次分配数之差为15115÷=(位),糖果的粒数为:415969⨯+=(粒)。
2.“盈盈”型例如:老猴子给小猴子分桃,每只小猴10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?分析:老猴子的第一种方案盈9个桃子,第二种方案盈2个,所以盈亏综合是9-2=7(个),两次分配之差是11-10-1(个)有盈亏问题公式得,有小猴子:717÷=(只),老猴子有710979⨯+=(个)桃子。
3.“亏亏”型例如:学而思学校新近一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差9本,第二次就只差2本了呢?因为两次分配数量不一样,第一次分配时每人少发一本,也就是共有717÷=(人)书有710961⨯-=(本)。
根据以上具体题目的分析,可以得出盈亏问题的基本关系式:(盈+亏) ÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数条件转化型的盈亏问题这种类型的题目不能直接计算,要将其中的一个条件转化,使之成为普通盈亏问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前热身:
29×43= 53×28=
35×16= 174÷3= 452÷8= 277÷7= 专题简析
嘉
嘉
2、学校买来一批图书。
若每人发9本,则少25本;若每人发6本,则少7本。
问:有多少个学生?买了多少本图书?
嘉题二
1、一个植树小组,如果每人植5棵树,还剩14棵树;如果每人植7棵树。
还剩6棵树。
这个植树小组有多少人?一共有多少棵树?
分析:由题意可得这是一个两盈问题。
列式如下:
(14-6)÷(7-5)=4(人)
4×5+14=34(棵)
答:这个植树小组有9人,一共有34棵树。
随堂练习:
1、幼儿园把一些积木分给小朋友。
如果每人分2个积木,则剩下20个积木;如果每人分3个积木,则剩下10个积木。
幼儿园有多少个小朋友?共有多少个积木?
2、一个汽车队运输一批货物,如果每辆汽车运3500千克,那么货物还剩下5000千克;如果每辆汽车运4000千克,那么货物还剩下500千克。
问:这个汽车队有多少辆汽车?要运的货物有多少千克?
嘉
家庭作业:
1、老师到新华书店去买书,若买5本则多4元;若买7本则少2元。
这本书的单价是多少?顾老师共带了多少元钱?
2、小朋友分糖果,每人3粒,余30粒;每人5粒,少4粒。
问:有多少个小朋友?多少粒糖?
4、幼儿园买一批玩具。
如果每个班分8个玩具,则差2个玩具;如果每个班分10个玩具,则差12个玩具。
幼儿园则有多少个班?这批玩具共有多少个?
5、幼儿园老师给小朋友分梨。
如果每人分4个梨,则多9个梨;如果每人分5个梨,则多3个梨。
有多少个小朋友?有多少个梨?。