电阻应变式称重传感器基础知识

合集下载

称重传感器的基本知识

称重传感器的基本知识

称重传感器的基本知识1,什麽是称重传感器?称重传感器是用来将重量信号或压力信号转换成电量信号的转换装置。

2,称重传感器的测量原理是什麽?称重传感器采用金属电阻应变片组成测量桥路,利用金属电阻丝在张力作用下伸长变细,电阻增加的原理,即金属电阻随所受应变而变化的效应而制成的(应变,就是尺寸的变化)。

3,称重传感器的构造原理?金属电阻具有阻碍电流流动的性质,即具有电阻(Ω),其阻值依金属的种类而异。

同一种金属丝,一般来讲,越是细长,其电阻值就越大。

当金属电阻丝受外力作用而伸缩时,其电阻值就会在某一范围内增减。

因此,将金属丝(或膜)紧贴在被测物体上,而且这种丝或膜又很细或很薄,粘贴又十分完善,那麽,当被测物体受外力而伸缩时,金属电阻丝(膜)也会按比例伸缩,其阻值也会相应变化。

称重传感器就是将金属电阻应变片粘贴在金属称重梁上进行测量重量信号的。

4,称重传感器的外形构造与测重形式?称重传感器的外形构造随被测对象的不同,其外形构造也会不同。

A,比较常见的称重传感器的外形构造:圆柱形(杯柱形);S形;长方形等。

B,测重形式:压缩式;伸张式。

圆柱形(杯柱形)一般均为压缩式测重形式。

S形,长方形均为压缩式,伸张式两用测重形式。

C,内部金属称重梁形式:一般分为单孔或双孔形式。

D,鹤林公司使用的称重传感器的外形构造与测重形式:圆柱形——称重仓(压缩式),原料粉煤灰秤(压缩式)。

S形——皮带秤(压缩式),包装机袋重秤(伸张式)。

长方形——汽车衡(压缩式),轨道衡(压缩式),煤粉天平秤(伸张式),固体流量计(压缩式)。

5,称重传感器的电路组成?称重传感器进行测量时,我们需要知道的是应变片受应变时的电阻变化。

通常总是采用应变片组成桥式电路(惠斯登电桥),将应变片引起的电阻变化转换成电压变化来进行测量的。

设:电桥的输入激励电压为Ei, ①则电桥的输出电压△E0为:R1 R2△E0=Ei×[(R1R3-R2R4)/(R1+R2)(R3+R4)]输入激励电压③输出电压令电桥的初始条件为R1=R2=R3=R4,④则△E0=0。

《电阻应变式传感器》课件

《电阻应变式传感器》课件
薄膜电阻应变式传感器利用薄膜材料制作,具有高灵敏度、低热误差等特点;微型电阻应变式传感器则具有体积 小、重量轻、易于集成等优点,常用于微机电系统等领域。
03
电阻应变式传感器的测量电路
直流电桥测量电路
优点
简单、可靠、稳定性好。
缺点
对温度变化敏感,需要采取温度 补偿措施。
交流电桥测量电路
优点
对直流电源的稳定性要求较低,可以减小电源波动对测量结 果的影响。
在工业生产过程中,电阻应变式压力传感器被广泛应 用于压力控制、流量控制等场合,如气瓶压力监测、 管道压力监测等。
汽车行业
汽车发动机、气瓶、刹车系统等都需要用到压力传感 器,来监测和控制各种气体和液体的压力。
位移传感器的应用实例
自动化生产线
在自动化生产线上,位移传感器被用来检测和控制系 统中的物体位置,如机器人手臂的定位、传送带的物 体位置检测等。
电阻应变式传感器
目 录
• 电阻应变式传感器简介 • 电阻应变式传感器的类型与特性 • 电阻应变式传感器的测量电路 • 电阻应变式传感器的误差来源与补偿方法 • 电阻应变式传感器的应用实例
01
电阻应变式传感器简介
定义与工作原理
定义
电阻应变式传感器是一种将应变转换为电阻变化的传感器,通过测量电阻的变 化来测量受力状态。
总结词
半导体应变式传感器具有高灵敏度、 低温度系数和良好的线性等优点。
详细描述
半导体应变式传感器利用半导体的压 阻效应,即当半导体受到外力作用时 ,其电阻值会发生变化。这种传感器 常用于测量加速度、压力和振动等物 理量。
陶瓷电阻应变式传感器
总结词
陶瓷电阻应变式传感器具有耐高温、耐 腐蚀、高绝缘性和良好的稳定性等特点 。

电阻应变式传感器介绍

电阻应变式传感器介绍

最低固化条件 室温10小时或
60℃2小时 室温1小时 室温24小时 室温2.5小时 200℃2小时 150℃3小时 150℃1小时 190℃3小时 200℃3小时 280℃2小时 400℃1小时 400℃3小时
固化压力 /104Pa 0.5~1
粘合时指压
0.3~0.5 粘合时指压 粘合时指压
2 1~2 — — 1~3
基底材料有纸基和胶基。胶基由环氧树脂、酚醛树脂和聚酰亚胺等 制成胶膜, 厚度约0.03~0.05mm
3.黏合剂材料
用于将敏感栅固定于基底上,并将盖片与基底粘贴在一起。使用 金属应变片时,也需用粘结剂将应变片基底粘贴在构件表面某个方 向和位置上。以便将构件受力后的表面应变传递给应变计的基底和 敏感栅。
2.3应变片的主要参数
1.应变片电阻值(R0) 电阻应变片的电阻值为60Ω、120Ω、350Ω,500Ω和1000Ω 等 多种规格,以120Ω最为常用。 应变片的电阻值越大,允许的工作电压就大,传感器的输出电压 也大,相应地应变片的尺寸也要增大,在条件许可的情况下,应 尽量选用高阻值应变片。
2.绝缘电阻(敏感栅与基底间电阻值: 要求>1010欧姆;
在金属丝的弹性范围内,灵敏系数KS 为常数,即 :
R R
Ks
线性关系
通常很小, 常用10-6表示之。例如, 当 为0.000001时, 在工程中 常表示为1 10-6或 m/m。在应变测量中, 也常将之称为微应变
(με)。对金属材料而言, 当它受力之后所产生的轴向应变最好不要 大于1 10-3, 即1000 m/m, 否则有可能超过材料的极限强度而 导致断裂。
合剂
化环已酮、萘酸钴干料
环氧树脂、聚硫酚铜胺、 固化剂
环氧树脂类 酚醛环氧、无机填料、

电阻应变式称重传感器的原理和应变片技术

电阻应变式称重传感器的原理和应变片技术

电阻应变式称重传感器的原理和应变片技术2012/7/26阅随着科学技术与经济的发展进步,电子衡器作为百姓日常生活中一种贸易结算的手段,已经被广泛使用。

无论小到几公斤的电子计价秤,还是大到100多吨的电子汽车衡都是由称重传感器这一主要部件实现质量与电量的转换的。

因此对称重传感器的结构组成,工作原理及相关知识的阿了解,对于从事检定和修理方面的工作人员来说尤为重要。

下面就从几个方面对电阻应变式称重传感器作以具体介绍。

一、电阻应变式称重传感器的工作原理和结构电阻应变式称重传感器之所以能作为质量——电量的转换元件,是基于金属丝在受拉或受压后会发生弹性形变,其电阻值也随之产生相应的变化这一物理特性实现的。

当电阻应变片内金属丝受到外力作用发生弹性形变时,它的长度L,横截面s及电阻率P均会发生相应的变化。

电阻相对变化为电阻相对变化公式称重传感器接线图在钢制的弹性体上,成对地在纵向和横向上贴有R1,R2,R3,R4共4个电阻应变片,它们组成一个全桥式测量电路,如图所示。

图中A,c两点接人激励电压u,一般使用交流或直流电源供电,B,D两点为输出端,工作时将输出电压信号u。

这种桥式测量电路,可以灵敏地测量极微小的电阻变化。

当弹性体受物体的作用时,弹性体便产生弹性形变,粘在其表面的电阻应变片随其同步地变形,因而改变了它们的电阻值。

电阻应变片的长度L,截面积S,电阻率P均随之发生变化。

由于电阻应变片组成的桥式电路是平衡的,电阻应变片的电阻变化会引起电桥的不平衡,从而输出电压信号,该信号与物体的质量()成正比。

根据上述原理制成的应变式称重传感器主要由三部分组成,即弹性元件,电阻应变片和测量电路,用专门、十分严格的粘贴技术并通过连接线将这三者联系起来,就可以实现质量——电量信号之间的线性变换。

二,电阻应变片的主要技术特性1.灵敏度。

金属丝的灵敏度系数(Ko)是表示金属丝受力后,电阻的相对变化与轴向长度的相对变化之间的关系。

当金属丝制成应变片后,应变片的灵敏系数K就是一个新的量值了,而且K恒小于Ko。

称重传感器的原理及应用

称重传感器的原理及应用

称重传感器的原理及应用1.压阻式原理压阻式称重传感器是最简单、最常见的一种称重传感器,它基于材料的电阻值与受力大小成正比关系。

在压阻式称重传感器中,传感器材料内部有一个弹性薄膜,当物体施加力后,薄膜产生变形,从而导致电阻值的变化。

通过测量电阻值的变化,可以推算出物体的重量。

2.应变电阻式原理应变电阻式称重传感器基于材料的应变与受力大小成正比关系。

在应变电阻片上有一个电阻片电桥,当物体施加力后,应变电阻片产生应变,从而导致电桥产生电阻的变化。

使用一个称重传感器时,当物体施加在传感器上时,电桥电阻会发生改变,通过测量电阻值的变化,可以计算出物体的重量。

3.电磁式原理电磁式称重传感器基于洛伦兹力原理。

当物体施加在传感器上时,它会改变传感器内部的电流分布,从而使得电磁感应力发生变化。

通过测量电磁感应力的变化,可以推断出物体的重量。

4.电容式原理电容式称重传感器基于电容值与物体间隙大小成反比关系。

在电容式称重传感器中,传感器内部有两块电容板,当物体施加力后,两块电容板之间的间隙发生变化,从而导致电容值的变化。

通过测量电容值的变化,可以计算出物体的重量。

除了以上的原理,还有其他一些新型的称重传感器技术,如声波称重、振动称重等。

称重传感器在工业中的应用非常广泛,例如在电子秤、汽车称重系统、电子配料秤、自动化生产线中的物体检测、控制等方面。

此外,医疗领域也使用称重传感器来测量患者的体重、服用药物的剂量等。

在农业领域,称重传感器被应用在农作物、饲料、鱼虾等的称重中,帮助农民掌握产品的重量和质量情况,以便进行适当的加工和销售。

另外,称重传感器还被用于交通领域中的过磅站和重量限制检测。

总之,称重传感器是一种非常重要的传感器设备,它通过转换物体重力作用为电信号,实现了对物体质量或重量的测量。

它的应用领域广泛,可以帮助人们实现精确、高效的称重操作。

称重传感器的基本知识

称重传感器的基本知识

称重传感器的基本知识发布时间:10-09-13 来源:点击量:1821 字段选择:大中小首先了解传感器的基础知识--概念定义:人们通常把被测物理量或化学量转变成为电量的器件或元件叫传感器(又称变换器)。

其中平时接触较多物理量就有温度、湿度、质量、重量、力、压强、速度、加速度、长度、角度、液位、流量、密度等,与此相以对应,生产和生活中就需要温度传感器、湿度传感器、称重测力传感器、压强传感器等等。

电阻应变式称重传感器方面知识1. 称重传感器的定义:一种已考虑到使用当地的重力加速度和空气浮力影响的用来测量质量的传感器。

称重传感器能把被测质量转换成电压信号。

有各种各样的称重传感器,例电容式称重传感器;电磁平衡式传感器,有压电式称重传感器等等。

2. 箔式电阻应变片一种基于应变——电阻效应制成的,用金属箔作为敏感栅的,能把被测试件的应变量转换成电阻变化量的敏感元件称为箔式电阻应变片。

3. 应变式称重传感器采用电阻应变片作为敏感元件制造生产的称重传感器叫应变式称重传感器。

4. 应变式测力传感器采用电阻应变片作为敏感元件制造生产的能把各种力学量转换为电量的传感器叫测力传感器。

例拉力、压力、压强、扭拒、加速度等传感器。

5. 应变式称重测力传感器与测力传感器之间的关系从理论上说,质量表征实体的一种性质,其测量单位是千克,而力学量是一种向量,测量单位是牛顿及其它导出量,彼此毫无关系。

但由于质量不能直接测量,质量是利用质量在地球重力场中的力效应(重量)来测量的,所以从测量技术而论它们彼此是同类的。

称重传感器负荷特性方面知识额定量程:一只传感器的额定量程是指在设计此传感器在设计此传感器时,是以多大的力值来计算的。

但实际使用时,一般只用额定量程的2/3~1/3甚至只有1/6。

(原因见下面分析)。

允许使用负荷(或称安全超载):允许在一定范围内超负荷工作。

一般为120%~150%;极限负荷(或称极限超载):意即当工作超过此值时,传感器将会受到损坏。

电阻应变式称重传感器的原理和补偿

电阻应变式称重传感器的原理和补偿

●输入电阻标准化调整
Ni Rc
Us-
T Kc
Ni T Ko
Um-
Ra
Ra = output resist. adjustm.
Re = input resist. adj ustm.
So = Zero adjustment
Rc = Span adjustment
T Kc
Tko = Temp. adjustm. zero
实际的补偿电路
为电桥电路各项参数对称, 提高抗干扰能力,应温度灵敏度 补偿,灵敏度标准化调整和输出 电阻标准化调整的补偿电阻分成 相等的两部分,对称的串接在供 桥回路和输出回路上。
完整的传感器补偿与调整电路
Us+
Rc Ni
Re
T Kc
Um+
Ra
So
3 *
Us-
Ni Rc
Ni T Ko
Um-
Ra
Ra = output resist. adjustm.
思路:温度变化使E/Ui保持不变-灵敏度S就可以保持不变;
方法:在电桥的供桥回路中串接补偿电阻RM,当温度升高, RM 随之变大,分压作用变大,供桥电压减小。
Uo∝Ui/E (Ui为实际供桥电压)
T E S Ui S
Ui E
不变,则灵敏度S 不变
温度灵敏度补偿电阻的计算
RMMG 2 (aL 2aE LE)R
的标准值时,输出回路上并联调整电阻R0;
补偿电阻:
R0最好使用高精度、高稳定度、低 温度系数的环氧压膜封装型金属膜电 阻。
6.输入电阻标准化调整
方法:在电桥的供桥回路上并联一个输入电阻标准化 调整电阻Ri。
Ri
RFGRB RFG RB

力、压力传感器 电阻应变式传感器 电阻应变式传感器基础知识

力、压力传感器 电阻应变式传感器 电阻应变式传感器基础知识
金属丝的电阻:
导体受拉伸后的参数 变化
式中: ρ——电阻丝的电阻率; l——电阻丝的长度; A——电阻丝的截面积。
课程内容
1 . 电阻的应变效应 2. 电阻应变片的结构 3. 应变片测量原理 4. 电阻应变片的分类
2.电阻应变片的结构
金属电阻应变片由敏感栅、基片、覆盖层、引线和黏合剂等部分组成, 如 图所示。
片将变形转换成电阻的变化,再通过测量电路进一步将电阻的变化转换 成电压或电流信号输出。
课程内容
1 . 电阻的应变效应 2. 电阻应变片的结构 3. 应变片测量原理 4. 电阻应变片的分类
1.电阻的应变效应
应变效应:即导体或半导体材料在外界力的作用下产生机械变形时,其电阻 值相应发生变化, 这种现象称为“应变效应”。
2.电阻应变片的结构
引线作用:连接敏感栅和测量电路。
2.电阻应变片的结构
黏合剂作用:将敏感栅固定于基底上,并将盖片与基底粘贴在一起。用于使 用金属应变片时,也需用粘结剂将应变片基底粘贴在构件表面某个方向和位 置上。
课程内容
1 . 电阻的应变效应 2. 电阻应变片的结构 3. 应变片测量原理 4. 电阻应变片的分类
2.电阻应变片的结构
敏感栅:由直径约为0.01 ~ 0 .0 5 mm、高电阻系数的细丝弯曲而成 栅状;它实际上是一个电阻元件,是电 阻应变片感受构件应变的敏感部分。
作用:将应变量转换成电阻量。
2.电阻应变片的结构
基片作用:保持敏感栅、 引线的几何形状及其相对位置, 被测构件上的应变不失真地传 递到敏感栅上。
3.2.1 电阻应变式传感器基础知识
课程内容
1 . 电阻的应变效应 2. 电阻应变片的结构 3. 应变片测量原理 4. 电阻应变片的分类
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.电阻应变式称重传感器等工作原理2.称重传感器常用技术参数3.称重传感器选用的一般规则4.使用称重传感器注意事项1.电阻应变式称重传感器等工作原理电阻应变式称重传感器是基于这样一个原理:弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。

由此可见,电阻应变片、弹性体和检测电路是电阻应变式称重传感器中不可缺少的几个主要部分。

下面就这三方面简要论述。

一、电阻应变片电阻应变片是把一根电阻丝机械的分布在一块有机材料制成的基底上,即成为一片应变片。

他的一个重要参数是灵敏系数K。

我们来介绍一下它的意义。

设有一个金属电阻丝,其长度为L,横截面是半径为r的圆形,其面积记作S,其电阻率记作ρ,这种材料的泊松系数是μ。

当这根电阻丝未受外力作用时,它的电阻值为R:R = ρL/S(Ω)(2—1)当他的两端受F力作用时,将会伸长,也就是说产生变形。

设其伸长ΔL,其横截面积则缩小,即它的截面圆半径减少Δr。

此外,还可用实验证明,此金属电阻丝在变形后,电阻率也会有所改变,记作Δρ。

对式(2--1)求全微分,即求出电阻丝伸长后,他的电阻值改变了多少。

我们有:ΔR = ΔρL/S + ΔLρ/S –ΔSρL/S2 (2—2)用式(2--1)去除式(2--2)得到ΔR/R = Δρ/ρ + ΔL/L –ΔS/S (2—3)另外,我们知道导线的横截面积S = πr2,则Δs = 2πr*Δr,所以ΔS/S = 2Δr/r (2—4)从材料力学我们知道Δr/r = -μΔL/L (2—5)其中,负号表示伸长时,半径方向是缩小的。

μ是表示材料横向效应泊松系数。

把式(2—4)(2—5)代入(2--3),有ΔR/R = Δρ/ρ + ΔL/L + 2μΔL/L=(1 + 2μ(Δρ/ρ)/(ΔL/L))*ΔL/L= K *ΔL/L (2--6)其中K = 1 + 2μ +(Δρ/ρ)/(ΔL/L)(2--7)式(2--6))说明了电阻应变片的电阻变化率(电阻相对变化)和电阻丝伸长率(长度相对变化)之间的关系。

需要说明的是:灵敏度系数K值的大小是由制作金属电阻丝材料的性质决定的一个常数,它和应变片的形状、尺寸大小无关,不同的材料的K值一般在1.7—3. 6之间;其次K值是一个无因次量,即它没有量纲。

在材料力学中ΔL/L称作为应变,记作ε,用它来表示弹性往往显得太大,很不方便常常把它的百万分之一作为单位,记作με。

这样,式(2--6)常写作:ΔR/R = Kε (2—8)二、弹性体弹性体是一个有特殊形状的结构件。

它的功能有两个,首先是它承受称重传感器所受的外力,对外力产生反作用力,达到相对静平衡;其次,它要产生一个高品质的应变场(区),使粘贴在此区的电阻应变片比较理想的完成应变棗电信号的转换任务。

以托利多公司的SB系列称重传感器的弹性体为例,来介绍一下其中的应力分布。

设有一带有肓孔的长方体悬臂梁。

肓孔底部中心是承受纯剪应力,但其上、下部分将会出现拉伸和压缩应力。

主应力方向一为拉神,一为压缩,若把应变片贴在这里,则应变片上半部将受拉伸而阻值增加,而应变片的下半部将受压缩,阻值减少。

下面列出肓孔底部中心点的应变表达式,而不再推导。

ε = (3Q(1+μ)/2Eb)*(B(H2-h2)+bh2)/ (B(H3-h3)+bh3)(2--9)其中:Q--截面上的剪力;E--扬氏模量:μ—泊松系数;B、b、H、h—为梁的几何尺寸。

需要说明的是,上面分析的应力状态均是“局部”情况,而应变片实际感受的是“平均”状态。

三、检测电路检测电路的功能是把电阻应变片的电阻变化转变为电压输出。

因为惠斯登电桥具有很多优点,如可以抑制温度变化的影响,可以抑制侧向力干扰,可以比较方便的解决称重传感器的补偿问题等,所以惠斯登电桥在称重传感器中得到了广泛的应用。

因为全桥式等臂电桥的灵敏度最高,各臂参数一致,各种干扰的影响容易相互抵销,所以称重传感器均采用全桥式等臂电桥。

2.称重传感器常用技术参数一、用分项指标表示法在介绍称重传感器技术参数时,传统的方法是采用分项指标,其优点是物理意义明确,沿用多年,熟悉的人较多。

我们现在列出其主要项目如下:*额定容量生产厂家给出的称量范围的上限值。

*额定输出(灵敏度)加额定载荷时和无载荷时,传感器输出信号的差值。

由于称重传感器的输出信号与所加的激励电压有关,所以额定输出的单位以mV/V来表示。

并称之为灵敏度。

*灵敏度允差传感器的实际稳定输出与对应的标称额定输出之差对该标称额定输出的百分比。

例如,某称重传感器的实际额定输出为2.002mV/V,与之相适应的标准额定输出则为2mV/V,则其灵敏度允差为:((2.002 –2。

000)/2.000)*100% = 0.1%*非线性由空载荷的输出值和额定载荷时输出值所决定的直线和增加负荷之实测曲线之间最大偏差对于额定输出值的百分比。

*滞后允差从无载荷逐渐加载到额定载荷然后再逐渐卸载。

在同一载荷点上加载和卸载输出量的最大差值对额定输出值的百分比。

*重复性误差在相同的环境条件下,对传感器反复加荷到额定载荷并卸载。

加荷过程中同一负荷点上输出值的最大差值对额定输出的百分比。

*蠕变在负荷不变(一般取为额定载荷),其它测试条件也保持不变的情形下,称重传感器输出随时间的变化量对额定输出的百分比。

*零点输出在推荐电压激励下,未加载荷时传感器的输出值对额定输出的百分比。

*绝缘阻抗传感器的电路和弹性体之间的直流阻抗值。

*输入阻抗信号输出端开路,传感器未加负荷时,从电源激励输入端测得的阻抗值。

*输出阻抗电源激励输入端短路,传感器未加载荷时,从信号输出端测得的阻抗。

*温度补偿范围在此温度范围内,传感器的额定输出和零平衡均经过严密补偿,从而不会超出规定的范围。

*零点温度影响环境温度的变化引起的零平衡变化。

一般以温度每变化10K时,引起的零平衡变化量对额定输出的百分比来表示。

*额定输出温度影响环境温度的变化引起的额定输出变化。

一般以温度每变化10K引起额定定输出的变化量额定输出的百分比来表示。

*使用温度范围传感器在此温度范围内使用其任何性能参数均不会产生永久性有害变化二、在《OIML60号国际建议》中采用的术语。

以《OIML60号国际建议》92年版为基础,参考《JJG669--90称重传感器检定规程》新的技术参数大致有:*称重传感器输出被测量(质量)通过称重传感器转换而得到的可测量。

*称重传感器分度值称重传感器的测量范围被等分后其中一份的大小。

*称重传感器检定分度值(V)为了准确度分级,在称重传感器测试中采用的,以质量单位表达的称重传感器分度值。

*称重传感器最小检定分度值(Vmin)称重传感器测量范围可以被分度的最小检定分度值勤。

*最小静负荷(Fsmin)可以施加于称重传感器而不会超出最大允许误差的质量的最小值。

*最大称量可以施加于称重传感器而不会超出最大允许误差的质量的最大值。

*非线性(L)称重传感器进程校准曲线与理论直线的偏差。

*滞后误差(H)施加同一级负荷时称重传感器输出读数之间的最大差值;其中一次是由最小静负荷开始的进程读数,另一次是由最大称量开始的回程读数。

*蠕变(Cp)在负荷不变,所有环境条件和其它变量也保持不变的情况下,称重传感器满负荷输出随时间的变化。

*最小静负荷输出恢复植(CrFsmin)负荷施加前,后测得的称重传感器最小静负荷输出之间的差值。

*重复性误差(R)在相同的负荷和相同的环境条件下,使连续数次进行实验所得的称重传感器输出读数之间的差值。

*温度对最小静负荷输出的影响(Fsmin)由于环境温度变化而引起的最小静负荷输出之间的变化。

*温度对输出灵敏度的影响(St)由于环境温度变化而引起的输出灵敏度的变化。

*称重传感器测量范围被测量(质量)值范围,测量结果在此范围内不会超出最大允许误差。

*安全极限负荷可以施加于称重传感器的最大负荷,此时称重传感器在性能特征上,不会产生超出规定值的永久性漂移。

*温湿度对最小静负荷输出影响(FsminH)由于温湿度变化而引起的最小静负荷输出的变化。

*温湿度对输出灵敏度的影响由于温湿度变化而引起的输出灵敏度的变化。

此外,在《JJG699—90称重传感器检定规程》中,还列出了一个技术参数,即*最小负荷(Fmin)力发生装置能达到的最接近称重传感器最小静负荷的质量值。

正是因为传感器测量时,总要在测力机上进行,而又很难直接测量最小静负荷点性能。

再要说明一点,《OIML60号国际建议》是专门为称重传感器而制定的,它对称重传感器的评定的出发点就是要适应衡器的要求。

当传感器用于其它目的时,这种评估方式不一定最合适。

3 .称重传感器选用的一般规则在电子衡器中,选用何种称重传感器,要全面衡量。

下面就称重传感器的结构形式、量程,准确度等级的选择上讲述一般要考虑的几个方面。

一、结构、形式的选择选用何种结构形式的称重传感器,主要看衡器的结构和使用的环境条件。

如要制作低外形衡器,一般应选用悬臂梁式和轮幅式传感器,若对外形高度要求不严,则可采用柱式传感器。

此外,衡器使用的环境若很潮湿,有很多粉尘,则应选择密封形式较好的;若在有爆炸危险的场合,则应选用本质安全型传感器;若在高架称重系统中,则应考虑安全及过载保护;若在高温环境下使用,则应选用有水冷却护套的称重传感器;若在高寒地区使用,则应考虑采用有加温装置的传感器。

在形式选择中,有一个要考虑的因素是,维修的方便与否及其所需费用,即一旦称重系统出了毛病,能否很顺利、很迅速的获得维修器件。

若不能做到就说明形式选择不够合适。

二、量程的选择称重系统的称量值越接近传感器的额定容量,则其称量准确度就越高,但在实际使用时,由于存在秤体自重、皮重及振动、冲击、偏载等,因而不同称量系统选用传感器的量限的原则有很大差别。

作为一般规则,可有: *单传感器静态称重系统:固定负荷(秤台、容器等)+ 变动负荷(需称量的载荷)≤所选用传感器的额定载荷 X 70% *多传感器静态称重系统:固定负荷(秤台、容器等)+ 变动负荷(需称量的载荷)≤选用传感器额定载荷 X 所配传感器个数 X 70%其中70%的系数即是考虑振动、冲击、偏载等因素而加的。

需要说明的是:首先,选择传感器得额定容量要尽量符合生产厂家的标准产品系列中的值,否则,选用了非标准产品,不但价格贵,而且损坏后难以代换。

其次,在同一称重系统中,不允许选用额定容量不同的传感器,否则,该系统没法正常工作。

再者,所谓变动负荷(需称量的载荷)是指加于传感器的真实载荷,若从秤台到传感器之间的力值传递过程中,有倍乘和衰减的机构(如杠杆系统),则应考虑其影响。

相关文档
最新文档