高三数学(理科)

合集下载

理科高三数学知识点总结(最新)

理科高三数学知识点总结(最新)

理科高三数学知识点总结等式的性质:①不等式的性质可分为不等式基本性质和不等式运算性质两部分。

不等式基本性质有:(1)a>bb(2)a>b,b>ca>c(传递性)(3)a>ba+c>b+c(c∈R)(4)c>0时,a>bac>bcc<0时,a>bac运算性质有:(1)a>b,c>da+c>b+d。

(2)a>b>0,c>d>0ac>bd。

(3)a>b>0an>bn(n∈N,n>1)。

(4)a>b>0>(n∈N,n>1)。

应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。

一般地,证明不等式就是从条件出发施行一系列的推出变换。

解不等式就是施行一系列的等价变换。

因此,要正确理解和应用不等式性质。

②关于不等式的性质的考察,主要有以下三类问题:(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

高中数学集合复习知识点任一A,B,记做ABAB,BA,A=BAB={|A|,且|B|}AB={|A|,或|B|}Card(AB)=card(A)+card(B)-card(AB)(1)命题原命题若p则q逆命题若q则p否命题若p则q逆否命题若q,则p(2)AB,A是B成立的充分条件BA,A是B成立的必要条件AB,A是B成立的充要条件1.集合元素具有①确定性;②互异性;③无序性2.集合表示方法①列举法;②描述法;③韦恩图;④数轴法(3)集合的运算①A∩(B∪C)=(A∩B)∪(A∩C)②Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB(4)集合的性质n元集合的字集数:2n真子集数:2n-1;非空真子集数:2n-2高中数学集合知识点归纳1、集合的概念集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。

【高三数学试题】高三数学试题1(理科)及参考答案

【高三数学试题】高三数学试题1(理科)及参考答案

高三数学试题1(理科)一、选择题1、设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是( )A .1B .3C .4D .82、若集合{|3},{|33}xM y y P x y x ====-,则M P I =( ) A {|1}x x > B {|1}y y ≥ C {|0}y y > D {|0}x x ≥3、已知命题p :若,022=+y x 则x 、y 全为0;命题q :若a b >,则11a b <.给出下列四个命题:①p 且q ,②p 或q ,③p 的逆否命题,④ q ⌝,其中真命题的个数为( )()A 1()B 2 ()C 3 ()D 44.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ).5、已知集合A ={(x ,y)|32y x --=1,x ,y ∈R},B={(x ,y)|y=ax+2,x ,y ∈R},若A ⋂B =∅,则a 的值为( )A .a =1或a =32B .a=1或a =12 C .a =2或a =3 D .以上都不对 6、若函数)(212)(为常数a k k x f xx⋅+-=在定义域上为奇函数,则的值为k ( )A . 1 B. 1- C. 1± D. 07、若函数()(2)()[1,1]()||,()f x f x f x x f x x y f x +=∈-==满足且时则函数的图象与 函数||log 3x y =的图像的交点个数是( )A .2B .3C .4D .多于4x y 0-2 2x y 0 -2 22 xy 0 -2 22 xy 0 -2 2 2A. B. C . D.8、已知函数2()24(03),f x ax ax a =++<<若1212,1,x x x x a <+=-则( )A .12()()f x f x >B .12()()f x f x <C .12()()f x f x = D .1()f x 与2()f x 的大小不能确定二、填空题9、设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1[()]2g g =__________.10.已知函数22(),1x f x x R x =∈+,则1()()f x f x += ;11、设0)1)((:;1|34:|≤---≤-a x a x q x p ,若p 是q 的充分不必要条件,则实数a 的取值范围是 .12、若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示)。

2024届高三数学仿真模拟卷(全国卷)(理科)(全解全析)

2024届高三数学仿真模拟卷(全国卷)(理科)(全解全析)

2024年高考第三次模拟考试数学(理科)·全解全析(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,6【答案】A【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得.【详解】由260x x -≥,即()60x x -≥,解得6x ≥或0x ≤,所以{}(][)260,06,B x x x ∞∞=-≥=-⋃+,又{}24A x x =-≤≤,所以[]2,0A B ⋂=-.故选:A 2.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .14【答案】C【分析】运用复数代数运算及两复数相等的性质求解即可.【详解】由题意知,22231(i)i=i2422z a a=+=-+,所以23142a⎧-=⎪⎪=,解得12a=.故选:C.3.如图,已知AM是ABC的边BC上的中线,若AB a=,AC b=,则AM等于()A.()12a b-B.()12a b--C.()12a b+D.()12a b-+【答案】C【分析】根据平面向量线性运算法则计算可得.【详解】因为AM是ABC的边BC上的中线,所以12CM CB=,所以12AM AC CM AC CB=+=+()()()111222AC A CB A AC aBA b=+-=+=+.故选:C4.已知函数()()πtan0,02f x xωϕωϕ⎛⎫=+><<⎝⎭的最小正周期为2π,直线π3x=是()f x图象的一条对称轴,则()f x的单调递减区间为()A.()π5π2π,2πZ66k k k⎛⎤-+∈⎥⎝⎦B.()5π2π2π,2πZ33k k k⎛⎤--∈⎥⎝⎦C.()4ππ2π,2πZ33k k k⎛⎤--∈⎥⎝⎦D.()π2π2π,2πZ33k k k⎛⎤-+∈⎥⎝⎦【答案】B【分析】根据()()πtan0,02f x xωϕωϕ⎛⎫=+><<⎝⎭的最小正周期确定ω的值,根据函数的对称轴求出ϕ,结合正切函数的单调性,列出不等式,即可求得答案.【详解】由于()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象是将()tan y x ωϕ=+的图象在x 轴下方部分翻折到x 轴上方,且()tan y x ωϕ=+π0,02ωϕ⎛⎫><<⎪⎝⎭仅有单调递增区间,故()()tan f x x ωϕ=+和()tan y x ωϕ=+的最小正周期相同,均为2π,则π12π,2ωω=∴=,即()1tan 2f x x ϕ⎛⎫=+ ⎪⎝⎭,又直线π3x =是()f x 图象的一条对称轴,则1π1π,Z 232k k ϕ⋅+=∈,即1ππ,Z 26k k ϕ=-∈,结合π02ϕ<<,得π3ϕ=,故()1πtan 23f x x ⎛⎫=+ ⎪⎝⎭,令π1πππ,Z 223k x k k -<+≤∈,则5π2π2π2π,Z 33k x k k -<≤-∈,即()f x 的单调递减区间为()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦,故选:B5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件【答案】A【分析】根据充分性、必要性的定义,结合直线的斜率是否存在进行判断即可.【详解】当直线的斜率等于0时,直线的方程为1y =,代入方程224x y +=中,得x =,显然CD =;当直线的不存在斜率时,直线的方程为1x =,代入方程224x y +=中,得y =CD =因此是必要而不充分条件,故选:A6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种【答案】B【分析】根据题意,分2种情况讨论:①丙是最后一名,则丁可以为第二、三、四名,剩下的三人安排在其他三个名次,②丙不是最后一名,丙丁需要排在第二、三、四名,剩下的三人安排在其他三个名次,由加法原理计算可得答案.【详解】根据题意,丙丁都没有得到冠军,而丁不是最后一名,分2种情况讨论:①丙是最后一名,则丁可以为第二、三、四名,即丁有3种情况,剩下的三人安排在其他三个名次,有33A 6=种情况,此时有1863=⨯种名次排列情况;②丙不是最后一名,丙丁需要排在第二、三、四名,有23A 6=种情况,剩下的三人安排在其他三个名次,有33A 6=种情况,此时有6636⨯=种名次排列情况;则一共有361854+=种不同的名次情况,故选:B .7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.【答案】C【分析】先求出函数的定义域和奇偶性,排除BD ,再求出特殊点的函数值,得到答案.【详解】()πln sin ln cos 2x x x x f x x x⎛⎫⋅- ⎪⋅⎝⎭==定义域为()(),00,∞-+∞U ,且()()()ln cos ln cos x x x x f x f x x x-⋅-⋅-==-=--,所以函数()f x 是奇函数,图象关于原点中心对称,排除B 、D .又()ln 2cos 2202f ⋅=<,故A 错误.故选:C .8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α,则平面α与半球底面之间的几何体的体积是()A .3π24R B .3π24R C .3π12R D .3π12R 【答案】C 【分析】分别求得面α截圆锥时所得小圆锥的体积和平面α与圆柱下底面之间的部分的体积,结合祖暅原理可求得结果.【详解】 平面α截圆柱所得截面圆半径2r =,∴平面α截圆锥时所得小圆锥的体积2311ππ3212V r R R =⋅=,又平面α与圆柱下底面之间的部分的体积为232πV R R R =根据祖暅原理可知:平面α与半球底面之间的几何体体积33321πππ21212V V V R R R =-=-=.故选:C.9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<【答案】B【分析】用定义证明函数()f x 的奇偶性及在()0,1上的单调性,利用函数()f x 的奇偶性及单调性,对数函数ln y x =的性质及对数运算可得结果.【详解】因为函数()f x 的定义域为{}0x x ≠,又()()ln ln f x x x f x -=-==,所以()f x 为偶函数,当01x <<时,任取12x x >,()()12121221ln ln ln ln ln ln 0f x f x x x x x x x -=-=-=-<,即()()12f x f x <,所以()f x 在()0,1上为减函数,因为31ln2ln02>>>,所以()()()113ln ln2ln2ln2ln 22a f f f f f c-⎛⎫⎛⎫===-=<= ⎪ ⎪⎝⎭⎝⎭,即a c <,设3401,1x x <<<,则()4444ln ln ln f x x x x ===,()3333ln ln ln f x x x x ===-,若()()34f x f x =,则34ln ln x x -=,所以341x x =,因为2e ln 2ln212=->,所以22e 11ln e 22ln2ln 2b f f f ⎛⎫ ⎪⎛⎫⎛⎫=== ⎪ ⎪⎪-⎝⎭⎝⎭ ⎪ ⎪⎝⎭,又()21ln21ln202ln22ln2--=>--,即11ln202ln2>>>-,所以()1ln22ln2f f ⎛⎫< ⎪-⎝⎭,即b a <,故选:B.10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a=,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个【答案】B 【分析】由81a=,利用递推关系,分类讨论逆推出1a 的不同取值,进而可得答案.【详解】若81a =,又1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,根据上述运算法进行逆推,可得72a =,64a =,所以58a =或51a =;若58a =,则4316,32a a ==或35a =;当332a =时,2164,128a a ==或121a =;若35a =时,2110,20a a ==或13a =;当51a =,则4322,4,8a a a ===或21a =;当28a =时,116a =;当21a =时,12a =,故81a=时,1a 的所有可能的取值集合{}2,3,16,20,21,128M =即集合M 中含有6个元素.故选:B11.如图,已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为C 的离心率是()AB .32CD .3【答案】B【分析】根据斜率及双曲线的对称性得12BF F △为等边三角形,再根据同角间关系求解三角函数值,进而用正弦定理求出121410,33AF c AF c ==,由双曲线定义可得423c a =,从而得到离心率.【详解】由题意,直线1BF12π3BF F ∴∠=,又12BF BF =,所以12BF F △为等边三角形,故12122BF BF F F c ===,2112π2π,33BF F F F A ∠=∠=,在12AF F △中,21tan 0F F A ∠>,则21F F A ∠为锐角,则212111sin 14F F A F F A ∠=∠=,212πsin sin 3A F F A ⎛⎫=+∠= ⎪⎝⎭由正弦定理,12121221sin sin sin F F AF AF AF F AF F A==∠∠,=∴121410,33AF c AF c ==,由122AF AF a -=,得423c a =,32c e a ∴==.故答案选:B .12.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑【答案】D【分析】利用赋值法结合题目给定的条件可判断AC ,取()()2π2πsin,cos 33f x xg x x ==可判断B ,对于D ,通过观察选项可以推断()f x 很可能是周期函数,结合()()()(),f x g y g x f y 的特殊性及一些已经证明的结论,想到令1y =-和1y =时可构建出两个式子,两式相加即可得出()()()11f x f x f x ++-=-,进一步得出()f x 是周期函数,从而可求()20231n f n =∑的值.【详解】解:对于A ,令0x y ==,代入已知等式得()()()()()000000f f g g f =-=,得()00f =,故A错误;对于B ,取()()2π2πsin,cos 33f x xg x x ==,满足()()()()()f x y f x g y g x f y -=-及()()210f f -=≠,因为()3cos 2π10g ==≠,所以()g x 的图象不关于点()3,0对称,所以函数()21g x +的图象不关于点()1,0对称,故B 错误;对于C ,令0y =,1x =,代入已知等式得()()()()()11010f f g g f =-,可得()()()()110100f g g f ⎡⎤-=-=⎣⎦,结合()10f ≠得()100g -=,()01g =,再令0x =,代入已知等式得()()()()()00f y f g y g f y -=-,将()00f =,()01g =代入上式,得()()f y f y -=-,所以函数()f x 为奇函数.令1x =,1y =-,代入已知等式,得()()()()()21111f f g g f =---,因为()()11f f -=-,所以()()()()2111f f g g =-+⎡⎤⎣⎦,又因为()()()221f f f =--=-,所以()()()()1111f f g g -=-+⎡⎤⎣⎦,因为()10f ≠,所以()()111g g +-=-,故C 错误;对于D ,分别令1y =-和1y =,代入已知等式,得以下两个等式:()()()()()111f x f x g g x f +=---,()()()()()111f x f x g g x f -=-,两式相加易得()()()11f x f x f x ++-=-,所以有()()()21f x f x f x ++=-+,即:()()()12f x f x f x =-+-+,有:()()()()()()11120f x f x f x f x f x f x -+=++--+-+=,即:()()12f x f x -=+,所以()f x 为周期函数,且周期为3,因为()11f =,所以()21f -=,所以()()221f f =--=-,()()300f f ==,所以()()()1230f f f ++=,所以()()()()()()()2023111232023202311n f n f f f f f f ===++++===∑ ,故D 正确.故选:D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.【答案】3【分析】根据n S 求得n a ,再结合对勾函数的单调性,即可求得结果.【详解】因为2n S n n =+,则当2n ≥时,()()221112n n n a S S n n n n n -=-=+----=,又当1n =时,112a S ==,满足2n a n =,故2n a n =;则9n n S a +29191222n n n n n ++⎛⎫==++ ⎪⎝⎭,又9y x x=+在()1,3单调递减,在()3,+∞单调递增;故当3n =时,9n n+取得最小值,也即3n =时,9n n S a +取得最小值.故答案为:3.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.【答案】9542ω≤≤【分析】根据给定条件,利用辅助角公式化简函数()f x ,再利用正弦函数的性质求解即得.【详解】依题意,函数π()2sin(13f x x ω=+-,由()0f x =,得π1sin()32x ω+=,则ππ2π36x k ω+=+或π5π2π,Z 36x k k ω+=+∈,由[0,2π]x ∈,得πππ[,2π333x ωω+∈+,由()f x 在[0,2π]上恰有5个零点,得29ππ37π2π636ω≤+<,解得935412ω≤<,由3ππ22πx ω+≤-≤,得5ππ66x ωω-≤≤,即函数()f x 在5ππ[,66ωω-上单调递增,因此5ππ[,]ππ[,]41566ωω-⊆-,即45π6πω≤--,且π6π15ω≥,解得502ω<≤,所以正实数ω的取值范围为9542ω≤≤.故答案为:9542ω≤≤15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)【答案】15【分析】根据条件,两边求导得到12342345415(23)2345x a a x a x a x a x +=++++,再取=1x -,即可求出结果.【详解】因为52345012345(23)x a a x a x a x a x a x +=+++++,两边求导可得12342345415(23)2345x a a x a x a x a x +=++++,令=1x -,得到23454115(23)2345a a a a a -=-+-+,即12345234515a a a a a -+-+=,故答案为:15.16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数②(0,),()0x f x ∃∈+∞>③41(1)e f >④0x ∀>时,41()e xf x <【答案】②③【分析】根据构造函数的规律由令()()4e xg x f x =,再结合奇函数的性质可得①,求导分析单调性和极值可得②③④.【详解】令()()4e x g x f x =,则()()()()()4444e e e 4x x x g x f x f x f x f x '''=+=+⎡⎤⎣⎦,若()f x 是奇函数,则()()f x f x -=-,取0x =时,即()00f =,但(01f =),故①错误;因为4e 0,(0,)x x >∈+∞恒成立,且()4()0f x f x '+>,所以()0g x '>恒成立,()g x 在(0,)+∞上为单调递增函数,所以()()()()()44110e 101e g g f f f >⇒>⇒>,故②正确;由②可知,③正确;因为()g x 在(0,)+∞上为单调递增函数,所以当0x >时有()()()()0,001g x g g f >==,所以()()441e 1e x xf x f x >⇒>,故④错误;故答案为:②③三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC 的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.【答案】(1)35;(2)4.【详解】(1)由()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =-- 垂直,得0m n ⋅=,...............1分即sin (5sin 6sin )(5sin 5sin )(sin sin )0B B C A C C A -++-=,整理得2226sin sin sin sin sin 5B C A B C +-=,...............2分在ABC 中,由正弦定理得22265b c a bc +-=,...............3分由余弦定理得2223cos 25b c a A bc +-==,所以cos A 的大小为35................5分(2)由(1)知,在ABC 中,3cos 5A =,则4sin 5A ==,...............6分由22265b c a bc +-=,得22266482555a b c bc bc bc bc ==+-≥-=,即10bc ≤,...................................................................................................8分当且仅当b c =时取等号,...................................................................................................9分因此ABC 的面积12sin 425ABC S bc A bc ==≤ ,..........................................................11分所以ABC 的面积的最大值是4.....................................................12分18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k 2.706 3.841 6.63510.828【答案】(1)列联表见解析,有99%的把握认为在此社区内“关注流行语与性别有关”;(2)35【详解】(1)依题意,关注流行语居民人数为81410638+++=,不关注流行语居民人数为81422+=,...................................................................................................2分所以22⨯列联表如下:男女合计关注流行语30838不关注流行语101222合计4020602K 的观测值2260(3012108)7.03 6.63540203822K ⨯-⨯=≈>⨯⨯⨯,................................................................4分所以有99%的把握认为在此社区内“关注流行语与性别有关”...................5分(2)依题意,男居民选出406660⨯=(人),.......................................6分记为a b c d ,,,,女居民选出2人,记为,E F ,从6人中任选3人的样本空间{,,,,,,,,,,abc abd abE abF acd acE acF adE adF aEF Ω=,,,,,,,,,}bcd bcE bcF bdE bdF bEF cdE cdF cEF dEF ,共20个,.................................9分选出的3人为2男1女的事件{,,,,,,,,,,,}A abE abF acE acF adE adF bcE bcF bdE bdF cdE cdF =,共12个,...........11分所以选出的3人为2男1女的概率123()205P A ==......................................12分19.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.【答案】(1)证明见解析(2)存在;4AP =-【详解】(1)证明:如图,设,M N 分别为,EF AB 边的中点,连接,,MN DM CN ,..1分因为⊥AE 平面,,5,4,3ABC AE CD BF AE CD BF ===∥∥,所以42AE BFMN CD +===,//MN BF ,进而MN CD ∥,即四边形CNMD 为平行四边形,可得MD CN ∥,......................................3分在底面正三角形ABC 中,N 为AB 边的中点,则CN AB ⊥,......................................4分又⊥AE 平面ABC ,且CN ⊂平面ABC ,所以AE CN ⊥.由于⋂=AE AB A ,且AE AB ⊂、平面ABFE ,所以CN ⊥平面ABFE ......................5分因为,MD CN CN ⊥∥平面ABFE ,则MD ⊥平面ABFE ,又MD ⊂平面DEF ,则平面DEF ⊥平面AEFB .......................................6分(2)如图,以点A为坐标原点,建立空间直角坐标系,则()())0,0,5,0,2,4,E D F .设点()0,0,P t,则)()()1,1,0,2,1,0,2,4DF DE DP t =--=-=--..................8分设平面PDF 的法向量为()1111,,n x y z = ,平面EDF 的法向量为()2222,,n x y z =.由题意知110,0,n DF n DP ⎧⋅=⎪⎨⋅=⎪⎩即()111110,240,y z y t z --=-+-=⎪⎩令12z =,则114,y t x =-=14,2n t ⎫=-⎪⎭ ,......................................9分220,0,n DF n DE ⎧⋅=⎪⎨⋅=⎪⎩即222220,20,y z y z --=-+=⎪⎩取22z =,则)22n = ,...............................10分由121212π1cos ,cos 32n n n n n n ⋅===,28290t t +-=,解得:4t =±-,由于点P 为线段AE 上一点,故05t ≤≤,所以4t =-,......................................11分当4t =-时,二面角P DF E --所成角为锐角,即存在点P 满足,此时4AP =.......................................12分20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.【答案】(1)22143x y +=(2)(ⅰ)证明见解析;(ⅱ)4【详解】(1)点31,2P ⎛⎫⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴,则有()1,0F 设椭圆C 的焦距为()20c c >,则1c =,.......................................................................1分点31,2P ⎛⎫ ⎪⎝⎭代入椭圆方程,有()222219191441a b a a +=+=-,解得2a =,则222413b a c =-=-=,所以椭圆C 的方程为22143x y +=...................................................................................3分(2)(ⅰ)设直线l 的方程为y kx m =+,由22143y y k x x m =+⎧⎪⎨⎪+⎩=,消去y ,整理得()2223484120kxkmx m +++-=,因为l 交椭圆C 于,A B 两点,所以()22Δ48430k m =-+>,设()()1122,,,A x y B x y ,所以21212228412,3434km m x x x x k k -+=-=++, (5)分因为直线AF 和直线BF 关于PF 对称,所以()()()()12121212121212220111111AF BF kx x m k x x my y kx m kx m k k x x x x x x +-+-+++=+=+==------所以()()()21212224128222203434m kmkx x m k x x m k m k m k k --+-+-=⨯+-⨯-=++所以222282488860km k km k m mk m --+--=解得4m k =-................................................................................................................7分所以直线l 的方程为()44y kx k k x =-=-,所以直线l 过定点()4,0................................,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.......8分(ⅱ)设直线l 的方程为4x ny =+,由224143x ny x y =+⎧⎪⎨+=⎪⎩,消去x ,整理得()223424360n y ny +++=,因为l 交椭圆C 于,A B 两点,所以()()()222Δ241443414440n n n =-+=->,解得24n >,........................................................................................................9分1212222436,3434n y y y y n n +=-=++,所以12y y -=所以121331822ABFS y y =⨯-=⨯⨯ .............................10分令()24,0n t t -=>则18184ABC S ==≤,当且仅当163t =时取等号,所以ABF △面积的最大值为4......................................................................12分21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.【答案】(1)单调递增区间为:(0,1),单调递减区间为:(,0)-∞和(1,)+∞;极大值21(1)f e =,极小值(0)0f =;(2)(]0,2e 【详解】(1)当2a =时,()22=exx f x ()()2222222e e 22(1)=e e x x xxx x x x f x ⋅-⋅⋅--'=......................................2分令()=0f x ',解得0x =或1x =,......................................3分所以()()x f x f x '、、的关系如下表:x(,0)-∞0(0,1)1(1,)+∞()f x '-+-()f x 单调递减0单调递增21e 单调递减所以函数()f x 的单调递增区间为:(0,1),单调递减区间为:(,0)-∞和(1,)+∞;......................................4分极大值21(1)f e=,极小值(0)0f =;......................................5分(2)[]222()cos ln ()ln 4cos ln 2ln 4e eaa x xx x f x f x a x x a x x ⎛⎫-≥-⇔-≥- ⎪⎝⎭ln 2e 2(ln 2)cos(ln 2)0a x x a x x a x x -⇔----≥......................................6分令()e 2cos t g t t t =--,其中ln 2a x x t -=,设l (2)n a x x F x =-,0a >2()2a a x x xF x --='=令()0F x '>,解得:02ax <<,......................................8分所以函数()F x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增,在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减,max ()ln 22a a F x F a a ⎛⎫==- ⎪⎝⎭,且当0x +→时,()F x →-∞,所以函数()F x 的值域为,ln 2a a a ⎛⎤-∞- ⎥⎝⎦;......................................9分又()e 2sin t g t t '=-+,设()e 2sin t h t t =-+,,ln 2a t a a ⎛⎤∈-∞- ⎥⎝⎦,则()e cos t h t t '=+,当0t ≤时,e 1,sin 1t t ≤≤,且等号不同时成立,即()0g t '<恒成立;当0t >时,e 1,cos 1t t >≥-,即()0h t '>恒成立,所以()h t 在(0,)+∞上单调递增,又(0)1g '=-,(1)e 2sin10g '=-+>,所以存在0(0,1)t ∈,使得0()0g t '=,当00t t <<时,()0g t '<,当0t t >时,()0g t '>,所以函数()g t 在0(,)t -∞上单调递减,在0(,)t +∞上单调递增,且(0)0g =......................................11分当ln 02aa a -≤即02e a <≤时,()0g t ≥恒成立,符合题意;当ln02a a a ->即2e a >时,取10min ln ,2a t a a t ⎧⎫=-⎨⎬⎩⎭,必有1()0g t <,不符合题意.综上所述:a 的取值范围为(]0,2e ......................................12分(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.(10分)在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C 与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.【答案】(1)C 的普通方程为()2214x y -+=,l 直角坐标方程为30x y -+=.(2)存在,坐标为33,,4444⎛⎛--- ⎪ ⎪⎝⎭⎝⎭【详解】(1)由题设曲线C 的参数方程,消参得()2214x y -+=,............................2分由cos ,sin x y ρθρθ==,且)πsin sin cos 4ρθρθρθ⎛⎫-=-=⎪⎝⎭y =30x y -+=,......................................4分∴C 的普通方程为()2214x y -+=,l 直角坐标方程为30x y -+=...............................5分(2)当0y =时,()33,0x A =-⇒-,易知()12cos ,2sin B a a +,设(),M x y ,可得()()3,,2cos 1,2sin AM x y MB a x a y =+=-+-,......................................6分32cos 1cos 1,2sin sin x a x x a AM MB y a y y a +=-+=-⎧⎧=⇒⎨⎨=-=⎩⎩(a 是参数),消参得方程为()2211,x y ++=......................................8分且1,2,1,3E C C E C E r r r r r r ==-=+=,则圆心距离2,d ==得C E C E r r d r r -<<+,则两圆相交,故两圆存在公共点,联立方程组()()22221114x y x y ⎧++=⎪⎨-+=⎪⎩,解得34x y ⎧=-⎪⎪⎨⎪=⎪⎩或34x y ⎧=-⎪⎪⎨⎪=⎪⎩,故坐标为33,,44⎛⎛--- ⎝⎭⎝⎭......................10分选修4-5:不等式选讲23.(10分)已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.【答案】(1)113x x x ⎧⎫≤≥⎨⎬⎩⎭或(2)证明见解析【详解】(1)()2122f x x x x =-+-+,当0x <时,532x -+≥,解得0x <,......................................1分当102x ≤<时,332x -+≥,解得103x ≤≤,......................................2分当112x ≤<时,12x +≥,解得x ∈∅,......................................3分当1x ≥时,532x -≥,解得1x ≥,......................................4分综上所述,()2f x ≥的解集为13x x ⎧≤⎨⎩或}1≥x .......................................5分(3)由已知可得()5301330211<12531x x x x f x x x x x -+<⎧⎪⎪-+≤≤⎪=⎨⎪+≤⎪⎪->⎩,所以当12x =时,()f x 的最小值为32...............................................................................................6分1a b ∴+=,211,24a b a b ab +⎛⎫+=∴≤= ⎪⎝⎭,当且仅当12a b ==取等,......................................8分令t ab =,则104t <≤,211()212225224a b ab a b ab ab t a b ab ab ab t +-⎛⎫⎛⎫++=++=+-=+-≥ ⎪⎪⎝⎭⎝⎭,当且仅当14t =取等,此时12a b ==.......................................10分。

高三理科数学试卷(含答案)

高三理科数学试卷(含答案)

理科数学试卷参考答案及评分标准本试卷分第Ⅰ卷和第Ⅱ卷两部分,共11页,满分150分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上,并将准考证号条形码粘贴在答题卡上指定位置.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集I 是实数集R , 3{|2}{|0}1x M x x N x x -=>=≤-与都是I 的子集(如图所示), 则阴影部分所表示的集合为A .{}2x x <B .{}21x x -≤<C .{}12x x <≤D .{}22x x -≤≤2.下列函数中既不是奇函数,又不是偶函数的是A .2xy = B . (lg y x =C . 22xxy -=+ D . 1lg1y x =+ 3.若曲线x x x f -=4)(在点P 处的切线平行于直线03=-y x ,则点P 的坐标为A .(1,0)B .(1,5)C .(1,-3)D .(-1,2)4.在ABC ∆中,a b 、分别是角A B 、所对的边,条件“a b <”是使 “cos cos A B >”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.422142x x dx -⎛⎫-++= ⎪⎝⎭⎰ A .16 B .18 C .20 D .226. 已知函数),6cos()6sin()(ππ++=x x x f 则下列判断正确的是A .)(x f 的最小正周期为2π,其图象的一条对称轴为12π=xB .)(x f 的最小正周期为2π,其图象的一条对称轴为6π=xC .)(x f 的最小正周期为π,其图象的一条对称轴为12π=xD .)(x f 的最小正周期为π,其图象的一条对称轴为6π=x7. 一空间几何体的三视图如图所示,则该几何体的表面积为 A.2π+ B.42π+ C.6π+ D.62π+ 8. 若直线:10 l ax by ++=始终平分圆M :224210x y x y ++++=的周长,则()()2222a b -+-的最小值为AB .5C.D .109. 设b c 、表示两条直线,αβ、表示两个平面,下列命题中真命题是A .若c ∥α,c ⊥β,则αβ⊥B .若b α⊂,b ∥c ,则c ∥αC .若b α⊂,c ∥α,则b ∥cD .若c ∥α,αβ⊥,则c β⊥10.已知数列{}n x 满足3n n x x +=,21||()n n n x x x n N *++=-∈,若11x =,2 (1,0)x a a a =≤≠,则数列{}n x 的前2010项的和2010S 为A .669B .670C .1338D .134011. 在平面直角坐标系中,O 为坐标原点,设向量).3,1(),1,3(,,====其中若10,≤≤≤+=μλμλ且,C 点所有可能的位置区域用阴影表示正确的是俯视图正视图侧视图(第7题图)A .B .C .D .12.已知点F 是双曲线)0,0(12222>>=-b a by a x 的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A B 、两点,若ABE ∆是锐角三角形,则该双曲线的离心率e 的取值范围是A . ()1,+∞B .()1,2C.(1,1+D.(2,1+第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13. 对任意非零实数a b 、,若a b ⊗的运算原理如图所示,则()221log 82-⎛⎫⊗= ⎪⎝⎭___1___.14.在ABC ∆中,已知41AB AC ==,,ABCS AB AC ∆=⋅则的值为 ±2 .15. 设n S 表示等差数列{}n a 的前n 项和,且918S =,240n S =,若()4309n a n -=>,则n = 15 .16. 已知两个不相等的实数a b 、满足以下关系式:204a sin a cos πθθ⋅+⋅-=,204b sin b cos πθθ⋅+⋅-=,则连接A ()2a ,a 、 B ()2b ,b 两点的直线与圆心在原点的单位圆的位置关系是 相交 . 三、解答题:本大题共6个小题,共74分. 17.(本小题满分12分)已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 解:(Ⅰ)∵2()sin cos f x x x x =+)12sin cos cos 212x x x =⋅++(第13题图)1sin 2cos 2222x x =++ ……………3分sin 23x π⎛⎫=++ ⎪⎝⎭ ……………5分 ∴ 函数()f x 的最小正周期22T ππ==. ……………6分 (Ⅱ)∵ 62x ππ-≤≤,40233x ππ≤+≤∴sin 213x π⎛⎫≤+≤ ⎪⎝⎭, ……………9分 ∴0sin 213x π⎛⎫≤++≤= ⎪⎝⎭, ∴ ()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值为22,最小值为0.……………12分 18.(本小题满分12分)已知等腰直角三角形RBC ,其中∠RBC =90º, 2==BC RB .点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置,使PA ⊥AB ,连结PB 、PC . (Ⅰ)求证:BC ⊥PB ;(Ⅱ)求二面角P CD A --的余弦值. 解:(Ⅰ)∵点D A 、分别是RB 、RC 的中点,∴ BC AD BC AD 21//=且. …… 2分∴ ∠090=∠=∠=RBC RAD PAD . ∴ AD PA ⊥又PA ⊥AB ,DA AB A =∴ ABCD PA 面⊥ ∴BC PA ⊥ ∵ A AB PA AB BC =⊥ ,,∴ BC ⊥平面PAB . …… 4分 ∵ ⊂PB 平面PAB ,∴ PB BC ⊥. …… 6分 (Ⅱ)法一:取RD 的中点F ,连结AF 、PF .PCADBR(第18题图)∵ 1==AD RA ,∴ RC AF ⊥.又由(Ⅰ)知ABCD PA 面⊥, 而⊂RC 平面ABCD ,∴ RC PA ⊥. ………………… 8分 ∵ ,A PA AF= ∴ ⊥RC 平面PAF .∴ ∠AFP 是二面角P CD A --的平面角. ………………10分 在Rt △RAD 中, 22212122=+==AD RA RD AF , 在Rt △PAF 中, 2622=+=AF PA PF , ∴ 332622cos ===∠PF AF AFP . ………………11分 ∴ 二面角P CD A --的平面角的余弦值是33. ………………12分 (Ⅱ)法二:建立如图所示的空间直角坐标系xyz A -. 则D (-1,0,0),C (-2,1,0),P (0,0,1).∴=(-1,1,0), =(1,0,1), ……8分 设平面PCD 的法向量为),,(z y x n =,则n DC x y n DP x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩……10分 令1=x ,得1,1-==z y , ∴ )1,1,1(-=n.FR ADBCP (第18题图)R(第18题图)显然,是平面ACD 的一个法向量=(,0,01-).∴ cos<n ,33131=⨯=. ∴ 二面角P CD A --的余弦值是33. ………………12分 19.(本小题满分12分)已知数列{}n a 的首项15a =,前n 项和为n S ,且125n n S S n +=++()n N *∈.(Ⅰ)设1n n b a =+,求数列{}n b 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S . 解:(Ⅰ)由125n n S S n +=++()n N *∈得 ()1215n n S S n -=+-+(,2)n N n *∈≥两式相减得 121n n a a +=+ ……………………………… 3分 ∴ ()1121n n a a ++=+即 n n b b 21=+(,2)n N n*∈≥ …………………………………… 4分 又1165111122=+=++=-=a S S S a ∴ 12122=+=a b ,6111=+=a b∴ 122b b = …………………………………… 6分 ∴ 数列{}n b 是首项为6,公比为2的等比数列 ∴ n n n b 23261⋅=⋅=- ………………………………… 8分(Ⅱ)法一由(Ⅰ)知321nn a =⋅- ……………………………… 9分 ∴ 12n n S a a a =++⋅⋅⋅+2323232nn =⨯+⨯+⋅⋅⋅+⋅- ……………………………10分()221321n n -=⨯--1626326n n n n +=⋅--=⋅--. ……………………… 12分(Ⅱ)法二由已知125n n S S n +=++()n N *∈ ① 设()()112n n S c n d S cn d ++++=++ 整理得 12n n S S cn d c +=++- ②对照① 、②,得 1,6c d == ……………………………………8分 即①等价于 ()()11626n n S n S n ++++=++∴ 数列{}6n S n ++是等比数列,首项为11161612S a ++=++=,公比为2q = ∴ 11612232n n n S n -+++=⋅=⋅∴ 1326n n S n +=⋅--. …………………………………… 12分20.(本小题满分12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知3=AB 米,2=AD 米.(I )要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内? (II )当DN 的长度是多少时,矩形花坛AMPN 的面积最小?并求出最小值. 解:(I )设DN 的长为x (0x >)米,则2AN x =+米∵AMDC ANDN =,∴()32x AM x+=, ……………………2分∴ ()232AMPN x S AN AM x+=⋅=由32>AMPN S 得()23232x x+> ,(第20题图)又0x >,得 2320120x x -+>,解得:2063x x <<> 或 即DN 长的取值范围是2(0)(6)3∞ ,,+ ……………………7分(II )矩形花坛AMPN 的面积为()22323121212312x x x y x xx x+++===++1224≥= ……………………10分 当且仅当1232x x ,x==即时矩形花坛AMPN 的面积取得最小值24. 故,DN 的长度是2米时,矩形AMPN 的面积最小,最小值为24平方米.…12分 21.(本小题满分12分)已知函数22()ln ()f x x a x ax a R =-+∈.(Ⅰ)当1a =时,证明函数()f x 只有一个零点;(Ⅱ)若函数()f x 在区间()1,+∞上是减函数,求实数a 的取值范围. 解:(Ⅰ)当1a =时,2()ln f x x x x =-+,其定义域是(0,)+∞∴ 2121()21x x f x x x x --'∴=-+=- …………2分令()0f x '=,即2210x x x ---=,解得12x =-或1x =. 0x >Q ,∴ 12x ∴=-舍去. 当01x <<时,()0f x '>;当1x >时,()0f x '<.∴ 函数()f x 在区间()01,上单调递增,在区间()1,+∞上单调递减 ∴ 当x =1时,函数()f x 取得最大值,其值为2(1)ln1110f =-+=. 当1x ≠时,()(1)f x f <,即()0f x <.∴ 函数()f x 只有一个零点. ……………………6分(Ⅱ)显然函数22()ln f x x a x ax =-+的定义域为(0,)+∞∴ 222121(21)(1)()2a x ax ax ax f x a x a x x x-++-+-'=-+== ………7分① 当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ② 当0a >时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即1x a≥ 此时()f x 的单调递减区间为1,a ⎡⎫+∞⎪⎢⎣⎭.依题意,得11,0.a a ⎧≤⎪⎨⎪>⎩解之得1a ≥.………10分③ 当0a <时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即12x a≥- 此时()f x 的单调递减区间为12,a ⎡⎫-+∞⎪⎢⎣⎭, ∴1120a a ⎧-≤⎪⎨⎪<⎩得12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 法二:①当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ②当0a ≠时,要使函数()f x 在区间()1,+∞上是减函数,只需()0f x '≤在区间()1,+∞上恒成立,0x > ∴只要22210a x ax --≥恒成立,2214210aa a a ⎧≤⎪∴⎨⎪--≥⎩解得1a ≥或12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 22.(本小题满分14分)已知椭圆C 中心在原点、焦点在x 轴上,椭圆C 上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是左、右顶点),且以MN 为直径的圆经过椭圆的右顶点A .求证:直线l 过定点,并求出定点的坐标. 解:(Ⅰ)设椭圆的长半轴为a ,半焦距为c ,则31a c a c +=⎧⎨-=⎩ 解得 21a c =⎧⎨=⎩∴ 椭圆C 的标准方程为 22143x y +=. ………………… 4分(Ⅱ)由方程组22143x y y kx m⎧⎪+=⎨⎪=+⎩ 消去y ,得()2223484120k xk m x m +++-= 由题意:△()()()22284344120km km=-+->整理得:22340k m +-> ① ……7分 设()()1122,,M x y N x y 、,则122834kmx x k+=-+, 212241234m x x k -=+………………… 8分 由已知,AM AN ⊥ , 且椭圆的右顶点为A (2,0) ∴()()1212220x x y y --+=………………… 10分即 ()()()2212121240kx x km x x m++-+++=也即 ()()22222412812403434m km k km m k k--+⋅+-⋅++=++ 整理得: 2271640m mk k ++= 解得: 2m k =- 或 27km =-,均满足① ……………………… 12分 当2m k =-时,直线l 的方程为 2y kx k =-,过定点(2,0),舍去当27k m =-时,直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭,过定点2(,0)7,故,直线l 过定点,且定点的坐标为2(,0)7.……………………… 14分。

甘肃省兰州市第六十一中学(兰化一中)2023届高三第八次阶段考试数学理科试题

甘肃省兰州市第六十一中学(兰化一中)2023届高三第八次阶段考试数学理科试题

甘肃省兰州市第六十一中学(兰化一中)2023届高三第八次阶段考试数学理科试题
学校:___________姓名:___________班级:___________考号:___________
.π3
.函数cos
y=
二、填空题
三、解答题
17.记n S 为等差数列{}n a 的前n 项和,已知17a =-,3
15S =-.
(1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.
18.某工厂采购了一批新的生产设备.经统计,设备正常状态下,生产的产品正品率为0.98.为监控设备生产过程,检验员每天从该设备生产的产品中随机抽取10件产品,并检测质量.规定:抽检的10件产品中,若至少出现2件次品,则认为设备生产过程出现了异常情况,需对设备进行检测及修理.
(1)假设设备正常状态,记X 表示一天内抽取的10件产品中的次品件数,求(2)P X ≥,并说明上述监控生产过程规定的合理性;
(2)该设备由甲、乙两个部件构成,若两个部件同时出现故障,则设备停止运转;若只有一个部件出现故障,则设备出现异常.已知设备出现异常是由甲部件故障造成的概
率为p ,由乙部件故障造成的概率为1p -.若设备出现异常,需先检测其中一个部件,如果确认该部件出现故障,则进行修理,否则,继续对另一部件进行检测及修理.已知甲部件的检测费用1000元,修理费用5000元,乙部件的检测费用2000元,修理费
.C
【分析】根据函数的自变量的性质与图象,根据选项即【详解】依题意,cos y x =×。

河南省2023届高三上学期第一次考试数学理科试题(解析版)

河南省2023届高三上学期第一次考试数学理科试题(解析版)

“顶尖计划”2023届高中毕业班第一次考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}223,N ,18400A x x n nB x x x ==+∈=--<∣∣,则A B 中的元素个数为()A.8B.9C.10D.11【答案】B 【解析】【分析】解一元二次不等式化简集合B ,再根据已知列出不等式,求解判断作答.【详解】解不等式218400x x --<得:220x -<<,即{|220}B x x =-<<,而{}23,N A x x n n ==+∈∣,由22320n -<+<解得:51722n -<<,又N n ∈,显然满足51722n -<<的自然数有9个,所以A B 中的元素个数为9.故选:B 2.已知复数33i2i z =+,则z =()A.1B.35C.355D.3【答案】C 【解析】【分析】利用复数的除法化简复数z ,利用复数的模长公式可求得结果.【详解】因为()()()33i 2i 3i 3i 36i 2i 2i 2i 2i 55z +====-++--+,因此,5z ==.故选:C.3.已知非零向量a 、b满足a b =r r ,且()2a b b +⊥ ,则,a b <>= ()A.π6B.π3C.2π3D.5π6【答案】C 【解析】【分析】由已知可得出()20a b b +⋅= ,利用平面向量数量积的运算性质求出cos ,a b <> 的值,结合平面向量夹角的取值范围可求得结果.【详解】因为()2a b b +⊥ ,则()222cos ,0a b b a b a b b +⋅=⋅<>+= ,a b = ,可得1cos ,2a b <>=- ,因为0,πa b ≤<>≤ ,因此,2π,3a b <>= .故选:C.4.某士兵进行射击训练,每次命中目标的概率均为34,且每次命中与否相互独立,则他连续射击3次,至少命中两次的概率为()A.2732B.916C.2764D.932【答案】A 【解析】【分析】根据相互独立事件的概率乘法公式及互斥事件的概率加法公式即可求解.【详解】解:因为每次命中目标的概率均为34,且每次命中与否相互独立,所以连续射击3次,至少命中两次的概率322333327C 144432P ⎛⎫⎛⎫⎛⎫=+-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,故选:A.5.已知函数()2sin 3cos f x x x =+在x ϕ=处取得最大值,则cos ϕ=()A.13 B.13C.13-D.31313-【答案】A 【解析】【分析】根辅助角公式和正弦函数最值求解即可.【详解】()()2sin 3cos f x x x x θ=+=+,其中θ为锐角,sin 13θ=.因为当x ϕ=处取得最大值,所以22πϕθπ+=+k ,k Z ∈,即22πϕθπ=-+k ,k Z ∈,所以313cos cos 2sin 213πϕθπθ⎛⎫=-+== ⎪⎝⎭k .故选:A6.已知定义域为R 的偶函数()f x 满足()(4)0f x f x +-=,且当[2,2)x ∈-时,2()4f x x =-,则(2021)f =()A.3-B.1- C.1D.3【答案】D 【解析】【分析】根据给定条件,探讨出函数()f x 的周期,再结合已知函数式求解作答.【详解】因R 上的偶函数()f x 满足()(4)0f x f x +-=,即有()()()4f x f x f x -=-=--,则(8)(4)()f x f x f x -=--=-,因此,函数()f x 是周期为8的周期函数,2(2021)(25285)(5)(1)[(1)4]3f f f f =⨯+==--=---=.故选:D7.我国古代经典数学名著《九章算术》中有一段表述:“今有圆堡壔(dăo ),周四丈八尺,高一丈一尺”,意思是有一个圆柱,底面周长为4丈8尺,高为1丈1尺.则该圆柱的外接球的表面积约为()(注:1丈=10尺,π取3)A.1185平方尺B.1131平方尺C.674平方尺D.337平方尺【答案】B 【解析】【分析】根据题意作图,再由底面周长求得底面半径,连接上下底面圆心,取中点为外接圆的圆心,根据勾股定理,可得外接圆半径,可得答案.【详解】由1丈=10尺,则4丈8尺=48尺,1丈1尺=11尺,如下图:则11,2·48BC AB π==,即8AB =,假设点D 为圆柱外接圆的圆心,即AD 为外接圆的半径,且112BD DC ==,在Rt ABD △中,222AB BD AD +=,解得294.25AD =,则外接球的表面积241131S AD π=⋅=,故选:B.8.甲、乙、丙、丁、戊五名志愿者去,,A B C 三个不同的小区参加新冠疫情防控志愿服务,每个小区至少去1人,每人只去1个小区,且甲、乙去同一个小区,则不同的安排方法有()A.28种B.32种C.36种D.42种【答案】C 【解析】【分析】先将甲、乙看成一个元素,然后先分组后排列可得.【详解】将甲、乙看成一个元素A ,然后将A 、丙、丁、戊四个元素分为3组,共有21142122C C C 6A =种,再将3组分到3个不同小区有33A =6种,所以满足条件的安排方法共有66=36⨯种.故选:C9.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点(,4)m -,其中0m <,若7cos 225α=-,则πtan 2m α⎛⎫+= ⎪⎝⎭()A.2B.12-C.43-D.34-【答案】D 【解析】【分析】利用三角函数定义求出tan α,再利用二倍角的余弦公式结合齐次式法求解作答.【详解】依题意,4tan 0mα=->,又22222222cos sin 1tan 7cos 2cos sin cos sin 1tan 25ααααααααα--=-===-++,解得4tan 3α=,从而得3m =-,所以3πsin()π3πcos 132tan(tan()3π22sin tan 4cos(2m ααααααα-+=-===-=---.故选:D10.过抛物线()2:20C y px p =>的焦点F 且斜率为1-的直线交C 于A 、B (其中A 在x轴上方)两点,交C 的准线于点M ,且16AB =,O 为坐标原点,则OM =()A.2B.C.D.【答案】D 【解析】【分析】将直线AB 的方程与抛物线的方程联立,利用韦达定理结合抛物线的焦点弦长公式求出p 的值,可求得点M 的坐标,再利用平面间两点间的距离公式可求得OM 的值.【详解】抛物线C 的焦点为,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,直线AB 的方程为2⎛⎫=--⎪⎝⎭p y x ,设点()11,A x y 、()22,B x y ,联立222p y x y px⎧⎛⎫=--⎪ ⎪⎝⎭⎨⎪=⎩可得22304p x px -+=,2290p p ∆=->,由韦达定理可得123x x p +=,则12416x x p A p B =++==,可得4p =,联立22p x p y x ⎧=-⎪⎪⎨⎛⎫⎪=-- ⎪⎪⎝⎭⎩可得2p x y p ⎧=-⎪⎨⎪=⎩,即点()2,4M -,因此,OM ==.故选:D.11.已知32()2(2)3f x x a x x =+--是奇函数,则过点(1,2)P -向曲线()y f x =可作的切线条数是()A.1B.2C.3D.不确定【答案】C 【解析】【分析】根据给定条件,求出a ,再求出函数()f x 的导数,设出切点坐标,借助导数的几何意义列出方程求解作答.【详解】因函数()f x 是奇函数,则由()()0f x f x -+=得()2220a x -=恒成立,则2a =,即有3()23f x x x =-,2()63'=-f x x ,设过点(1,2)P -向曲线()y f x =所作切线与曲线()y f x =相切的切点为3000(,23)Q x x x -,而点(1,2)P -不在曲线()y f x =上,则320000232631x x x x ---=+,整理得32004610x x +-=,即2000(21)(221)0x x x ++-=,解得012x =-或0132x -±=,即符合条件的切点有3个,所以过点(1,2)P -向曲线()y f x =可作的切线条数是3.故选:C12.设双曲线2222:1(0,0)x y a b a bΓ-=>>的左、右焦点分别为点12(,0),(,0)F c F c -,过点(2,0)P c -且斜率为12的直线与双曲线的左、右两支分别交于,M N 两点,若||3||PN PM =,且直线2F N 的斜率为3,则Γ的离心率为()A.132B.2C.2D.2【答案】B 【解析】【分析】通过题意可以得到直线PN 和直线2NF 的方程,两条方程联立可以得到N 的坐标,代入双曲线即可求出答案【详解】解:由题意可得直线PN 的方程为()122y x c =+,直线2NF 的方程为()3y x c =-,所以()()1223y x c y x c ⎧=+⎪⎨⎪=-⎩,解得8595c x cy ⎧=⎪⎪⎨⎪=⎪⎩,即89,55c c N ⎛⎫ ⎪⎝⎭,将89,55c c N ⎛⎫ ⎪⎝⎭代入双曲线可得2222648112525c c a b-=即()22222648112525c c a c a -=-,所以2264811125251e e -=⎛⎫- ⎪⎝⎭,因为1,e >所以e =故选:B二、填空题:本题共4小题,每小题5分,共20分.13.已知函数2()log (1)f x x a =-+在区间(2,3)上有且仅有一个零点,则实数a 的取值范围为_____.【答案】(1,0)-【解析】【分析】结合函数的单调性和零点的存在定理,即可求解【详解】解:由对数函数的性质,可得()f x 为单调递增函数,且函数()f x 在(2,3)上有且仅有一个零点,所以()()230f f ⋅<,即(1)0a a ⋅+<,解得10a -<<,所以实数a 的取值范围是(1,0)-,故答案为:(1,0)-14.写出一个同时具有下列性质①②③的函数:()f x =_____.①()()()1212f x x f x f x =+;②当,()0x ∈+∞时,()f x 单调递减;③()f x 为偶函数.【答案】12log x (不唯一)【解析】【分析】根据对数函数性质即可做出判断.【详解】性质①显然是和对数有关,性质②只需令对数的底01a <<即可,性质③只需将自变量x 加绝对值即变成偶函数.故答案为:12log x (不唯一)15.已知平面上的动点P 到点(0,0)O 和(2,0)A 的距离之比为32,则点P 到x 轴的距离最大值为_____.【答案】【解析】【分析】设(,)P x y ,然后根据题意列方程化简可得点P 的轨迹是以(6,0)-为圆心,为半径的圆,从而可求得答案.【详解】设(,)P x y ,因为动点P 到点(0,0)O 和(2,0)A 的距离之比为32,2=,22223(2)4x y x y +=-+,2222443(44)3x y x x y +=-++,221212x y x ++=22(6)48x y ++=,所以点P 的轨迹是以(6,0)-为圆心,所以点P 到x 轴的距离最大值为故答案为:16.微型航空遥感技术以无人机为空中遥感平台,为城市经济和文化建设提供了有效的技术服务手段.如图所示,有一架无人机在空中P 处进行航拍,水平地面上甲、乙两人分别在,A B 处观察该无人机(两人的身高忽略不计),C 为无人机在水平地面上的正投影.已知甲乙两人相距100m ,甲观察无人机的仰角为45︒,若再测量两个角的大小就可以确定无人机的飞行高度PC ,则这两个角可以是_____.(写出所有符合要求的编号)①BAC ∠和ABC ∠;②BAC ∠和PAB ∠;③PAB ∠和PBA ∠;④PAB ∠和ABC ∠.【答案】①③④【解析】【分析】①:根据已知先解ABC 得AC ,然后可得;②:根据已知直接判断可知;③:先解PAB △得PA ,然后可得;④:先由最小角定理的BAC ∠,解ABC 可得AC ,然后可得.【详解】①:当已知BAC ∠和ABC ∠时,在ABC 利用内角和定理和正弦定理可得AC ,然后在Rt PAC △中,由三角函数定义可得PC ,故①正确;②:当已知BAC ∠和PAB ∠时,在ABC 已知一角一边,在PAB △中已知一角一边,显然无法求解,故②错误;③:当已知PAB ∠和PBA ∠时,在PAB △中已知两角一边,可解出PA ,然后在Rt PAC △中,由三角函数定义可得PC ,故③正确;④:当已知PAB ∠和ABC ∠时,可先由最小角定理求得BAC ∠,然后解ABC 可得AC ,最后在Rt PAC △中,由三角函数定义可得PC ,故④正确.故答案为:①③④三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设等差数列{}n a 的前n 项和为n S ,已知251,15a S ==.(1)求数列{}n a 的通项公式;(2)若23log 2n n n b a a +=,求数列{}n b 的前n 项和n T .【答案】(1)23n a n =-(2)1(25)210n n T n +=-⨯+【解析】【分析】(1)根据等差数列的通项公式和前n 项和公式列方程组直接求解可得;(2)由错位相减法可得.【小问1详解】设数列{}n a 的公差为d ,由题设可得111,51015a d a d +=⎧⎨+=⎩解得112,a d =-⎧⎨=⎩所以1(1)223n a n n =-+-⨯=-.【小问2详解】由(1)知2log 23n b n n =-,所以223nn bn =-可得(23)2nn b n =-⨯,所以231121232(25)2(23)2n n n T n n -=-⨯+⨯+⨯++-⨯+-⨯ ①23412121232(25)2(23)2n n n T n n +=-⨯+⨯+⨯++-⨯+-⨯ ②②减①可得:341112222(23)2n n n T n ++=⨯----+-⨯ 118(12)(23)2212n n n -+⨯-=-⨯+--1(25)210n n +=-⨯+18.某工厂共有甲、乙两个车间,为了比较两个车间的生产水平,分别从两个车间生产的同一种零件中各随机抽取了100件,它们的质量指标值m 统计如下:质量指标值m [)0,20[)20,40[)40,60[)60,80[]80,100甲车间(件)152025319乙车间(件)510153931(1)估计该工厂生产这种零件的质量指标值m 的平均数;(同一组中的数据用该组区间的中点值作代表)(2)根据所给数据,完成下面的22⨯列联表(表中数据单位:件),并判断是否有99%的把握认为甲、乙两个车间的生产水平有差异.60m <60m ≥合计甲车间乙车间合计附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()2P K k≥0.050.010.001k3.8416.63510.828【答案】(1)58;(2)列联表见解析,有99%把握认为甲乙两个车间的生产水平有差异.【解析】【分析】(1)根据给定的数表,求出各组数据的频率,再列式计算作答.(2)完善22⨯列联表,计算2K 的观测值,再与临界值比对作答.【小问1详解】由所给数据,各组的频率分别为0.1,0.15,0.2,0.35,0.2,所以该工厂生产这种零件的质量指标值m 的平均数的估计值为:100.1300.15500.2700.35900.258⨯+⨯+⨯+⨯+⨯=.【小问2详解】22⨯列联表如下:60m <60m ≥合计甲车间6040100乙车间3070100合计90110200所以22200(60704030)18.18210010090110K ⨯⨯-⨯=≈⨯⨯⨯因为18.182大于6.635,所以有99%把握认为甲乙两个车间的生产水平有差异.19.如图,在直三棱柱111ABC A B C -中,190,24,ACB AA AC BC M ︒∠====为棱1AA 上靠近1A 的三等分点,N 为棱AC 的中点,点P 在棱BC 上,且直线PN ∥平面1BMC .(1)求PC 的长;(2)求二面角1P BM C --的余弦值.【答案】(1)23PC =(2)22110【解析】【分析】(1)在1CC 上取一点Q ,使得CP CQ =,根据面面平行判定定理证明平面PQN平面1BMC ,再根据面面平行性质定理确定CQ 的长即可,(2)建立空间直角坐标系,求出平面PBM ,平面1BC M 的法向量,根据二面角向量公式求二面角1P BM C --的余弦值.【小问1详解】在1CC 上取一点Q ,使得CP CQ =,连接,PQ NQ .由已知得11CC AA CB ==,所以1CQ CPCC CB=所以1PQ BC ∥.因为PQ ⊄平面1BMC ,1BC ⊂平面1BMC ,所以PQ ∥平面1BMC .又因为PN ∥平面1,BMC PN PQ P ⋂=,,PN NQ ⊂平面PQN ,所以平面PQN 平面1BMC .平面11ACC A 平面PQN QN =,平面11ACC A 平面11BC M MC =,根据面面平行的性质可知1//MC QN .在矩形11ACC A 中,可得11CQN A MC ∽,所以11123A M CQ CN A C ==,所以2233PC CQ CN ===.【小问2详解】以C 为坐标原点,分别以1,,CA CB CC 所在直线为,,x y z 轴建立空间直角坐标系.则182(0,0,0),(0,0,4),(0,4,0),2,0,,0,,033C C B M P ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.114(0,4,4),2,0,3C B C M ⎛⎫=-=- ⎪⎝⎭ ,8102,4,,0,,033BM BP ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,设平面1C MB 的法向量为()111,,m x y z =r,则110,0,C B m C M m ⎧⋅=⎪⎨⋅=⎪⎩ ,所以1111440,420,3y z x z -=⎧⎪⎨-=⎪⎩,取13z =得()2,3,3.m = 设平面PMB 的法向量为()222,,n x y z =r ,则0,0,BM n BP n ⎧⋅=⎨⋅=⎩ 所以22228240,3100,3x y z y ⎧-+=⎪⎪⎨⎪-=⎪⎩取23z =-,得()4,0,3.n =- 所以22cos ,110m n m n m n ⨯++⨯-⋅===-⋅结合图可知二面角1PBM C --的余弦值为110.20.过椭圆22:143x y C +=上任意一点P 作直线:l y kx p=+(1)证明:2234p k + ;(2)若0,p O ≠为坐标原点,线段OP 的中点为M ,过M 作l 的平行线,l l ''与C 交于,A B 两点,求ABP △面积的最大值.【答案】(1)证明见解析(2)32.【解析】【分析】(1)联立椭圆方程与直线方程,消元整理一元二次方程,由题意,该方程有解,则判别式大于等于零,可得答案.(2)设出题目中的两点,根据平行,设出另一条直线,根据中点,找出两直线的截距之间的关系,联立椭圆方程与直线方程,消元整理一元二次方程,写出韦达定理,根据三角形的等积变换,利用分割法,整理函数,根据(1),可得答案.【小问1详解】联立221,43,x y y kx p ⎧+=⎪⎨⎪=+⎩,消去y 整理得:()2223484120k x kpx p +++-=,因为点P 在C 上,所以()()2222644412340,k p p k ∆=--+ 化简得2234p k + .【小问2详解】设:l y kx m '=+,点()00,P x y ,则00,22x y M ⎛⎫⎪⎝⎭.由已知得00y kx p =+,所以00222y x p k =⋅+,即点00,22x y M ⎛⎫⎪⎝⎭满足方程2p y kx =+,所以2p m =.由221,43,x y y kx m ⎧+=⎪⎨⎪=+⎩得()2223484120k x kmx m +++-=,设()()1122,,,A x y B x y ,则21212228412,3434km m x x x x k k-+=-=++.所以122.34x x k-==+∣所以121||2ABPABOSS m x x ==-==令2234m t k =+,因为2223444p k m += ,所以10,4t ⎛⎤∈ ⎥⎝⎦.所以32ABPS ==所以ABP △面积的最大值为32.21.设函数()()e xf x mx m m =--∈R .(1)讨论()f x 的单调性;(2)若()f x 有两个零点1x 和2x ,设1202x x x +=,证明:()00f x '>(()f x '为()f x 的导函数).【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)分0m ≤、0m >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的增区间和减区间;(2)由函数零点的定义可得出1212e 0e 0x x mx m mx m ⎧--=⎨--=⎩,可得出1212e e x x m x x -=-,将所证不等式等价变形为12212212eex x x x x x --->-,令1202x x t -=>,即证e e 2t t t -->,构造函数()e e 2t t g t t -=--,其中0t >,利用导数分析函数()g t 的单调性,即可证得结论成立.【小问1详解】解:因为()e x f x mx m =--,则()e xf x m '=-,若0m ≤,对任意的x ∈R ,则()0f x '<,函数()f x 的单调递减区间为(),-∞+∞;若0m >,令()e 0xf x m '=-=,得ln x m =,当ln x m <时,()0f x '>,当ln x m >时,()0f x '<.所以()f x 的增区间为(),ln m -∞,减区间为()ln ,m +∞.综上所述,当0m ≤时,函数()f x 的单调递减区间为(),-∞+∞;当0m >时,函数()f x 的增区间为(),ln m -∞,减区间为()ln ,m +∞.【小问2详解】证明:不妨令12x x >,由题设可得1212e 0e 0x x mx m mx m ⎧--=⎨--=⎩,两式相减整理可得1212e e x x m x x -=-.所以()1212121222012e e ee 2x x x x x x x xf x f m x x ++''+-⎛⎫==-=- ⎪-⎝⎭,要证()00f x '>,即证1212212e e e 0x x x x x x +-->-,即证12212212eex x x x x x --->-,令1202x x t -=>,即证e e 2t t t -->,其中0t >,构造函数()e e 2ttg t t -=--,其中0t >,则()e e 220t t g t -'=+->=,所以,函数()g t 在()0,∞+上单调递增,所以,当0t >时,()()00g t g >=,即e e 2t t t -->,故原不等式得证.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(二)选考题:共10分.请考生在22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线C 的参数方程为2(cos sin )(,0),(cos sin )x m m y m ϕϕϕϕϕ=-⎧≠⎨=+⎩为参数以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 504πθ⎛⎫+-= ⎪⎝⎭.(1)写出l 的直角坐标方程;(2)若l 与C 只有一个公共点,求m 的值.【答案】(1)50x y +-=(2)102=±m 【解析】【分析】(1)利用和差化积的正弦公式把直线l 的极坐标方程展开,再利用极坐标与直角坐标的互化公式即可求解.(2)先得出曲线C 的普通方程,再联立方程,利用判别式等于0即可求解.【小问1详解】由l 的极坐标方程可得sin cos 50ρθρθ+-=,由cos sin x y ρθρθ=⎧⎨=⎩可知,直角坐标方程为:50x y +-=.【小问2详解】由C 的参数方程可得2222x y m m ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即C 的普通方程为222480x y m +-=.联立方程22250480x y x y m +-=⎧⎨+-=⎩得:2254010080x x m -+-=,因为直线l 与曲线C 只有一个公共点,所以()222404510081604000m m∆=-⨯⨯-=-=,解得:2=±m .[选修4-5:不等式选讲]23.已知,,a b c 均为正实数,且1abc =.(1)求124a b c++的最小值;(2)证明:222++≥+++++bc ac ab b c a c a b.【答案】(1)6(2)证明见解析【解析】【分析】(1)利用三元基本不等式求解即可.(2)利用基本不等式证明即可得到答案.【小问1详解】由基本不等式可知1246++≥==a b c ,当且仅当124a b c ==,即1,1,22a b c ===时等号成立,所以124a b c++的最小值为6.【小问2详解】因为1abc =,所以111bc ac ab a b c++=++.11242+≥=≥=++a b a b a b .同理可得114b c b c+≥+,114a c a c+≥+所以4111442⎛⎫++≥++⎪+++⎝⎭a b c b c a c a b,当且仅当a b c==时等号成立.所以111222++≥+++++a b c b c a c a b,即222. ++≥+++++ bc ac abb c a c a b。

全国甲卷2023高考理科数学试卷

全国甲卷2023高考理科数学试卷

全国甲卷2023高考理科数学试卷全国甲卷2023高考理科数学试卷(含答案)新高考数学各知识点所占比如下:一、分数占比1、集合5分2、三大函数5分3、立体几何初步12分+5分4、平面几何初步5分+12分5、算法初步5分6、统计5分7、概率5分+12分8、三角函数恒等变换5分+5分+12分9、平面向量5分10、解三角形5分+12分11、数列5分+12分12、不等式5分+12分13、常用逻辑用语5分14、圆锥曲线与方程5分+12分15、空间向量与立体几何5分+12分16、导数及应用5分+12分17、推理与证明12分18、数系扩充与复数的引入5分19、计数原理5分20、坐标系与参数方程10分二、题型1、选择+填空(8题单选+4题多选+4题填空)16道,每道5分,共80分。

占总分的大半。

送分题、基础题较多,以书上性质、公式的运用为主。

2、集合、复数:默认送分题。

平面向量:能建系尽量建系做。

计数原理:以二次项定理与分配问题居多。

统计与概率:可能会在读题上挖坑。

其他:命题、各章基本概念、计算(不等式或者比大小)3、中高档题会以几何或函数为主,可能会考新定义题。

几何:解三角形、立体几何、解析几何。

函数:函数(指对幂、正余切)的性质(单调奇偶对称周期)与图像(识别和变换)、简单求导、构造函数(常见于指对数比大小)。

4、新定义题:近年来高考的趋势,题干给出一个新的定义(高中课本里没学过的),然后让你利用其解题。

难度一般都不会太大,只要严格按照题干描述一步一步做就行。

高考数学为什么这么重要?数学是最好得分的科目,同时数学又是高考成败的关键。

多少学子因为数学成绩而走向不同的大学。

从某种意义上讲,高一高二的基础很重要,高一高二有没有“弄懂”将在很大程度上影响高三复习的进度,如果基础打得牢,高三可以向更高的层次冲一把,如果自认为基础有些薄弱,也不是完全没办法,一轮复习将在很大程度上弥补以前的弱势。

首先建议看看自己来年参加的考试的试卷题型分布,在复习方面,进入高三,哪些知识点只属于识记和基础理解层次,哪些知识点属于重难点。

四川省绵阳中学2024届高三高考适应性考试(一)数学(理科)试题(含答案与解析)_4574

四川省绵阳中学2024届高三高考适应性考试(一)数学(理科)试题(含答案与解析)_4574

绵阳中学2024届高三高考适应性考试(一)数学(理科)时间:120分钟 满分:150分注意事项:1.答卷前,考生务必将自己的班级、姓名、考号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合ππ2π2π,Z 42A k k k αα⎧⎫=+≤≤+∈⎨⎬⎩⎭,ππππ,Z 42B k k k αα⎧⎫=+≤≤+∈⎨⎬⎩⎭,则( ) A. A B ⊆B. BA ⊆C. A B =D. A B ⋂=∅2. 已知i 为虚数单位,则复数()21i 2i-+的共轭复数在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知命题()11:221x p f x =+-为奇函数;命题:0,,sin tan 2q x x x x π⎛⎫∀∈<< ⎪⎝⎭,则下面结论正确的是A. ()p p ∧⌝是真命题B. ()p q ⌝∨是真命题C. p q ∧是假命题D. p q ∨是假命题4. 已知双曲线()222210,0x y a b a b-=>>的左顶点与抛物线()220y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为()2,1--,则双曲线的焦距为( )A.B.C.D.5. 若数列{}n a 的前n 项积217n b n =-,则n a 的最大值与最小值之和为( ) A. 13-B.57 C. 2D.736. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.7. 已知函数()()sin 0f x x ωω=>在π0,6⎡⎤⎢⎥⎣⎦上的最大值为()f x 的图象上所有的点向右平移ϕ个单位长度,得到函数()g x 且()g x 满足77ππ1212g x g x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭时,则正数ϕ的最小值为( ) A.π12B.π6 C.π3D.π28. 三棱柱111ABC A B C -,底面边长和侧棱长都相等.1160BAA CAA ∠=∠=︒,则异面直线1AB 与1BC 所成角的余弦值为( )A.B.12C.D.9. 有4张分别标有数字1,2,3,4的红色卡片和4张分别标有1,2,3,4的蓝色卡片,从这8张卡片中,取出4张排成一行,如果取出的4张卡片所标的数字之和等于10,则不同的排法共有( )种. A. 72B. 144C. 384D. 43210. 已知向量是单位向量a ,b ,若0a b ⋅= ,且2c a c b -+-=r r r r ,则2c a +r r的取值范围是( )A. []1,3B. ⎡⎤⎣⎦C. D. ⎤⎥⎦11. 十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[]0,1均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭,记为第一次操作;再将剩下的两个区间段10,3⎡⎤⎢⎥⎣⎦,2,13⎡⎤⎢⎥⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于910,则需要操作的次数n 的最小值为(参考数据:lg 20.3010=,lg 30.4771=)( ) A 4B. 5C. 6D. 712. 已知定义在R 上的函数(),()f x f x '为其导函数,满足①()()2f x f x x =--,②当0x ≥时,()210f x x +'+>,若不等式2(21)33(1)f x x x f x +++>+有实数解,则其解集为( )A 2,3⎛⎫-∞- ⎪⎝⎭B. 2(,0),3⎛⎫-∞⋃+∞ ⎪⎝⎭C. (0,)+∞D. 2,(0,)3⎛⎫-∞-+∞ ⎪⎝⎭第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.若6的展开式中有理项的系数和为2,则展开式中3x -的系数为__________.14. 已知公比为q 的等比数列{}n a 的单调性与函数()e xf x =的单调性相同,且满足463a a +=,372a a ⋅=.若[]0,πx ∈,则22πcos 22cos 2x x q ⎛⎫-+≥ ⎪⎝⎭的概率为__________15.ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若()()25sin sin sin sin ,5,cos 31C A B B C A a A -=-==,则ABC 的周长为__________. 16. 已知抛物线()22(0),2,1y px x P =>为抛物线内一点,不经过P 点的直线:2l y x m =+与抛物线相交..于,A B 两点,连接,AP BP 分别交抛物线于,C D 两点,若对任意直线l ,总存在λ,使得,(0,1)AP PC BP PD λλλλ==>≠成立,则该抛物线方程为______.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17. 已知等差数列{}n a 的首项11a =,公差0d >,且25214a a a =,设关于x 的不等式()222*3x n x nx n n n +-<--∈N 的解集中整数的个数为n c .(1)求数列{}n a 前n 项和为n S ;(2)若数列满足1122332nn n n S c b c b c b c b c ++++-=,求数列{}n b 的通项公式. 18. 如图(1)在三角形PCD 中,AB 为其中位线,且2BD PC CD ===若沿AB 将三角形PAB 折起,使120PAD ∠=︒,构成四棱锥P ABCD -,如图(2)E 和F 分别是棱CD 和PC 的中点.(1)求证:平面BEF ⊥平面PCD ;(2)求平面PBC 与平面PAD 所成的二面角的余弦值.19. 某县电视台决定于2023年国庆前夕举办“弘扬核心价值观,激情唱响中国梦”全县歌手大奖赛,比赛分初赛演唱部分和决赛问答题部分,各位选手的演唱部分成绩频率分布直方图(1)如下:已知某工厂的6名参赛人员的演唱成绩得分(满分10分)如茎叶图(2)(茎上的数字为整数部分,叶上的数字为小数部分).的(1)根据频率分布直方分布图和茎叶图评估某工厂6名参赛人员的演唱部分的平均水平是否高于全部参赛人员的平均水平?(计算数据精确到小数点后三位数)(2)已知初赛9.0分以上的选手才有资格参加决赛,问答题部分为5组题,选手对其依次回答.累计答对3题或答错3题即结束比赛,答对3题者直接获奖,已知该工厂参赛人员甲进入了决赛且答对每道题的概率为这6位中任意抽取2位演唱得分分差大于0.5的概率,且各题对错互不影响,设甲答题的个数为X ,求X 的分布列及X 的数学期望.20. 在直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b+=>>的右焦点为()1,0F ,过点F 的直线交椭圆C 于A ,B 两点,AB的最小值为.(1)求椭圆C 的标准方程;(2)若与A ,B 不共线的点P 满足()2OP OA OB λλ=+-,求PAB 面积的取值范围.21. 现定义:()()213321f x f x x x --为函数()f x 在区间()12,x x 上的立方变化率.已知函数()e axf x =,()22ln g x x x x a a ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭(1)若存在区间()12,x x ,使得()f x 的值域为()122,2x x ,且函数()f x 在区间()12,x x 上的立方变化率为大于0,求实数a 的取值范围;(2)若对任意区间()()12,,x x f x 的立方变化率均大于()g x 的立方变化率,求实数a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做.则按所做的第一题计分,作答时请写清题号. 选修4-4:坐标系与参数方程22. 在平面直角坐标系xOy 中,点P 的坐标是()0,1,曲线1C 的参数方程为cos 1sin x t y t θθ=⎧⎨=+⎩(t 为参数),0πθ<<,以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为21sin ρθ=-,1C 与2C 交于A ,B 两点.(1)将曲线2C 极坐标方程化为直角坐标方程,并指出它是什么曲线? (2)过点P 作垂直于1C 的直线l 交2C 于C ,D 两点,求11PA PB PC PD+的值.选修4-5:不等式选讲23 设函数1()|(0)f x x x a a a=++- (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合ππ2π2π,Z 42A k k k αα⎧⎫=+≤≤+∈⎨⎬⎩⎭,ππππ,Z 42B k k k αα⎧⎫=+≤≤+∈⎨⎬⎩⎭,则( ) A. A B ⊆ B. BA ⊆C. A B =D. A B ⋂=∅【答案】A 【解析】【分析】根据角的范围及集合的关系即可判断. 【详解】当2,Z k n n =∈时,ππ2π2π,Z 42B n n k A αα⎧⎫=+≤≤+∈=⎨⎬⎩⎭, 的.当21,Z k n n =+∈时,ππ2ππ2ππ,Z 42B n n k αα⎧⎫=++≤≤++∈⎨⎬⎩⎭, 所以A B ⊆. 故选:A2. 已知i 为虚数单位,则复数()21i 2i-+的共轭复数在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B 【解析】【分析】根据题意,利用复数的运算法则,求得2(1i)2i 24i 2i 2i 55--==--++,得到共轭复数为24i 55-+,结合复数的几何意义,即可求解.【详解】由复数()22i 2i (1i)2i 24i 2i 2i 555----===--++,可得共轭复数为24i 55-+,其在复平面内对应点为24,55⎛⎫- ⎪⎝⎭,位于第二象限.故选:B .3. 已知命题()11:221x p f x =+-为奇函数;命题:0,,sin tan 2q x x x x π⎛⎫∀∈<< ⎪⎝⎭,则下面结论正确的是A. ()p p ∧⌝是真命题B. ()p q ⌝∨是真命题C. p q ∧是假命题D. p q ∨是假命题【答案】B 【解析】【分析】先判断命题,p q 都是真命题,故可得正确选项. 【详解】对于p ,()f x 的定义域为()(),00,-∞⋃+∞,()1112221212--=+=+--xx xf x ,进一步化简得到()()121111212221x x x f x f x -+-=+=--=---,故()f x 为奇函数,故p 为真命题.对于q ,考虑单位圆中的正弦线、正切线和弧长的关系,如图所示,,sin ,DOB x CE x BCx ∠===,tan BD x =,因为OBC OBD OBC S S S ∆∆<<扇形, 故1111sin 1tan 222x x x x ⨯⨯<⨯⨯<⨯⨯,即sin tan <<x x x .故q 真命题, 综上,p q ⌝∨为真命题,选B .【点睛】复合命题p q ∨的真假判断为“一真必真,全假才假”,p q ∧的真假判断为“全真才真,一假必假”,p ⌝的真假判断是“真假相反”.4. 已知双曲线()222210,0x y a b a b-=>>的左顶点与抛物线()220y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为()2,1--,则双曲线的焦距为( )A.B.C.D.【答案】B 【解析】【分析】根据点()2,1--在抛物线的准线上则可得4p =,进而可得抛物线的焦点坐标,再求出a 的值,由点()2,1--在双曲线的渐近线上,可得渐近线方程,进而可得b 的值,则可得c 的值,进而可得答案. 【详解】根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为()2,1--, 即点()2,1--在抛物线的准线上,又由抛物线()220y px p =>的准线方程为22px =-=-,则4p =,则抛物线的焦点为()2,0,为则双曲线的左顶点为()2,0,即2a =点()2,1--在双曲线的渐近线上,则其渐近线方程为12y x =±,由双曲线的性质,可得1b =,则c =,则焦距为2c =,故选:B5. 若数列{}n a 的前n 项积217n b n =-,则n a 的最大值与最小值之和为( ) A. 13-B.57 C. 2D.73【答案】C 【解析】【分析】由题可得2129n a n +-=,利用数列的增减性可得最值,即求.【详解】∵数列{}n a 的前n 项积217n b n =-,当1n =时,157a =,当2n ≥时,()12117n b n -=--,()1212727122929117n nn nb n a b n n n ---===+----=, 1n =时也适合上式,∴2129n a n +-=,∴当4n ≤时,数列{}n a 单调递减,且n a 1<,当5n ≥时,数列{}n a 单调递减,且n a 1>, 故n a 的最大值为53a =,最小值为41a =-, ∴n a 的最大值与最小值之和为2. 故选:C.6. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.【答案】C 【解析】【分析】设,CD a PE b ==,利用212PO CD PE =⋅得到关于,a b 的方程,解方程即可得到答案.【详解】如图,设,CD a PE b ==,则PO ==,由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得b a =. 故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.7. 已知函数()()sin 0f x x ωω=>在π0,6⎡⎤⎢⎥⎣⎦上的最大值为()f x 的图象上所有的点向右平移ϕ个单位长度,得到函数()g x 且()g x 满足77ππ1212g x g x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭时,则正数ϕ的最小值为( ) A.π12B.π6 C.π3D.π2【答案】C【解析】【分析】由函数的最大值求出ω的表达式,根据图像变换结合对称性求出ϕ的表达式,根据ϕ为正数求出最小值【详解】依题意,()f x 在π0,6⎡⎤⎢⎥⎣⎦上单调递增,11πππsin 2π122663k k ωωω⎛⎫∴=⇒=+⇒=+⎪⎝⎭,1k Z ∈时,把()f x 的图象上所有的点向右平移ϕ个单位长度,得到函数()()sin 2g x x ωϕ=-, 又77ππ1212g x g x ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭,得7π12x =是()g x 的一条对称轴, ()2222π7πππ7π2π,Z Z 1222424k k k k ωϕϕω∴⨯-=+∈⇒=--+∈ 即()()1222ππ7,Z 23k k k k ϕ=-+∈,当120k k ==时,正数ϕ取最小值π3故选:C .8. 三棱柱111ABC A B C -,底面边长和侧棱长都相等.1160BAA CAA ∠=∠=︒,则异面直线1AB 与1BC 所成角的余弦值为( )A.B.12C.D.【答案】D 【解析】【分析】由题意设1,,,1AB a AC b AA c a b c ======,11,,,60,,a b b c c a AB a c BC a b c ===︒=+=-++,由数量积的运算律、模的运算公式以及向量夹角的余弦的关系即可运算求解.【详解】设1,,,1AB a AC b AA c a b c ======,由题意11,,,60,,a b b c c a AB a c BC a b c ===︒=+=-++,1AB === ,1BC == ,又()()22111111122AB BC a c a b c b a b c c a ⋅=+⋅-++=⋅+⋅+-=++-=,设异面直线1AB 与1BC 所成角为θ,则1cos cos ,AB θ= . 故选:D .9. 有4张分别标有数字1,2,3,4的红色卡片和4张分别标有1,2,3,4的蓝色卡片,从这8张卡片中,取出4张排成一行,如果取出的4张卡片所标的数字之和等于10,则不同的排法共有( )种. A. 72 B. 144 C. 384 D. 432【答案】D 【解析】【分析】根据所取数字之和为10,分3类,再由分类加法计数原理求解即可. 【详解】分3类:①红1蓝1,红4蓝4,排成一排44A 24=; ②红2蓝2,红3蓝3,排成一排44A 24=;③2个1选1张,2个2选1张,2个3选1张,2个4选1张,排成一排1111422224C C C C A 384⋅=, 由分类加法计数原理,共2424384432++=种, 故选:D .10. 已知向量是单位向量a ,b ,若0a b ⋅=,且2c a c b -+-=r r r r ,则2c a +r r的取值范围是( )A. []1,3B. ⎡⎤⎣⎦C.D. ⎤⎥⎦【答案】D 【解析】【分析】由题意将所用的向量放到坐标系中用坐标表示,借助于两点之间的距离公式以及几何意义解答本题.详解】由题设单位向量()()()1,0,0,1,,a b c x y ===,【()()1,2,2c a x y c b x y ∴-=--=-,,+=即(),x y 到()1,0A 和()0,2B ,而AB =故动点(),P x y 表示线段AB 上的动点.又2c a +=,该式表示()2,0-到线段AB 上点的距离,其最小值为点()2,0-到线段:220(01)AB x y x +-=≤≤的距离,而d =,故|2|min c a +==.最大值为()2,0-到()1,0A 的距离是3,所以2c a +r r的取值范围是⎤⎥⎦. 故选:D .【点睛】关键点点睛:根据向量关系可得动点的轨迹,再根据点到直线的距离可得点点距的最小值.2c a +=表示点到线段上的连线的范围,结合其几何关系不难解决问题.11. 十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[]0,1均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭,记为第一次操作;再将剩下的两个区间段10,3⎡⎤⎢⎥⎣⎦,2,13⎡⎤⎢⎥⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于910,则需要操作的次数n 的最小值为(参考数据:lg 20.3010=,lg 30.4771=)( ) A. 4 B. 5 C. 6 D. 7【答案】C 【解析】【分析】根据规律可总结出第n 次操作去掉区间的长度和为123n n -,利用等比数列求和公式可求得去掉区间的长度总和,由此构造不等式求得结果.【详解】第一次操作去掉的区间长度为13; 第二次操作去掉两个长度为19的区间,长度和为29;第三次操作去掉四个长度为127的区间,长度和为427;以此类推,第n 次操作去掉12n -个长度为13n 的区间,长度和为123n n -,∴进行了第n 次操作后,去掉区间长度和112133122212393313nn n nnS -⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎝⎭=++⋅⋅⋅+==- ⎪⎝⎭-,由902131n⎛⎫-≥ ⎪⎝⎭,即21310n ⎛⎫≤ ⎪⎝⎭,22331lg101log log 10 5.68210lg 2lg 3lg 3n ∴≥=-=-=-≈-, 又n N *∈,n ∴的最小值为6. 故选:C.【点睛】关键点点睛:本题解题关键是能够根据已知所给的规律总结出每次操作去掉的区间长度和成等比数列,并能得到等比数列通项公式.12. 已知定义在R 上的函数(),()f x f x '为其导函数,满足①()()2f x f x x =--,②当0x ≥时,()210f x x +'+>,若不等式2(21)33(1)f x x x f x +++>+有实数解,则其解集为( )A 2,3⎛⎫-∞- ⎪⎝⎭B. 2(,0),3⎛⎫-∞⋃+∞ ⎪⎝⎭C. (0,)+∞D. 2,(0,)3⎛⎫-∞-+∞ ⎪⎝⎭【答案】D 【解析】【分析】令()2()=++F x f x x x ,由()210f x x +'+>得到其单调性,再由()()2f x f x x =--,得到其奇偶性求解.【详解】解:令()2()=++F x f x x x ,则()()210'=++>'F x f x x ,.所以()F x 在[0,)+∞上递增, 因为()()2f x f x x =--,所以()22()()-+--=++f x x x f x x x ,即()()F x F x -=,所以()F x 是偶函数,不等式2(21)33(1)f x x x f x +++>+等价于:()()()()22(21)2121(1)11+++++>+++++f x x x f x x x ,即()()211F x F x +>+,即()()211+>+F x F x , 所以211x x +>+, 解得23x <或0x >, 故选:D第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13. 若6的展开式中有理项的系数和为2,则展开式中3x -的系数为__________.【答案】1 【解析】【分析】利用二项式展开式的通项公式即可求解.【详解】()()12566166C C 10,16rrrr rr r r T a xr --+⎛==-⋅= ⎝0,6r =时为有理项,06621a a a ∴+=⇒=,由3125366r r x --=-⇒=∴系数:()6666C 11a -=, 故答案为:1.14. 已知公比为q 的等比数列{}n a 的单调性与函数()e xf x =的单调性相同,且满足463a a +=,372a a ⋅=.若[]0,πx ∈,则22πcos 22cos 2x x q ⎛⎫-+≥ ⎪⎝⎭的概率为__________【答案】14##0.25 【解析】【分析】由等比数列性质可列关于46,a a 的方程组,结合{}n a 为单增等比数列,即可求得q ,进一步利用三角恒等变换化简表达式22πcos 22cos 2x x q ⎛⎫-+≥ ⎪⎝⎭得到πsin 24x ⎛⎫+≥ ⎪⎝⎭,结合[]0,πx ∈解三角不等式即可得解.【详解】37462a a a a == ,又46463,,a a a a +=∴是方程2320x x -+=的两根, 又{}n a 为单增等比数列,2461,22a a q ∴==⇒=又2ππcos 22cos sin2cos212124x x x x x ⎛⎫⎛⎫-+=++=++ ⎪ ⎪⎝⎭⎝⎭,ππ212sin 244x x ⎛⎫⎛⎫++≥⇒+≥⎪ ⎪⎝⎭⎝⎭, []ππ9πππ3ππ0,π,2,,204444444x x x x ⎡⎤∈∴+∈∴≤+≤⇒≤≤⎢⎥⎣⎦ , ∴所求概率π014π04P -==-. 故答案为:14.15.ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若()()25sin sin sin sin ,5,cos 31C A B B C A a A -=-==,则ABC 的周长为__________. 【答案】14 【解析】【分析】先利用两角差的正弦公式、正弦定理和余弦定理对题目条件进行化简得出:2222a b c =+;再结合255,cos 31a A ==和余弦定理得出b c +的值即可求解. 【详解】因为()()sin sin sin sin C A B B C A -=-,所以sin sin cos sin cos sin sin sin cos sin cos sin C A B C A B B C A B C A -=-, 即sin sin cos sin cos sin 2sin sin cos C A B B C A B C A +=,.由正弦定理可得:cos cos 2cos ac B ab C bc A +=,由余弦定理可得:22222222222a cb a bc c b a +-+-+=+-,整理得:2222a b c =+.因为255,cos 31a A ==, 所以222225025cos 231b c b c a A bc ⎧+=⎪⎨+-==⎪⎩,整理得:2250231b c bc ⎧+=⎨=⎩,则9b c +===, 所以14a b c ++=, 故答案为:14.16. 已知抛物线()22(0),2,1y px x P =>为抛物线内一点,不经过P 点的直线:2l y x m =+与抛物线相交于,A B 两点,连接,AP BP 分别交抛物线于,C D 两点,若对任意直线l ,总存在λ,使得,(0,1)AP PC BP PD λλλλ==>≠成立,则该抛物线方程为______.【答案】24y x = 【解析】【分析】设()()()()11223344,,,,,,,A x y B x y C x y D x y ,根据,AP PC BP PD λλ==推出()()123421y y y y λλ+++=+,结合点在抛物线上可得12y y p +=,34y y p +=,即可求得p ,即得答案.【详解】由题意设()()()()112212334434,,,,(),,,,,()A x y B x y x x C x y D x y x x ≠≠,由AP PC λ=可得:()()11332,12,1x y x y λ--=--,可得:1313221x x y y λλλλ+=+⎧⎨+=+⎩,同理可得:2424221x x y y λλλλ+=+⎧⎨+=+⎩,则:()()()()123412344121x x x x y y y y λλλλ⎧+++=+⎪⎨+++=+⎪⎩(*)将,A B 两点代入抛物线方程得2211222,2y px y px ==,作差可得:()1212122y y y y p x x -+=-,而12122y y x x --=,即12y y p +=, 同理可得,34y y p +=,代入(*),可得2p =, 此时抛物线方程为24y x =, 故答案为:24y x =三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17. 已知等差数列{}n a 的首项11a =,公差0d >,且25214a a a =,设关于x 的不等式()222*3x n x nx n n n +-<--∈N 的解集中整数的个数为n c .(1)求数列{}n a 的前n 项和为n S ;(2)若数列满足1122332nn n n S c b c b c b c b c ++++-= ,求数列{}n b 的通项公式. 【答案】(1)2n S n =(2)112n b n=+ 【解析】【分析】(1)根据题意,列出方程,求得2d =,得到21n a n =-,结合等差数列的求和公式,求得n S 的值,得到答案;(2)根据题意,结合一元二次不等式的解法,求得21n x n <<+,得到n c n =,进而得到()212222n b b nb n n +++-= ,当2n ≥时,()21212211n b b n b n -⎡⎤+++-=-⎣⎦ ,两式相减得112n b n=+,进而得到数列{}n b 的通项公式.【小问1详解】由等差数列{}n a 的首项11a =,且25214a a a =,可得()()()2111134a d a d a d ++=+,整理得212a d d =,即22d d =,因为0d >,所以2d =,所以()21N n a n n *=-∈,可得()()2121135212n n n S n n +-=++++-== .【小问2详解】由不等式2223x n x nx n n +-<--,即22(31)20x n x n n +++-<, 解得21n x n <<+,因为()2223Nx n x nx n n n *+-<--∈解集中整数的个数为nc,所以n c n =,又因为2112233122n n n n S c b c b c b c b c n ++++-== 可得()21232232n b b b nb n n ++++-= , 即()21232232n b b b nb n n ++++=+ ,当2n ≥时,()()22121221(1)211n b b n b n n n -⎡⎤+++-=-+-=-⎣⎦ ,两式相减得()2212n nb n n =+≥,则()1122n b n n=+≥, 当1n =时,1221b -=,解得132b =,满足上式,所以112n b n =+, 所以数列{}n b 的通项公式为112n b n=+. 18. 如图(1)在三角形PCD 中,AB 为其中位线,且2BD PC CD ===若沿AB 将三角形PAB 折起,使120PAD ∠=︒,构成四棱锥P ABCD -,如图(2)E 和F 分别是棱CD 和PC 的中点.(1)求证:平面BEF ⊥平面PCD;的(2)求平面PBC 与平面PAD 所成的二面角的余弦值. 【答案】(1)证明见解析(2 【解析】【分析】(1)先利用几何关系证明和线面垂直的判定定理BA ⊥平面PAD ,再利用线面垂直的判定定理证明CD ⊥平面BEF ,最后可得平面BEF ⊥平面PCD ;(2)建系,然后分别求出平面PBC 和平面PAD 的法向量,代入二面角的向量公式求解即可. 【小问1详解】因为2BD PC =,所以90PDC ∠=︒,因为//,AB CD E 为CD 中点,2CD AB =,所以//AB BE 且AB DE =, 所以四边形ABED 为平行四边形, 所以//,BE AD BE AD =.而,BA PA BA AD ⊥⊥,又PA AD A ⋂=,PA ⊂平面PAD ,AD ⊂平面PAD , 所以BA ⊥平面PAD .因为//AB CD ,所以CD ⊥平面PAD , 又因为PD ⊂平面,PAD AD ⊂平面PAD , 所以CD PD ⊥且CD AD ⊥, 又因为在平面PCD 中,//EF PD ,于是CD FE ⊥.因为在平面ABCD 中,//BE AD ,于是CD BE ⊥. 因为,FE BE E EF =⊂ 平面,BEF BE ⊂平面BEF , 所以CD ⊥平面BEF ,又因为CD ⊂平面PCD , 所以平面BEF ⊥平面PCD . 【小问2详解】以A 点为原点,以AB 为x 轴,AD 为y 轴,面ABD 的垂线为z 轴建立空间直角坐标系,由(1)知BA ⊥平面PAD ,所以z 轴位于平面PAD 内,所以30,PAz P ∠︒=到z 轴的距离为(1,0,P ∴-,同时知())()0,0,0,,2,0A BC ,),2,0PB BC ==,设平面PBC 的一个法向量为(),,n x y z,所以()()),,000,020,,2,00x y z n PB y n BC y x y z ⎧⋅=⎧⋅=+=⎪⎪∴⇒⎨⎨⋅=+=⎪⋅=⎪⎩⎩, 令1y =,则n ⎛= ⎝;又)AB =为平面PAD 的一个法向量,所以cos ,n AB n AB n AB⋅===⋅,又因为平面PBC 与平面PAD 所成的二面角的平面角为锐角, 所以平面PBC 与平面PAD19. 某县电视台决定于2023年国庆前夕举办“弘扬核心价值观,激情唱响中国梦”全县歌手大奖赛,比赛分初赛演唱部分和决赛问答题部分,各位选手的演唱部分成绩频率分布直方图(1)如下:已知某工厂的6名参赛人员的演唱成绩得分(满分10分)如茎叶图(2)(茎上的数字为整数部分,叶上的数字为小数部分).(1)根据频率分布直方分布图和茎叶图评估某工厂6名参赛人员的演唱部分的平均水平是否高于全部参赛人员的平均水平?(计算数据精确到小数点后三位数)(2)已知初赛9.0分以上的选手才有资格参加决赛,问答题部分为5组题,选手对其依次回答.累计答对3题或答错3题即结束比赛,答对3题者直接获奖,已知该工厂参赛人员甲进入了决赛且答对每道题的概率为这6位中任意抽取2位演唱得分分差大于0.5的概率,且各题对错互不影响,设甲答题的个数为X ,求X 的分布列及X 的数学期望. 【答案】(1)高于 (2)分布列见解析,()2541625E X =【解析】【分析】(1)根据频率分布直方图各矩形面积和为1求出a ,再分别根据频率分布直方图和茎叶图求平均数,比较即可;(2)先利用古典概型的概率公式求出甲答对每道题的概率,再利用二项分布求出X 所有可能取值的概率,得到分布列,根据分布列求数学期望即可. 【小问1详解】根据频率分布直方图各矩形面积和为1得()20.2500.3750.5000.6250.51a ++++⨯=,解得0.125a =,所以全部参赛人员的整体水平为7.07.57.58.08.08.58.59.09.09.59.510.00.50.1250.2500.6250.5000.3750.1258.531222222++++++⎛⎫⨯⨯+⨯+⨯+⨯+⨯+⨯≈ ⎪⎝⎭, 根据茎叶图可知某工厂6名参赛人员的演唱部分的平均水平为7.58.68.79.09.29.68.7676+++++≈,所以某工厂的参赛6名人员的演唱水平高于全部参赛人员的平均水平. 【小问2详解】从这6位抽取2位的基本事件总数为26C ,分差大于0.5的基本事件为除数据()8.6,8.7,()()()()()8.6,9.0,9.2,9.6,9.2,9.0,8.7,9.0,9.2,8.7外的9个基本事件,故概率为26993C 155P === 依题意X 的取值为3,4,5,则()333235355125P X ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭;()2222333232322344C C 555555625P X ⎛⎫⎛⎫==⨯+⨯= ⎪ ⎪⎝⎭⎝⎭;()222222443232322165C C 555555625P X ⎛⎫⎛⎫⎛⎫⎛⎫==⨯+⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 所以X 的分布列为X 34 5P35125 234625 216625所以()352342162541345125625625625E X =⨯+⨯+⨯=. 20. 在直角坐标系xOy 中,已知椭圆()2222:10x y C ab a b+=>>的右焦点为()1,0F ,过点F 的直线交椭圆C 于A ,B 两点,AB 的最小值为.(1)求椭圆C 的标准方程;(2)若与A ,B 不共线的点P 满足()2OP OA OB λλ=+-,求PAB 面积的取值范围.【答案】(1)2212x y +=;(2)⎛ ⎝.【解析】【分析】(1)根据通径的性质即可求解;(2)取11222OM OP OA OB λλ⎛⎫==+- ⎪⎝⎭,则点M 在直线AB 上,且点M 为线段OP 的中点.得PABOAB S S = ,设AB 方程,与椭圆方程联立,表示出OAB S 并求其范围即可.【小问1详解】由右焦点()1,0F 知,1c =,当AB 垂直于x 轴时,AB最小,其最小值为22b a=.又∵222a b c =+,解得a =1b =,∴椭圆C 的标准方程为2212x y +=.【小问2详解】解法一:取11222OM OP OA OB λλ⎛⎫==+- ⎪⎝⎭,则点M 在直线AB 上,且点M 为线段OP 的中点. ∴PAB OAB S S = .当AB 垂直于x 轴时,A ,B的坐标分别为⎛ ⎝,1,⎛ ⎝,OAB S =△; 当AB 不垂直于x 轴时,设其斜率为k ,则直线AB 的方程为()()10y k x k =-≠. 则点O 到直线AB的距离d =,联立方程()22112y k x x y ⎧=-⎪⎨+=⎪⎩,消去y 整理得()2222124220k x k x k +-+-=, 则2122412k x x k +=+,21222212k x x k-=+,()2810k ∆=+>,2AB x =-==,∴1122OABS AB d =⋅==△, 令212t k =+,则()2112t k t -=>,此时OABS ⎛= ⎝△. 综上可得,PAB面积的取值范围为⎛ ⎝. 解法二:当AB 垂直于x 轴时,A ,B的坐标分别为⎛ ⎝,1,⎛⎝, 由()2OP OA OB λλ=+-,得点P的坐标为(-,则点P 到直线AB 的距离为1,又AB =PAB的面积为112=,当AB 不垂直于x 轴时,设其斜率为k , 则直线AB 的方程为()()10y k x k =-≠, 设P ,A ,B 的坐标分别为()00,x y ,()11,x y ,()22,x y ,则()111y k x =-,()221y k x =-,由()2OP OA OB λλ=+-,得()0122x x x λλ=+-,()()()()()0121212212122y y y k x k x k x x λλλλλλ=+-=-+--=+--⎡⎤⎣⎦,即()002y k x =-.故点P 在直线()2y k x =-上,且此直线平行于直线AB.则点P 到直线AB的距离d =,联立方程()22112y k x x y ⎧=-⎪⎨+=⎪⎩,消去y 整理得()2222124220k x k x k +-+-=, 则2122412k x x k +=+,21222212k x x k -=+,2AB x =-==,∴1122PABS AB d =⋅==△, 令212t k =+,则()2112t k t -=>,此时PABS ⎛= ⎝△. 综上可得,PAB面积的取值范围为⎛ ⎝. 解法三:取11222OM OP OA OB λλ⎛⎫==+- ⎪⎝⎭,则点M 在直线AB 上,且点M 为线段OP 的中点. ∴PAB OAB S S = ,设直线AB 的方程为1x ty =+,则点O 到直线AB 的距离d =联立方程22112x ty x y =+⎧⎪⎨+=⎪⎩,消去x 整理得()222210t y ty ++-=, 则12222t y y t +=-+,12212y y t =-+,()2810t ∆=+>,2AB y =-==,∴1122OABS AB d =⋅==△,∴OAB S ⎛=⎝△, 即PAB面积的取值范围为⎛ ⎝. 21. 现定义:()()213321f x f x x x--为函数()f x 在区间()12,x x 上的立方变化率.已知函数()e axf x =,()22ln g x x x x a a ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭(1)若存在区间()12,x x ,使得()f x 的值域为()122,2x x ,且函数()f x 在区间()12,x x 上的立方变化率为大于0,求实数a 的取值范围;(2)若对任意区间()()12,,x x f x 的立方变化率均大于()g x 的立方变化率,求实数a 的取值范围. 【答案】(1)20,e ⎛⎫ ⎪⎝⎭(2)[)e,+∞ 【解析】【分析】(1)由题意得到()f x 单调递增,即0a >,故1212e 2,e 2ax axx x ==,分离参数后得到()ln 2x a x=有两不等实根,构造()()ln 2x h x x=,得到其单调性,结合函数图象得到实数a 的取值范围;(2)由题意得到()()()()212133332121f x f xg x g x x xx x-->--,转化为对任意21x x >,有()()()()2211f x g x f x g x ->-,构造()()()22e ln ax r x f x g x x x x a a ⎛⎫⎛⎫=-=-++- ⎪ ⎪⎝⎭⎝⎭,求导得到()0r x '≥在2,a ⎛⎫-+∞ ⎪⎝⎭上恒成立,解法一:考虑a<0与0a >两种情况,结合同构思想,得到()ln m x x x =+,求出其单调性,得到e 2ax a ax ≥+在2,a ⎛⎫-+∞ ⎪⎝⎭上恒成立,变形为2e 0ax x a --≥,构造()2e axl x x a =--,求导后得到其单调性,求出e a ≥; 解法二:变形为212e ln axx a a a ⎛⎫-≥+ ⎪⎝⎭,构造()()212e ,ln ax m x n x x a a a ⎛⎫=-=+ ⎪⎝⎭,观察得到()m x 与()n x 互为反函数,从而证明出()m x x ≥恒成立即可,构造()2e ax l x x a=--,求导后得到其单调性,求出e a ≥;方法三:对()r x 二次求导,构造()22e 1axx a x a ϕ⎛⎫=+- ⎪⎝⎭,求导后分0a >与a<0两种情况,分析出0a >时,在2,a ⎛⎫-+∞ ⎪⎝⎭上存在唯一0x ,使得()00x ϕ=,求出()2e ln 20axr x a x a ⎛⎫=-+-≥ ⎪⎝⎭'在2,a ⎛⎫-+∞ ⎪⎝⎭上恒成立,转化为只需()00r x '≥即可,利用基本不等式证明出结论,且a<0时,不合题意,得到答案. 【小问1详解】()f x 在区间()12,x x 上的立方变化率为正,可得()f x 单调递增,即0a >.故若存在区间()12,x x ,使得()f x 的值域为()122,2x x , 即存在不同的12,x x ,使得1212e2,e 2ax ax x x ==,故方程e 2ax x =有两不等实根,化简得()ln 2x a x=有两不等实根.即y a =与()()ln 2x h x x=有两个不同的交点. 由()()21ln 2x h x x -'=,可知()h x 在e 02⎛⎫ ⎪⎝⎭,上单调递增,在e ,2⎛⎫+∞⎪⎝⎭上单调递减, 且当0x →时,()h x →-∞,当x →+∞时,()0h x →, 故要使y a =与()()ln 2x h x x=有两个不同的交点,e 202ea h ⎛⎫<<=⎪⎝⎭, 故实数a 的取值范围是20,e ⎛⎫⎪⎝⎭;【小问2详解】由对任意区间()()12,,x x f x 的立方变化率均大于()g x 的立方变化率,可得()()()()212133332121f x f x g x g x x x x x -->--,由21x x >可得,()()()()2121f x f x g x g x ->-,即对任意21x x >,有()()()()2211f x g x f x g x ->-可得()()()22e ln axr x f x g x x x x a a ⎛⎫⎛⎫=-=-++- ⎪ ⎪⎝⎭⎝⎭在2,a ⎛⎫-+∞ ⎪⎝⎭上单调递增. 即()2ln 20axr x ae x a ⎛⎫=-+-≥ ⎪⎝⎭'在2,a ⎛⎫-+∞ ⎪⎝⎭上恒成立, 解法一:①当0a <时,当x →+∞时,()t x →-∞,显然不成立. ②当0a >时,()()e ln 2ln 20axr x a ax a +'=-+-≥在2,a ⎛⎫-+∞ ⎪⎝⎭上恒成立, 即()e ln ln 22axa ax a ax ax ++≥+++在2,a ⎛⎫-+∞ ⎪⎝⎭上恒成立, 令()()ln ,e ln ln 22axm x x x a ax a ax ax =+++≥+++在2,a ⎛⎫-+∞ ⎪⎝⎭上恒成立,即()()e 2ax m a m ax ≥+.显然()m x 在()0,∞+上单调递增,得e 2ax a ax ≥+在2,a ⎛⎫-+∞ ⎪⎝⎭上恒成立.即2e 0ax x a --≥恒成立令()()2e ,e 1axax l x x l x a a-='=--, 可得()l x 在ln ,a a ∞-⎛⎫- ⎪⎝⎭上单调递减,在ln ,a a ⎛⎫-+∞ ⎪⎝⎭上单调递增, 故ln ln 10a a l a a -⎛⎫-=≥ ⎪⎝⎭,解得e a ≥ 解法二:①当0a <时,当x →+∞时,()t x →-∞,显然不成立. ②当0a >时,2e ln 20axa x a ⎛⎫-+-≥ ⎪⎝⎭可转化为212e ln axx a a a ⎛⎫-≥+ ⎪⎝⎭,令()()212e ,ln axm x n x x a a a ⎛⎫=-=+ ⎪⎝⎭,可得()m x 与()n x 互为反函数, 故()()m x n x ≥恒成立,只需()m x x ≥恒成立即可,即2e 0axx a--≥恒成立. 令()()2e ,e 1axax l x x l x a a -='=--,可得()l x 在ln ,a a ∞-⎛⎫- ⎪⎝⎭上单调递减,在ln ,a a ⎛⎫-+∞ ⎪⎝⎭上单调递增, 故ln ln 10a a l a a -⎛⎫-=≥ ⎪⎝⎭,解得e a ≥. 解法三:令()22e 1axx a x a ϕ⎛⎫=+- ⎪⎝⎭,可得()()2e 3axx a ax ϕ'=+ ①当0a >时,32a a -<-,此时()x ϕ在2,a ⎛⎫-+∞ ⎪⎝⎭上单调递增,由210a ϕ⎛⎫-=-< ⎪⎝⎭,当x →+∞时,()x ϕ→+∞,故在2,a⎛⎫-+∞ ⎪⎝⎭上存在唯一0x ,使得()00x ϕ=,即0202e 1ax a x a ⎛⎫+= ⎪⎝⎭,即001e 2ax a a x a =⎛⎫+ ⎪⎝⎭,000221ln ln 2ln e ax x a ax a a ⎛⎫+==-- ⎪⎝⎭, 令()()2e ln 2axt x r x a x a ⎛⎫==- ⎝'+-⎪⎭,则()21e 2axt x a x a'=-+, 当02,x x a ⎛⎫∈-⎪⎝⎭时,()0t x '<,当()0,x x ∈+∞时,()0t x '>, 此时()r x '在02,x a ⎛⎫-⎪⎝⎭上单调递减,在()0,x +∞上单调递增, 故()2e ln 20axr x a x a ⎛⎫=-+-≥ ⎪⎝⎭'在2,a ⎛⎫-+∞ ⎪⎝⎭上恒成立,只需()00r x '≥即可. 而()000021e ln 22ln 22ax r x a x ax a a a x a ⎛⎫=-+-=++- ⎪⎛⎫⎝⎭+' ⎪⎝⎭ 00122ln 4242ln 02a x a a a a x a ⎛⎫=+++-≥-+≥ ⎪⎛⎫⎝⎭+ ⎪⎝⎭,解得e a ≥经检验,当e a =时等号成立,故e a ≥②当0a <时,当x →+∞时,()t x →-∞,显然不成立.故e a ≥.【点睛】隐零点的处理思路:第一步:用零点存在性定理判定导函数零点的存在性,其中难点是通过合理赋值,敏锐捕捉零点存在的区间,有时还需结合函数单调性明确零点的个数;第二步:虚设零点并确定取范围,抓住零点方程实施代换,如指数与对数互换,超越函数与简单函数的替换,利用同构思想等解决,需要注意的是,代换可能不止一次.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做.则按所做的第一题计分,作答时请写清题号.选修4-4:坐标系与参数方程22. 在平面直角坐标系xOy 中,点P 的坐标是()0,1,曲线1C 的参数方程为cos 1sin x t y t θθ=⎧⎨=+⎩(t 为参数),0πθ<<,以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为21sin ρθ=-,1C 与2C 交于A ,B 两点.(1)将曲线2C 的极坐标方程化为直角坐标方程,并指出它是什么曲线?(2)过点P 作垂直于1C 的直线l 交2C 于C ,D 两点,求11PA PB PC PD +的值. 【答案】(1)244x y =+,抛物线;(2)18. 【解析】【分析】(1)根据222cos ,sin ,x y x y ρθρθρ==+=,对2C 的极坐标方程进行化简即可求得其直角坐标方程,再根据方程判断曲线类型即可;(2)联立直线l 的参数方程与曲线2C 的直角坐标方程,根据韦达定理以及参数的几何意义求得1PA PB=,再将θ替换为π2θ+,即可求得1PC PD ,相加即可求得最后结果.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遂宁市高中2016届二诊考试
数学(理科)试题
本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

总分150分。

考试时间120分钟。

第Ⅰ卷(选择题,满分50分)
注意事项:
1.答题前,考生务必将自己的姓名、班级、考号用0.5毫米的黑色墨水签字笔填写在答题卡上。

并检查条形码粘贴是否正确。

2.选择题使用2B 铅笔填涂在答题卡对应题目标号的位置上,非选择题用0.5毫米黑色墨水签字笔书写在答题卡对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

3.考试结束后,将答题卡收回。

一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,只有一项是符合题目要求的.
1.设集合2{|230}A x x x =-++>,}1)21(41|
{<<=x x B , 则A B =
A .)3,0(
B .)2,0(
C .)3,1(
D .),1(+∞
2.已知i 是虚数单位,若复数z 满足3
1i z i
=+,则z 的共轭复数z 为 A .12i + B .12i - C .12i -+ D .12
i -- 3.下列有关命题的说法正确的是 A .命题“若21
1x x ==,则”的否命题为:“若211x x =≠,则”; B .“1m =”是“直线00x my x my -=+=和直线互相垂直”的充要条件
C .命题“0x R ∃∈,使得20010x x ++<”的否定是:“x R ∀∈,均
有2
10x x ++<”;
D .命题“已知A 、B 为一个三角形的两内角,若A=B ,则sin sin A B =”
的逆命题为真命题.
4.要得到函数x y 21sin =的图象,只要将函数cos 2y x =的图象 A .向右平移4
π个单位长度,再将各点的横坐标伸长为原来的4倍, 纵坐标不变
B. 向左平移4π个单位长度,再将各点的横坐标缩短为原来的41倍, 纵坐标不变
C. 向左平移4
π个单位长度,再将各点的横坐标伸长为原来的4倍,纵坐标不变
D. 向右平移4π个单位长度,再将各点的横坐标缩短到原来的41,纵坐标不变
5.一个几何体的三视图如图所示,其中
正视图为矩形,侧视图为等腰直角三
角形,俯视图为直角梯形,则这个几
何体的体积是
A .144
B .120
C .80
D .72
6.各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生填报专业志愿的方法有
种。

A .180 B .200
C .204
D .210
7.执行如图所示的程序框图,
则输出的S 为
A .2
B .
31 C .2
1- D .3- 8.若),(y x P 在不等式组⎪⎩
⎪⎨⎧≥--≥-+≤-+022012083y x y x y x 所表示的平面区域内,
则32++y x 的最小值为
A .2
B .2
10 C .5 D .4 9.设B 、C 是定点,且均不在平面α上,动点A 在平面α上, 且1sin 2
ABC ∠=,则点A 的轨迹为 A .圆或椭圆 B .抛物线或双曲线
C .椭圆或双曲线
D .以上均有可能
10.已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,
有)1()()2(f x f x f -=+,且当]3,2[∈x 时,2()(2)1f x x =--+。

若函数11()()12
y f x a x =--
在),0(+∞上恰有三个零点,则实数a 的取值范围是
A .1(,3)3
B .14(,)33
C .(3,12)
D .4(,12)3
第Ⅱ卷(非选择题,满分100分)
注意事项:
1.请用蓝黑钢笔或圆珠笔在第Ⅱ卷答题卡上作答,不能答在此试卷上。

2.试卷中横线及框内注有“▲”的地方,是需要你在第Ⅱ卷答题卡上作答。

二、填空题:本大题共5题,每小题5分,共25分.
11.若1()n
x x -的二项展开式中所有项的二项式系数和为64,则常数项
为 ▲ (用数字作答) 12.已知函数122(3),0()1log [8()],04
x x f x x f x e x +-->⎧⎪=⎨+⨯≤⎪⎩, 则=)2016(f ▲
13.海轮“和谐号”从A 处以每小时21海里的速度出发,海轮“奋斗号”
在A 处北偏东 45的方向,且与A 相距10海里的C 处,沿北偏东 105的方向以每小时9海里的速度行驶,则海轮“和谐号”与海轮“奋斗号”相遇所需的最短时间为 ▲ 小时
14.若点M 是以椭圆18
92
2=+y x 的短轴为直径的圆在第一象限内的一点,过点M 作该圆的切线交椭圆E 于P ,Q 两点,椭圆E 的右焦点为2F ,则△Q PF 2的周长是 ▲
15.如图,B 是AC 的中点,2BE OB =,P 是矩形
BCDE 内(含边界)的一点,且
OP xOA =+(,)yOB x y R ∈。

有以下结论:①
当0x =时,[2,3]y ∈;②当P 是线段CE 的中点时,1
5,22
x y =-=;③若x y +为定值,则在平面直角坐标系中,点P 的轨迹是一条线段;④x y -的最大值为-1;其中你认为正确的所有结论的序号为 ▲ 。

三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过
程或演算步骤.
16.(本小题满分12分)
在△ABC 中,角A,B,C 的对边分别为c b a ,,,已知222
a c
b a
c +-=,23b c =。

(1)求角A 的大小;
(2)设函数x B x x f 2cos )2cos(1)(-++=,求函数)(x f 的单调递增区间 ▲
17.(本小题满分12分)
经调查发现,人们长期食用含高浓度甲基汞的鱼类会引起汞中毒,其中罗非鱼体内汞含量比其它鱼偏高.现从一批数量很大的罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前的数字为茎,小数点后一位数字为叶)如下:
0 1235567889
1
35567 《中华人民共和国环境保护法》规定食品的汞含量不得超过1.0ppm .
(1)检查人员从这15条鱼中,随机抽出3条,求3条中恰有1条汞含量超标的概率;
(2)若从这批数量很大的鱼........
中任选3条鱼,记ξ表示抽到的汞含量超标的鱼的条数.以此15条鱼的样本数据来估计...
这批数量很大的鱼的总体数据,求ξ的分布列及数学期望E ξ. ▲
18.(本小题满分12分) 如图,多面体ABCDPE 的底面ABCD 是平行四边形,
2==AB AD ,0=⋅,⊥PD 平面ABCD ,EC ∥PD ,
且PD=2EC=2
(1) 若棱AP 的中点为H ,证明:
HE ∥平面ABCD
(2)求二面角E PB A --的大小 ▲
19.(本小题满分12分)
已知等比数列}{n a 、等差数列{}n b ,满足
11122330,1,,a b a b a b a >=-==且数列}{n a 唯一。

罗非鱼的汞含量(ppm )
(1)求数列}{n a ,{}n b 的通项公式;
(2)求数列{}n n a b ⋅的前n 项和
20.(本小题满分13分)
已知点F (0,1)为抛物线22x py =的焦点。

(1)求抛物线C 的方程; (2)点A 、B 、C 是抛物线上三点且=++,求ABC ∆面积的最大值
21.(本小题满分14分)
已知函数()1x f x me x =--.(其中e 为自然对数的底数,)
(1)若曲线()y f x =过点(0,1)P ,,求曲线()y f x =在点(0,1)P 处的切线方程。

(2)若()f x 的两个零点为12,x x 且12x x <,
求21211()()x x x x y e e m e e
=--+的值域。

(3)若()0f x >恒成立,试比较1m e
-与1e m -的大小,并说明理由。

相关文档
最新文档