继电保护第四章-输电线路纵联保护
电力系统继电保护第二版答案参考之输电线路纵联保护

第四章输电线路纵联保护4-1试述纵联保护的基本工作原理和特点。
纵联保护能否单端运行?答:纵联保护的基本工作原理:纵联保护是用某种通信通道将输电线两端或各端(对于多端线路)的保护装置纵向连接起来,将各端的电气量(电流、功率的方向等)传送到对端,将各端的电气量进行比较,以判断故障在本线路范围内还是在线路范围之外,从而决定是否切断被保护线路。
纵联保护的特点:能实现全线速动,具有绝对的选择性。
纵联电流差动保护、高频闭锁方向纵联保护、高频闭锁距离纵联保护、纵联电流相位差动保护这四种纵联保护均可以单端运行。
4-2目前常用的纵联保护有哪几种?分别简述它们的工作原理。
答:目前常用的纵联保护有3种,分别是纵联电流差动保护、高频闭锁方向纵联保护、高频闭锁距离纵联保护。
其工作原理如下:纵联电流差动保护:流进差动继电器的量为线路双端电流量为测量量之和。
当正常运行时或外部故障时,流进差动继电器的电流为比较小的不平衡电流或者最大的负荷电流(考虑到两端的电流互感器有一个出现断线故障时),均比整定值小不动作,内部故障时流进差动继电器的电流是比较大的短路电流,比整定值大而使得两端断路器动作。
高频闭锁方向纵联保护:两端的保护装置测量的是功率的方向,功率方向为负的一侧发高频闭锁信号。
当外部故障时,两端的功率方向不同,为一正一负。
功率方向为负的一侧发高频闭锁信号且本身自己不动作,使得同线路的另一端收到闭锁信号也不动作。
内部故障时两端功率方向均为正,都不发闭锁信号,因此两端都收不到闭锁信号,保护都跳闸。
高频闭锁距离纵联保护:在距离保护的基础上加上高频闭锁部分。
以距离保护III段的整定值为故障启动发信元件,以距离保护II段的整定值为方向判别和停信元件。
当发生内部故障时,线路两侧的保护装置均不发出高频信号,因此线路两侧的保护均动作,当发生外部故障时,测量阻抗为负的一侧不动作且发出高频闭锁信号闭锁同线路另一侧的保护,使得其无法动作。
当作为后备使用时,则按照距离保护II、III段的整定时限动作。
电力系统继电保护 四输电线路纵联保护

➢ 输电线路的任何故障都不会使通道工作破坏,因此可以传送反应内部故障信息的 允许信号和跳闸信号;
➢ 微波通信必须架设中继站,通道价格昂贵。
(4)光纤保护:利用光纤通信传递两侧保护特征信息。
把电信号转换为光信号
对经光纤传输衰减 的信号进行放大。
把光信号转换为电信号
特点:
➢ 通信容量大; ➢ 广泛采用PCM调制方式; ➢ 可以节约大量金属材料,经济效益可观; ➢ 光纤通信保密性好,敷设方便,不怕雷击,不受外界电磁干扰,抗腐蚀,不怕潮
这类保护在每侧都直接比较两侧的电气量,并且要求两侧信息同步采集,
信息传输量大,实现技术要求较高。
§4.1.2 输电线路短路时两侧电气量的故障特征分析
比较
内部故障
外部故障
正常运行
两端电流相量和 I IM I N Ik
两端功率方向
两端同为正
I IM IN 0
远故障端方向为正 近故障端方向为负
外部故障 闭锁信号自近故障端发出 另一端接受闭锁信号 保护元件虽动作,但不跳闸 内部故障 任一端都不发送闭锁信号 两端都收不到闭锁信号 保护元件动作后,跳闸
➢ 允许信号——允许保护动作于跳闸的信号。
内部故障 线路两端互送允许信号 两端都接收对端允许信号 保护元件动作,跳闸
继电保护第四章要点总结

纵联保护的基本原理:保护原理的本质是甄别系统正常和故障状态下电气量或非电气量之间的差别,纵联保护也不例外。
输电线路的纵联保护就是利用线路两端的电气量在故障与非故障时的特征差异构成的。
当线路发生区内故障、区外故障时,电力线两端电流波形、功率、电流相位以及两端的测量阻抗都有明显的差异,利用这些差异就可以构成不同原理的纵联保护。
特征:1.两侧电流量特征2.两侧电流相位特征3.两侧功率方向特征4.两侧测量阻抗值特征纵联保护的分类:纵联保护按照所利用信息通道的不同类型可以分为导引线纵联保护、电力线载波纵联保护、微波纵联保护和光纤纵联保护四种。
纵联保护按照保护动作原理,可以分为方向比较式纵联保护和纵联电流差动保护两类。
通信通道的构成1.导引线通道特点:信息无须加工,直接传送至对端,因而基本不存在同步问题保护原理一般采用电流差动原理,故也称导引线差动保护。
简单可靠,不受系统运行方式影响,不受振荡影响缺点:需铺设专门的导引线,投资高,互感器二次负载较大。
导引线本身的故障,会引起保护的拒动或误动。
2.电力线载波(高频)通道:1—阻波器;阻波器是由一个电感线圈与可变电容器并联组成的回路。
2—结合电容器;结合电容器与连接滤过器共同配合将载波信号传递至输电线路,同时使高频收发信机与工频高压线路绝缘。
3—连接滤波器;连接滤波器由一个可调节的空心变压器及连接至高频电缆一侧的电容器组成。
4—电缆;5—高频收发信;发信机部分系由继电保护装置控制,通常都是在电力系统发生故障时,保护起动之后它才发出信号。
6—刀闸优点:无中继通信距离长;经济,使用方便;工程施工比较简单缺点:由于其直接通过高压输电线路传送高频载波信号,因此高压输电线路上的干扰直接进入载波通道,高压输电线路的电晕、短路、开关操作等都会在不同程度上对载波信号进行干扰电力线载波通道工作方式:正常有高频电流方式(长期发信方式)正常无高频电流方式(故障启动发信方式)移频方式特点通信通道独立于输电线路通信频带宽,300-30000MHz ,传输速度快受外界干扰的影响小传输距离有限4.光纤通道特点通信容量大,光纤通信的经济性佳光纤通信还有保密性好光纤最重要的特性之一是无感应性能通信距离有限高频信号的分类1.闭锁信号:即无闭锁信号是保护作用于跳闸的必要条件,或者说闭锁信号是阻止保护动作于跳闸的信号。
电力系统继电保护 第四章输电线路的纵联保护

(希望不动)
方向元件 阻抗元件 电流相位
一侧为正 一侧为负
一侧动作 一侧不动作
相位差 180
如何应用这些特征?后面陆续予以介绍。
纵联保护:用某种通信信道将输电线 路两端的保护装置纵向联结起来,将 一端电气量(电流、功率方向等)传 到对端进行比较,判断故障在本线路 范围内还是范围之外,从而决定是否 切除被保护线路。 可以实现本线路全长范围内任意一点 故障的零秒切除的保护。 纵联保护没有后备保护功能
(3) 微波通道 是一种多路通信通道,频带宽,可传送交流电 的波形。是理想的通道,但保护专用微波通道 是不经济的。 (4) 光纤通道 •采用光纤作为通信通道,目前超高压线路在 架线时已同时架设光纤通道,所以,已被越来 越多的超高压线路采用。
B. 按保护动作原理分:
(1) 方向比较式纵联保护
两侧的保护装置将本侧的功率方向、测量阻
继电保护通信通道的选择原则
优先考虑采用光纤通道
其他……
4.3 方向比较式纵联保护
一、概念
以正常无高频电流而在区外故障时发 出闭锁信号的方式构成。此闭锁信号 由短路功率为负的一侧发出,这个信 号被两端的收信机所接收,而把保护 闭锁,故称闭锁式方向纵联保护(高 频闭锁方向保护)。
两侧功率方向的故障特征
纵联保护按通道类型分类
纵联保护信号传输方式: ( 1 )以导引线作为通信通道:纵联差 动保护 ( 2 )电力线载波:高频保护(方向高 频保护,相差高频保护),其中方向高 频保护又包括高频闭锁方向保护,高频 闭锁负序方向保护,高频闭锁距离保护; ( 3 )微波:微波保护,长线路,需要 中继站;
(2) 耦合电容器(滤波、隔工频) 耦合电容器与连接滤波器共同配 合,将载波信号传递至输电线路,同时 使高频收发信机与工频高压线路绝缘。 由于耦合电容器对于工频电流呈现极大 的阻抗,故由它所导致的工频泄漏电流 极小。
电力系统继电保护-第四章

由于受TA的误差、线路分布电容等因素影响, 实际上其二次电流相量和可能不为0。 纵联电流差动保护动作判据可写为:
I M I N I set
IM IN
两侧电流的相量和 差动保护整定值
I set
2. 方向比较式纵联保护
线路发生内部故障时: M侧和N侧功率方向元件均为正;
1. 电流全量特征
根据基尔霍夫电流定律 (KCL)可知:
在集总参数电路中,任何时刻, 对任意一节点,所有支路电流相 量和等于零。用数学表达式表示 如下: I 0
M
U M
I M
k1
N I N
U N
内部故障
M
I M
I N
N
k2
区外故障
对于输电线路MN可以认为是一个节点。 内部故障 外部故障
线路发生外部故障时: 一端电流为母线流向线路,另一端为由线路流 向母线,于是两端电流相位相反 180 。
因此可以根据两侧电流的相位差来判 别线路内部或者外部短路。
考虑到TV、TA的相角误差以及输电线分布电容等影 响,当线路发生区外故障时两侧二次电流的相角差并不 刚好等于1800,而是近似为1800,且在故障前两侧电动势 有一定的相角差,这样在区内短路时两侧电流也不完全 同相位。 当两侧电流的相位差
I N
外部故障
I M
I N
iM
t
I M
I N
iN
iM
t
0
0
I M
t
I N
iN
t
180
IM IN
arg
IM IN
电力系统继电保护 第四章输电线路的纵联保护

3 微波通信
频段为300~30000MHz,超短波的无线电波,频带宽,信息传输容量大,传 输距离不超过40~60km;距离较远时,要装设微波中继站,以增强和传递微 波信号。通信速率快,可用于纵联电流差动原理的保护。
4 光纤通信
1.光纤通信的构成
光发射机、光纤、中继器和光接收机。
(2)正常时有高频电流方式(长时发信) 在正常工作条件下发信机始终处于发信状态,沿高 频通道传送高频电流。
优点:高频通道部分经常处于监视的状态,可靠性高;且无 需收、发信机启动元件,简化装置。 缺点:经常处于发信状态,增加了对其他通信设备的干扰时 间;也易受外界高频信号干扰,应具有更高的抗干扰能力。
(希望不动) 一侧为正 一侧为负
内部故障 (希望动作)
两侧均为正
一侧动作 一侧不动作
两侧均动作
电流相位 相位差 180
接近同相
如何应用这些特征?后面陆续予以介绍。
纵联保护:用某种通信信道将输电线 路两端的保护装置纵向联结起来,将 一端电气量(电流、功率方向等)传 到对端进行比较,判断故障在本线路 范围内还是范围之外,从而决定是否 切除被保护线路。
根据通道的构成,输电线路载波通信分为: “相-相”式 连接在两相导线之间 “相-地”式 连接在输电线一相导线和大地之间
1、输电线路载波通信的构成
继电
部分
G R
输电线路
高频阻波器 耦合电容器
连接滤波器 高频电缆
G 高频通道部分 R
接 地 开 关
继电
部分
(1)阻波器:阻波器是由 一电感线圈与可变电容器 并联组成的回路。当并联 谐振时,它所呈现的阻抗 最大(1000Ω以上),利 用这一特性,使其谐振频 率为所用的载波频率。这 样的高频信号就被限制在 被保护输电线路的范围以 内,而不能穿越到相邻线 路上去。但对工频电流而 言,阻波器仅呈现电感线 圈的阻抗,数值很小(约 为0.04Ω左右),并不影 响它的传输。
继电保护-第4章 电网的纵联保护

输电线路纵联保护
Pilot Protection for Transmission Lines
4.1
输电线路纵联保护概述
4.1.1 引言( 纵联保护的提出 )
1. 电流、距离保护的缺陷
M 1 2 N 3
k1
k2
反映:一侧电气量,即只采集线路一侧的电气量 缺陷:Ⅱ段有延时,无法实现全线速动,
N
正常运行时:两侧的测量阻抗都是负荷阻抗, 距离Ⅱ段都不启动 外部故障时:至少有一侧的距离Ⅱ段不启动(反方向)
I U M M
M
U I N N
N
区内故障时:两侧的距离Ⅱ段同时启动
4.1.3 纵联保护的基本原理
1、纵联电流差动保护
基本原理:利用输电线路两端电流波形和或电流相量和的特征。
I U M M
M SM SN
U I N N
N
正常运行或区外故障时:远故障点的功率方向是从母线流向 线路,功率方向为正;近故障点的功率方向是由线路流向母 线,功率方向为负。两端功率方向相反。 U I I U N
M
M
N
M SM SN
N
区内故障时:两端的功率方向都是从母线流向线路,同为正。
优点:不受系统振荡的影响,不受非全相的影响,简单可靠
缺点:导引线不能太长
4.2.2 电力线载波通信
将线路两端的电流相位(或功率方向)信息转变为高 频信号,经过高频耦合设备将高频信号加载到输电线 路上,输电线路本身作为高频信号的通道将高频载波 信号传输到对侧,对端再经过高频耦合设备将高频信 号接收,以实现各端电流相位(或功率方向)的比较, 称为高频保护。
缺点: a. 施工的要求高,“焊接”难(熔纤机); b. 光纤断裂难以查找; c. 通信距离还不够长。 光纤通讯网是电力通讯网的主干网,基于光纤通信的纵联保 护成为主流模式。
继电保护讲解第四章-纵联保护

西南交通大学电气工程学院
第四章
问题的提出
输电线纵联保护
电流保护,距离保护, 电流保护,距离保护,Ⅰ段只保护线路的 85%,对其余的15% 20%线路故障 线路故障, 80%~85%,对其余的15%~20%线路故障,只 能带延时0.5s时限的Ⅱ段来保护, 0.5s时限的 能带延时0.5s时限的Ⅱ段来保护,对高压输电 线路不能满足系统稳定性的要求, 线路不能满足系统稳定性的要求,需要寻求新 的能保护线路全长的保护. 的能保护线路全长的保护.
Um Un
次级不处于短路状态 I M , I N同方向 U m , U n同方向 初级电压升高,使继电器动作, 初级电压升高,使继电器动作,跳两侧的断路器
内部故障
均压法
M
IM
IN
N
∑I
Im
J
∑I
In
i=0
GBm
GBn
J
Um Un
二,纵联差动保护的不平衡电流 —两侧电流互感器二次阻抗及互感器本身励磁特性不
一致,在正常运行及外部故障时, 一致,在正常运行及外部故障时,差回路中电流不 为零,此电流称为不平衡电流. 为零,此电流称为不平衡电流.
稳态下的不平衡电流: 稳态下的不平衡电流:励磁电流之差 流互同型系数, 流互同型系数,同 流互10% 10%误差 流互10%误差 0.5),不同 1.0) 不同( (0.5),不同(1.0)
当用于输电线路时,采用如下两种接线方式: 当用于输电线路时,采用如下两种接线方式:
环流法
电流综合器: 电流综合器: 将三相合成 一相
U m = U n
J
M
IM
IN
N
正常运行以及外部故障
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品课件
4.1输电线路纵联保护概述 输电线路短路时两侧电气量的故障特征分析:
(4)两侧的测量阻抗 区内故障:测量阻抗均为短路阻抗,两侧距离保护II段同时启 动; 区外故障:两侧的测量阻抗也是短路阻抗,但一侧为反向, 至少一侧的距离保护II段不启动; 正常运行:两侧的测量阻抗均为负荷阻抗,距离保护II段不启 动。
精品课件
4.2 输电线路纵联保护两侧信息的交换
❖ 导引线通信:利用敷设在输电线路两端变电所之间的二次电缆传递被保护 线路各侧信息的通信方式。
❖ 采用电流差动原理,分为环流式和均压式
精品课件
4.2 输电线路纵联保护两侧信息的交换
❖ 电力线载波通信: ❖ 高频保护—将线路两端的电流相位(或功率方向)信息转变为高频信号,经过高频
85% ❖ 其余线路故障(15—20%),只能由第II段的延
时切除(0.5s) ❖ 电力系统稳定运行:重要线路不允许 ❖ 为实现全线速动,采用输电线路纵联保护
精品课件
4.1输电线路纵联保护概述
输电线路纵联保护基本原理: 用某种通信通道将输电线两端的保护装置纵向联 结起来,将一侧的电气量(电流、功率的方向、 测量阻抗等)传送到对端,将两端的电气量比较 ,以判断故障在本线路范围内还是在线路范围外 ,从而决定是否切断被保护线路。
(2)两端功率方向 区内故障:两侧功率方向为正 区外故障:两侧功率方向一正一负(靠近短路点端为负) 正常运行:两侧功率方向一正一负
精品课件
4.1输电线路纵联保护概述
输电线路短路时两侧电气量的故障特征分析:
(3)两端电流相位
区内故障:两侧电流相位差为0。 区外故障:两侧电流相位差为180。 正常运行:两侧电流相位差为180。
精品课件
4.1输电线路纵联保护概述
输电线路纵联保护的分类
动作原理: 方向比较式纵联保护—两侧保护装置将本侧的功率方向、测量阻抗是
否在规定的方向、区段内的判别结果传送到对侧,每侧保护装置根 据两侧的判别结果,区分是区内故障还是区外故障。根据保护判别 方向所用的原理可分为方向纵联保护和距离纵联保护。 纵联电流差动保护—利用通道将本侧电流的波形或代表电流相位的信 号传送到对侧,每侧保护根据对两侧电流的幅值和相位比较的结果 区分是区内故障还是区外故障。
4.1输电线路纵联保护概述
输电线路短路时两侧电气量的故障特征分析:
(1)电流相量和 区内故障: 区外故障: 正常运行:
••
•
•
I I M I N I k1
••
•
I IMБайду номын сангаасIN 0
••
•
I IM IN 0
精品课件
4.1输电线路纵联保护概述
输电线路短路时两侧电气量的故障特征分析:
、移频方式 ❖ 正常无高频电流方式—在电力系统正常工作条件下发信机不发信,沿通道
不传送高频电流,发信机只在电力系统发生故障期间才由保护的启动元件 启动发信,又称为故障启动发信的方式。该方式在我国电力系统应用广泛 。
精品课件
4.2 输电线路纵联保护两侧信息的交换
❖ 电力线载波通信:通道传输的信号频率范围50-400kHz ❖ 工作方式:正常无高频电流方式、正常有高频电流方式、移频方式 ❖ 正常有高频电流方式—在电力系统正常工作条件下发信机处于发信状态,
4.2 输电线路纵联保护两侧信息的交换
❖ 电力线载波通信:
❖ 阻波器:阻波器是由一个电感线圈与可变电容器并联组成的回路。 ❖ 耦合电容器:结合电容器与连接滤过器共同配合将载波信号传递至输电
线路,同时使高频收发信机与工频高压线路绝缘。 ❖ 连接滤波器:连接滤波器由一个可调节的空心变压器及连接至高频电缆
精品课件
4.2 输电线路纵联保护两侧信息的交换
一侧的电容器组成。 ❖ 高频收、发信机:发信机部分系由继电保护装置控制,通常都是在电力
系统发生故障时,保护起动之后它才发出信号。
精品课件
4.2 输电线路纵联保护两侧信息的交换
❖ 电力线载波通信:通道传输的信号频率范围50-400kHz ❖ 电力线载波通道的工作方式:正常无高频电流方式、正常有高频电流方式
耦合设备将高频信号加载到输电线路上,输电线路本身作为高频信号的通道将高频 载波信号传输到对侧,对端再经过高频耦合设备将高频信号接收,以实现各端电流 相位(或功率方向)的比较。包括相-相式和相-地式。
电力线载波通信示意图 1—阻波器;2—耦合电容器;3—连接滤波器;4—电缆;5—载波收发信机;6—接地精开品课关件
第四章 输电线路纵联保护
大连理工大学电气工程学院
主要内容
❖4.1 输电线路纵联保护概述 ❖4.2 输电线路纵联保护两侧信息的交换 ❖4.3 方向比较式纵联保护 ❖4.4 纵联电流差动保护
精品课件
4.1输电线路纵联保护概述
反映单侧电气量保护存在的不足: ❖ 电流保护:Ⅰ段保护范围有限 ❖ 距离保护:Ⅰ段保护范围为线路全长的80—
通信方式: 导引线纵联保护、电力线载波纵联保护、微波纵联保护、光纤纵联 保护
精品课件
4.1输电线路纵联保护概述 输电线路纵联保护的分类
通信方式:
❖ (1)导引线通道 :导引线纵联保护 ❖ (2)电力线载波通道:电力线载波纵联保护(载波保护/高频保护) ❖ (3)微波通道:微波纵联保护(微波保护 ) ❖ (4)光纤通道:光纤纵联保护(光纤保护)
精品课件
4.1输电线路纵联保护概述
输电线路纵联保护的基本原理:
用某种通信通道将输电线两端的保护装置纵向联结起来,将一侧的 电气量(电流、功率的方向、测量阻抗等)传送到对端,将两端的 电气量比较,以判断故障在本线路范围内还是在线路范围外,从而 决定是否切断被保护线路。
输电线路纵联保护的结构:
精品课件
沿高频通道传送高频电流,又称为长期发信方式。
精品课件
4.2 输电线路纵联保护两侧信息的交换
❖ 电力线载波通信:通道传输的信号频率范围50-400kHz ❖ 工作方式:正常无高频电流方式、正常有高频电流方式、移频方式 ❖ 移频方式—在电力系统正常工作条件下,发信机处在发信状态,向
对端送出频率为f1的高频电流,这一高频电流可作为通道的连续检 查或闭锁保护之用。在线路发生故障时,保护装置控制发信机停止 发送频率为f1的高频电流,改发频率为f2的高频电流。在国外应用 广泛。