无人机自主飞行航迹规划问题
无人机自主飞行航迹规划算法研究

本科毕业设计论文
题目无人机自主飞行航迹规划算法研究
系别
专业
班级
学生姓名
学号
指导教师
毕业任务书
一、题目
无人机自主飞行航迹规划算法研究
二、指导思想和目的要求
(1)了解和熟悉现代飞行控制技术的基本概念、内容与作用;
(2)熟悉已有的航迹规划算法,选择并设计合适的航迹规划算法;
(3)综合运用已学的有关飞行控制与飞行仿真方面的知识,并参阅国内外有关参考文献,设计某型无人机的航迹自主飞行控制系统,达到理论与实践相结合的目的;
(1) The main air threaten is discussed, and the radar equation is established; after comprehensively considered radar threaten, distance and other factors, the path cost function is determined; the UAV path planning problem is transformed to the issue of finding the shortest route in the graph theory.
(3)针对无人机的具体特点并综合模拟退火算法和遗传算法提出了一种模拟退火遗传算法。仿真结果表明该方法继承了模拟退火算法正确性较高和遗传算法复杂度较低的优点。
(4)建立了无人机的运动方程,使用模拟退火遗传算法规划出了最优飞行路径,最后使用侧向偏离控制律跟踪得出的最优路径。
关键词:无人机航迹规划,模拟退火遗传算法,侧向偏离,飞行控制
(1)论述了空中主要威胁,并建立了雷达方程;综合考虑雷达威胁和航程等因素,确定了航迹代价函数;把无人机的航迹规划问题转化为图论中求最短路径的问题。
无人机航迹规划算法设计与优化

无人机航迹规划算法设计与优化无人机航迹规划算法是无人机飞行控制中的重要组成部分,它决定了无人机的飞行路径和航迹规划,对于无人机的任务完成和飞行安全至关重要。
本文将介绍无人机航迹规划算法的设计与优化方法,以提高无人机的飞行效率和任务成功率。
一、无人机航迹规划算法设计1. 环境感知与路径选择无人机在飞行过程中需要实时感知周围环境,包括地形、建筑物、障碍物等信息。
根据感知结果,选择合适的航迹路径,避开障碍物,保证飞行安全。
常用的环境感知技术包括传感器、摄像头、激光雷达等,利用这些技术可以获取到周围环境的高精度信息,为航迹规划提供准确的输入数据。
2. 航迹生成与路径规划航迹生成是指根据任务需求和环境限制,生成一条合理的航迹路径。
常用的航迹生成方法有基于路径规划的方法和基于优化的方法。
路径规划方法通过将飞行区域划分为一系列离散的网格,通过搜索算法找到一条最优路径。
优化方法则通过数学模型和优化算法,将航迹规划问题转化为数学优化问题,找到最优的航迹路径。
3. 动态航迹跟踪无人机需要实时跟踪航迹,保持飞行稳定和精确性。
动态航迹跟踪算法将航迹规划与无人机姿态控制相结合,通过调整无人机的姿态和控制输入,使其跟踪目标航迹。
常用的动态航迹跟踪算法包括PID控制、模型预测控制等。
二、无人机航迹规划算法优化1. 多目标优化无人机的航迹规划涉及到多个目标,如最短路径、最低能耗、最小风险等。
优化算法需要综合考虑这些目标,并给出一个平衡的解。
常用的多目标优化算法有遗传算法、蚁群算法等,它们可以通过适应度函数、约束条件等方法,找到一系列满足多个目标的最优解。
2. 仿真与验证为了验证航迹规划算法的效果和正确性,可以利用仿真平台进行仿真和验证。
通过在仿真环境中模拟无人机的飞行过程,评估航迹规划算法的性能和稳定性。
仿真可以减少实际飞行过程中的风险和成本,并提供大量的数据和结果进行分析和优化。
3. 环境适应性无人机航迹规划算法需要适应不同的环境和任务需求。
无人机航摄技术中航迹规划和航线设计的方法与技巧

无人机航摄技术中航迹规划和航线设计的方法与技巧无人机航摄技术在各个领域中得到广泛应用,如农业、测绘、环境监测等。
在实际的航摄操作中,良好的航迹规划和航线设计是保证无人机飞行安全和任务顺利完成的关键。
本文将介绍一些在航迹规划和航线设计中常用的方法和技巧。
1. 飞行任务需求分析在制定航迹规划和航线设计之前,首先需要对飞行任务的具体需求进行分析。
这包括摄影要素的选择、航摄范围的确定、地形和障碍物的分析等。
通过对任务需求的准确分析,可以为后续的航迹规划和航线设计提供明确的指导。
2. 地图制图与飞行计划在航迹规划中,制作地图以及针对飞行任务绘制飞行计划是非常重要的一步。
地图绘制可以基于地面实地考察、航空摄影测量数据、遥感影像等多种数据源,确保航迹与实际情况相符。
在制作飞行计划时,需要结合任务需求和地图制图结果,确定无人机的起飞点、航线分布、摄影重叠度等参数。
3. 航迹规划软件的应用随着技术的发展,航迹规划软件的应用越来越普遍。
这些软件可以根据预设的参数,自动生成航迹规划和航线设计,并能根据地形、气象等实时数据进行调整。
航迹规划软件的使用大大简化了航迹规划的过程,提高了效率和准确性。
4. 航迹规划过程的考虑因素在进行航迹规划时,还要考虑一些因素以确保飞行安全和任务完成的质量。
首先是地形和障碍物的影响,在航迹规划中要避开地形高差大的区域和障碍物,以防止飞行器碰撞。
其次是飞行器的动力和续航能力,在航迹规划过程中要合理安排飞行路径和航线长度,确保飞行器能够顺利完成任务。
此外,还需要考虑无人机的飞行高度和速度,以及摄影要素的覆盖需求等。
5. 航线设计的灵活性和可调性在实际的航摄任务中,航线设计的灵活性和可调性非常重要。
这意味着航迹规划要能够根据实际情况进行调整,以应对地形、气象等变化。
同时,航线设计的可调性也可以根据不同需求进行灵活调整,如增加航线密度、改变航迹分布等,以获得更好的摄影覆盖效果。
6. 航迹规划中的实时监测和调整在飞行过程中,航迹规划并不是一成不变的。
无人机飞行轨迹规划与控制技术研究

无人机飞行轨迹规划与控制技术研究随着科技的不断发展,无人机逐渐成为我们生活中的一部分。
无人机有着各种各样的用途,例如农田施肥、送货、拍照等等。
这些任务的完成离不开无人机飞行轨迹规划与控制技术。
本文旨在介绍无人机飞行轨迹规划与控制技术的研究现状以及发展趋势。
一、无人机飞行轨迹规划技术无人机飞行轨迹规划技术是指根据任务需求,计算出无人机在空中的最优路径,以达成任务的目标。
它可以分为基于规划点和基于数学模型两种。
1. 基于规划点的无人机飞行轨迹规划基于规划点的无人机飞行轨迹规划是通过事先设定一系列目标点,从而找到无人机的最优路径,以完成任务。
其优势在于算法简单易懂,易于操作。
但是,由于事先设定的目标点比较的固定,无法适应环境的变化,导致有一定的局限性。
适用于一些比较简单的任务,例如巡逻。
2. 基于数学模型的无人机飞行轨迹规划基于数学模型的无人机飞行轨迹规划是设计一个数学模型,通过计算、优化寻找最优路径。
它可以适用于更加复杂的任务,例如搜救和交通监测。
由于使用了数学模型,其规划路径更加准确和优化,能够更好地适应环境的变化。
二、无人机飞行轨迹控制技术无人机飞行轨迹控制技术是指在无人机飞行中,对其进行控制,这样就可以使其沿着预定的路径飞行,以完成任务。
它包括了在不同环境条件下的飞行控制和无人机的姿态控制。
1. 飞行控制飞行控制是无人机飞行的核心,其主要目的是保证无人机安全、稳定地飞行。
飞行控制与飞行控制器紧密相连,主要与传感器数据的读取、机动操作和信息处理相关。
然而无人机飞行控制是非常复杂的,因为它必须考虑无人机的外部环境和内部参数的各种变化,如气流、温度、湿度、风速、负载重量等。
2. 无人机姿态控制无人机姿态控制是指通过控制无人机的姿态角度(俯仰角、滚动角和偏转角)来控制其飞行姿态。
对于无人机姿态控制来说,存在传统PID控制和模型预测控制两种方式。
传统PID控制把当前的偏差累计,并根据可控制的响应(P)、代表偏离值变化率的微分(D)和储存调整历史具体错误的积分(I)来调整控制效应。
无人机自主飞行航迹规划研究

[ src]T i p prd s n n s bi e yn - aemo e eaaeyi wodme s na dtredme s nwasatraay igte Ab ta t hs ae ei sa det l h sf igt c dl sp rtl nt ・i ni n he・i n i y f nlzn h g a s l r s - o ・ o e
l n — a e su nU ma n dAei h c ( V) a d o ti s h r t yn — c nt e s o f t. b sc su t d , f ig t c s eo n n e r l e i eUA , n b an es ots f igtaeo e rmi f aey A a i as mp ini ma e te y r i aV l h t e l r h p e s o s h
sm u a o o d t n t e fy n —r c r b e n d fe e t i nso sa e s l e n ay e wh c e i e e r to aiy o em0 e , i l t n c n i o . i g ta e p o l msi i r n me i n r o v d a d a l z d i h v r f st ai n lt f h d l i i h l d n i h t
无人机技术自动飞行的路径规划算法

无人机技术自动飞行的路径规划算法近年来,无人机技术的快速发展为人们的生活带来了便利和乐趣。
无人机的自动飞行是其中一个重要的技术领域,而路径规划算法作为无人机自动飞行的核心之一,在保证飞行安全和性能效果的前提下,起着至关重要的作用。
路径规划算法是指为无人机制定一条从起飞点到目标点的最优飞行路径的过程。
它的目标是通过合理地选取航线和航点,使得无人机能够安全、高效地到达目标点。
在路径规划算法中,有许多种方法可以实现自动飞行的路径规划。
下面将介绍几个常见的无人机自动飞行的路径规划算法。
1. 最短路径算法:最短路径算法是一种经典的路径规划算法,常用于无人机自动飞行中。
它通过计算起点到终点的最短路径长度来确定无人机的飞行路线。
在实际应用中,最短路径算法可以采用迪杰斯特拉算法、贝尔曼-福特算法等等。
通过这些算法,可以选择最短路径,使得无人机飞行时间最短。
2. A*算法:A*算法是一种启发式搜索算法,常用于无人机自动飞行的路径规划。
A*算法通过估计从起点到终点的最短距离,并通过启发函数来选择下一个飞行点,从而实现路径规划。
A*算法能够灵活地适应各种场景,并且具有较高的搜索效率和路径规划精度。
3. 遗传算法:遗传算法是一种模拟生物进化过程的优化算法,也可以用于无人机自动飞行的路径规划。
遗传算法通过不断迭代优化路径,使得无人机可以选择最佳的路径。
它模拟了自然界的进化原理,以适应不同的环境和约束条件,从而得到最优的路径。
除了上述几种常见的无人机自动飞行的路径规划算法之外,还有其他一些算法如深度学习算法、蚁群算法等等,它们都可以用于无人机自动飞行路径规划,具有各自的特点和优势。
根据实际需求和应用场景的不同,选择适合的路径规划算法可以提高无人机的飞行效果和性能。
总结起来,无人机自动飞行的路径规划算法是实现无人机自主飞行的重要组成部分。
通过合理选择和应用路径规划算法,可以让无人机在飞行过程中做出明智的决策,避开障碍物,飞行安全到达目的地。
无人机航迹规划与路径优化

案例三:无人机遥感监测航迹规划
总结词
无人机遥感监测是航迹规划的重要应用 之一,能够实现快速、高效、精准的监 测。
VS
详细描述
无人机遥感监测具有灵活、机动、高效等 特点,在环境监测、农业估产、地质勘查 等领域具有广泛的应用前景。通过航迹规 划和路径优化技术,能够实现监测数据的 精准获取和高效处理。
案例四:无人机巡检路径优化
总结词
无人机巡检是电力、石油、燃气等行业的关键应用之一,通过航迹规划和路径优化技术,能够提高巡 检效率和降低巡检成本。
详细描述
无人机巡检具有高效、快捷、灵活等特点,在电力、石油、燃气等行业得到广泛应用。通过航迹规划 和路径优化技术,能够实现巡检路线的最优规划,提高巡检效率和降低巡检成本。
案例五:无人机农业植保航迹规划
总结词
无人机农业植保是现代农业的重要发展方向 之一,通过航迹规划和路径优化技术,能够 提高植保效果和降低植保成本。
详细描述
无人机农业植保具有高效、灵活、精准等特 点,在现代农业中得到广泛应用。通过航迹 规划和路径优化技术,能够实现植保路线的 最优规划,提高植保效果和降低植保成本, 为农业生产提供强有力的支持。
无人机航迹规划与路径 优化
汇报人:XXX
2023-11-28
CONTENTS 目录
• 无人机航迹规划概述 • 无人机航迹规划的方法 • 无人机的路径优化技术 • 无人机航迹规划与路径优化的实践案
例 • 总结与展望
CHAPTER 01
无人机航迹规划概述
无人机航迹规划的定义
无人机航迹规划是指根据任务需求, 在考虑多种约束条件的情况下,为无 人机规划一条或多条从起点到终点的 最优路径。
A*算法
A*算法是一种常用的基于规则的航迹规划方法,通过将实际飞行环 境进行抽象和简化,利用启发式方法寻找最短路径。
无人机的航迹规划和控制

无人机的航迹规划和控制随着科技的不断进步,无人机已经成为人类生产生活领域中一项重要的智能设备。
它在军事、文化、遥感、救援、消防等领域都发挥了重要作用。
然而,无人机的高度自主、远距离、灵活多变、低成本等特点,也给其使用带来了挑战。
航迹规划和控制技术就是解决无人机操作中的关键问题之一。
航迹规划的基本概念是指无人机从起点到终点的预定的航迹路径规划,其目的是以最短路径、最快速度或其他目标来规划无人机飞行路线,增强其自主性能。
同时,在规划过程中,需要考虑无人机的各种约束因素,如避障、高度、地形、天气等。
这里推荐一个很经典的航迹规划算法-A*搜索算法,它是一种启发式算法,能够较快地找到离起点最近的航线。
规划好航线后,就要进行无人机航线控制。
该过程涉及到的数据和控制面板较多。
对于飞行器来说,它必须收集大量的传感器数据才能很好地制定任务计划并飞行。
例如,无人机的高度计和其它导航工具能够测定剩余的电力、飞行路径和高度等数据,从而及时采取行动。
通过海拔计测得的数据,可以探测到地形的变化并平稳地避免障碍。
在控制面板的维护下,无人机可以调整其飞行姿态、飞行速度和飞行高度,以更适应不同的环境要求。
航迹规划和控制技术公认为是影响无人机性能最重要的两个因素之一,因此,其应用价值也受到了世界各国的高度关注。
近年来,国内外科研人员开展了大量研究,涉及到无人机自主性、自适应控制算法、智能导航系统等方面。
值得一提的是,英国开发了一种“张开翼”系统,无人机可以像飞翔的鸟一样随意飞行,开拓出了全新的自主性领域。
但是在日常使用中,无人机遭遇风险或因不可预期的事故导致失速和崩溃的可能性依然存在。
特别是在航迹规划和控制途中,如果不及时调整航迹和控制参数,很有可能造成无人机无法正常飞行甚至直接失控。
因此,在对无人机进行飞行操作时,必须认真分析每一个可行的措施以确保其安全性。
综上所述,航迹规划和控制技术是无人机应用中不可缺少的环节。
它们的改进和成熟将会对无人机技术发展产生深远的影响,并助力无人机技术更好地服务于人类生产和生活。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要:对于问题1也就是在二维平面上规划无人机最优航迹,我们首先用VORONI粗略作出可选航线,然后对每一段路径进行代价估测,问题1考虑的因素较少主要考虑了雷达威胁度和燃油两个因素。
其中雷达威胁大小的度量主要考虑飞机距离雷达的长度,距离越近其危险值也就越大,由于飞机的燃油也是有限的,过长的航行路径会导致飞机燃油耗尽。
因此在这两个因素中,我们引入加权系数,使得这危险度和航程因素影响的比重可视具体情况调节。
得出路段代价后,再用改进的Dijkstra 算法求出3条较优参考路径。
然后对这三条路径进行对比从而找出最佳路径。
问题2是在三维空间情况下规划无人机航迹,我们对选取的二维路径进行如下优化:首先,用三次样条插值法对折线路径进行平滑处理;其次,考察无人机的操作性能(主要考虑拐弯),对曲线做进一步平滑处理;然后,考虑无人机飞行高度对其安全性及操作性的影响,一方面是在威胁度计算时加入高度因素,重新进行权值计算;另一方面是对飞机飞行高度变化进行讨论,如无人机的最大仰角和过度地带飞机至少飞行的高度。
由于数字地图的复杂型,二维处理中产生的最佳路径,在三维中并不一定是最优的,我们经过计算,发现二维平面次优的航道才是三维最优的航道路径。
在问题3仿真过程中,我们使用MATLAB 7.0进行计算和最后的飞机飞行航道图形绘制,包括三次样条曲线拟合,数字地图与预处理等,使用了VC++ 6.0编写了Dijkstra 算法计算最优路径。
关键字:Voronoi图Dijkstra算法三次样条插值最小曲率半径目录一、问题的重述 (1)二、模型的假设 (1)三、模型的符号说明 (2)四、对问题的分析 (3)五、模型的建立与求解 (3)5.1 问题1模型的建立 (3)5.1.1 引入问题 (3)5.1.2约束条件 (4)5.1.3基于VORONOI图的航路代价计算 (4)5.1.3.1 VORONOI图的基本思想 (4)5.1.3.2 VORONOI图的生成原理 (4)5.1.4 Dijkstra算法 (5)5.1.4.1 Dijkstra算法的基本思想 (5)5.1.4.2 实现Dijkstra算法的步骤 (5)5.1.4.3 对Dijkstra算法的改进 (6)5.1.5 雷达威胁代价的计算 (6)5.1.6 燃油代价的计算 (7)5.1.7 航路总代价的计算 (7)5.2 问题2模型的建立 (7)5.2.1约束条件 (7)5.2.2 航路代价的计算 (8)5.2.2折线型航线平滑化 (8)5.2.3三次样条函数定义 (8)5.2.4三次样条函数原理 (9)5.2.5无人机最大转角问题 (11)5.2.6 无人机爬坡优化 (13)5.2.6.1.地形平滑 (13)5.2.6.2曲率限制法 (14)5.2.6.3最小离地间隙限制 (15)5.3 问题的求解 (16)5.3.1问题1模型的求解 (16)5.3.1.1 雷达的分布情况 (16)5.3.2问题2模型的求解 (17)六、仿真求解 (17)6.1 问题1 模型进行仿真 (18)6.1.1 VORONOI图 (18)6.1.2 VORONOI图各边的权值计算 (18)6.1.3 利用Dijkstra 算法求最优路径 (19)6.2问题2模型的仿真 (21)6.2.1 利用三次样条插值法平滑路径 (21)6.2.2 去除曲线尖角效果 (22)6.2.3 三维空间处理效果图 (24)七、模型评价与改进 (26)7.1 优点 (26)7.2 缺点和不足 (26)八、参考文献 (27)九、附录 (28)附录一 (28)附录二 (28)附录三 (29)一、问题的重述无人机的发展至今已有70多年的历史,其军事应用主要是遂行各种侦察任务。
随着无人机平台技术和机载遥感技术的不断发展,它的军事应用范围已经并将继续扩展,如通信中继、军事测绘、电子对抗、信息攻击等。
特别是精确制导武器技术的发展,又使它成为这种武器的理想平台。
众所周知自主飞行的能力是无人驾驶飞机所必须具有的。
如果要实现无人驾驶飞机的自主飞行,则要求具有相当程度的飞行航迹规划能力。
无人机的航迹规划是为了圆满完成任务而作的计划。
它往往指单机在初始位置、终止位置和一些目标任务结点确定之后的航迹规划问题,其基本功能是根据无人机的性能和飞经的地理环境、威胁环境等因素,对已知的目标规划提出满足要求的航迹,以便在实际飞行时可以根据需要进行实时局部修改。
现在我们讨论如下的情况:假定无人机的活动范围为20km×20km的区域,无人机起点的平面坐标为[1,2](单位:km),攻击目标的平面坐标为[19,18](单位:km),同时不考虑无人机起飞降落时的限制。
数字地图和敌方威胁情况(主要考虑雷达威胁)已在附件中给出。
数字地图可以做适当的简化,比如可以把地形近似分为三种:高地,低地以及过渡地带。
问题1:忽略地形和无人机操作性能等因素的影响,综合考虑敌方威胁,无人机航程等,基于二维平面建立单机单目标的航迹规划模型。
问题2:把模型扩展到三维空间,并同时考虑无人机的操作性能(主要考虑拐弯)和地形因素。
问题3:试讨论和分析你提出的模型的可行性,并做仿真分析。
附件一:雷达威胁的坐标方位表。
附件二:数字地图。
附件一:表1、雷达威胁的平面坐标方位表起始点坐标[1,2] 目标点坐标[19,18]威胁点1坐标[7,20] 威胁点5坐标[13,4]威胁点2坐标[11,14] 威胁点6坐标[15,18]威胁点3坐标[9,6] 威胁点7坐标[14,17]威胁点4坐标[18,2] 威胁点8坐标[20,14]二、模型的假设(1)飞行过程中不会出现故障,可以按规划的航迹飞行;(2)由于天气方面偶然性太大,为方便建模不予考虑;(3)敌方雷达每个都是相同的,对无人机的威胁程度是相同的;(4)目标位置是固定的,不需要考虑目标的移动和变动;(5)指挥官可以按照规划进行正确的决策,防止因为决策的失误而使无人机无法完成攻击目标的任务;(6)无人机在飞行的过程中得航速保持不变。
三、模型的符号说明四、对问题的分析要研究的问题是对无人机单击单目标航迹的规划,我们通过实际分析建立了合适的数学模型来规划出无人机的航迹。
在问题1中我们忽略地形因素的影响,因此这相当于我们在一个平面中考虑无人机的航迹,即建立一个基于二维平面建立单机单目标的航迹规划模型求解即可,题中也不用考虑无人机操作性能只考虑了敌方威胁,以及无人机的燃油问题也就是无人机所能飞行的最长距离等,通过图1及建立的VORONOI图(如图3)我们可以看出雷达的威胁分布的情况,我们结合Dijkstra法快速寻找了最优路径。
问题2在问题1得基础上进一步延伸,将二维平面扩展到了三维立体空间,同时需要考虑的飞行机的航迹约束条件增多了,加大了对无人机航迹规划的难度。
所以首先我们应当利用计算机软件将整个三维的地形图绘制出来,因VORONOI图单独使用不适合三维航迹的规划,又从问题中我们可以看出无人机的起始点和目标点没有改变,我们通过对雷达威胁区域先用VORONOI图表示出来,采用Dijkstra算法搜索威胁分布图,求解粗略最短路径。
在粗略最短路径的基础上,应用三次样条曲线和序列二次规划的方法求解最优路径。
五、模型的建立与求解5.1 问题1模型的建立5.1.1 引入问题在二维平面建立单机单目标的航迹规划模型,即在二维平面内找到无人机从起始位置到目标点的的最优路径。
所谓最优即无人机的损耗最小。
故需要处理如下问题:1.如何很好的避开雷达?怎么计算出雷达的威胁代价?2.如何规划出无人机的最优航迹?3.计算航程时的总代价?5.1.2约束条件1. 无人机到达终点目标的安全性能和燃油性能。
2. 无人机的航路代价主要包含其所受的威胁代价和燃油代价。
其中威胁代价中主要考虑的是雷达威胁,即不会出现敌方雷达未发现无人机而受到攻击。
5.1.3基于VORONOI 图的航路代价计算5.1.3.1 VORONOI 图的基本思想先将已知的敌方雷达威胁中心位置作为VORONOI 图的点,以威胁大小作VORONOI 图邻近区域的“距离”量度,构建出VORONOI 图,“距离”越大则所受威胁越小VORONOI 图的各条边在相应点的领域内距威胁“距离”最大,因而所受威胁相应最小,所以VORONOI 图中的弧即构成飞行器安全性最高的可飞航线,线段与线段交点即构成可飞的航迹节点,从而可以根据威胁源的强度大小和弧的长短给出各条弧的相应权值,最后利用遗传算法,从VORONOI 图中搜索出最优飞行航迹。
当无人机沿着VORONOI 图的每一条边飞行时,都将具有一定的代价,在本题中无人机的航迹规划是根据任务目标规划满足约束条件的飞行轨迹。
5.1.3.2 VORONOI 图的生成原理由图中可知给定两个点i p 和j p ,比j p 更接近i p 的点的集合恰好是由直线i j p p 的垂直平分线确定的包含i p 的半平面,同理点集中其他的点与i p 组成的线段的垂直平分线所确定的包含i p 的半平面,比其他点更接近于i p 的点的轨迹是一个凸多边形区域。
VORONOI 图中各个边到对应母点距离相等,因而我们可以将战场区域中的威胁中心作为生成VORONOI 图的母点,VORONOI 图的边就是能够最好规避对应的两个威胁的线段,所以选择构造战场的VORONOI 图可以有效地把路径搜索的空间降低到仅仅在图的边中进行搜索,极大地提高路径优化的效率。
5.1.4 Dijkstra 算法Dijkstra 算法是图论中求解最短路径的一种算法,其主要思路是用逐点增长的方法构造一棵路径树,从而得到从树根(指定点)到其他点的距离,该算法的优点是计算速度快,有利于工程实现口。
应用Dijkstra 算法进行航迹规划,就是将作战飞机的航迹规划问题转化成有向图中求解最短路径的问题,然后根据输入的敌情信息和航路数据,确定各级航路点及其代价,然后进行最优搜索,形成最优路径航路点序列,最终生成整体最优航迹。
5.1.4.1 Dijkstra 算法的基本思想在形成的赋权图中,可以将航线的代价函数值看作顶点间的距离,从而将代价函数最小的问题转化为顶点间最短路径的问题。
根据图论的知识,赋权图中的每一条边都相应的有一个代价函数值,即该边的权。
所谓最短路径问题就是在始点到顶点的路径集合中,寻找权为最小的路径,得到的路径称为始点到顶点的最短路径。
目前公认的最好的算法是由狄克斯特拉于1959年提出的。
它不仅可求出从始点到顶点的最短路径,最后所得到的实际上是从始点到各个顶点的最短路径。
先给赋权图G 的每个顶点标记一个数(称为标号)——临时标号(简称T 标号)或者固定标号(简称P 标号)。
T 标号表示从始点到这一点的最短路径长度的上界;P 标号则是从始点到这一点的最短路径长度。