传热学第一章共68页

合集下载

大学传热学第一章 绪论

大学传热学第一章 绪论

传热过程中的温度分布
• 稳态传热过程——热量传递过程中温度不随时间变化的传 热过程。
• 非稳态传热过程——热量传递过程中温度随时间变化的传 热过程。
• 一维传热过程——传热过程中热量只在一个方向进行。 • 多维传热过程——热量在多个方向传递的过程。
第一节 热量传递的三种基本方式
• 导热 • 热对流(对流) • 热辐射(热辐射)
传热学
第一章 绪论
• 传热学是研究热量传递规律的科学。 • 有温差的地方就会有传热。 • 热量传递具有方向性——从高温到低温。 • 热量传递的基本方式有三种——导热、热对流和辐射。
传热学的应用的实例
• 食品加工 • 航天飞行器表面的冷却 • 稠油开采 • 电子器件的冷却 • 生物工程 • 能源动力 • 交通运输
• 实例:两个非接触物体之间的热量传递;火焰的 热量传递;太阳辐射等等。
• 计算:斯忒藩-玻耳兹曼定律。
斯忒藩-玻耳兹曼定律
AT 4
Ac 0
T 100
4
5.67108W /m2 K 4
第二节 传热过程和传热系数
• 定义:热量由壁面一侧的流体通过壁面传给另一侧流体的 过程称为传热过程。
• 模拟法:利用同类现象可比拟的特点,用已知现 象的规律模拟所要研究的现象。
• 实验法:通过试验的方法来获得所要研究问题解 的方法。
第三节 传热学发展简史
• 本节内容请同学自学。
• 实例:由墙壁隔开的室内外空气间的传热。 • 计算:传热方程
传热方程
kAt t
f1

1
At t
1/ h / 1/ h
f1
f2
1
2
传热学的研究方法
• 解析法:首先建立所研究问题的数学描写,然后 应用解析数学的方法,求解该问题。

传热学课件第1章

传热学课件第1章

导热与热对流同时存在的复杂热传递过程 必须有直接接触(流体与壁面)和宏观运动
壁面处会形成速度梯度很大的边界层
2.对流换热(Convection)
(4)对流换热的分类:
强迫对流
流动起因
自然对流
无相变 有无相变 有相变 凝结换热 沸腾换热
2.对流换热(Convection)
(4) 牛顿冷却公式 表面传热系数, W/(m2.K) 流体温度,℃
1.导热
(5)傅里叶定律
1822年,法国数学家Fourier
负号表示热流方向与 温度梯度
温度梯度方向相反 热流量,W
dt Φ A dx 导热系数,
W/( m.K)
W
W 2通过平板的一维导热 m
面积,m2
Φ dt q A dx
热流密度,W/m2
1.导热
(6)导热系数: 表征材料导热能力的大小
家用散热器
5. 传热学的应用
航空航天
高新技术
电子器件
医药卫生
5. 传热学的应用
能源动力 传统工业 石油化工
制冷空调
5. 传热学的应用
大 型

机 航空航天 在航空航天领域,航天飞 机表面材料要求绝热良好; 卫星上装有的太阳能吸收

箭 升 空
装置能提供卫星工作所需
的部分能量。
5. 传热学的应用
建筑环境 建筑上,利用空气导热系数
W (m
2
K)

h ——当流体与壁面温度相差1K 时,单位时间 单位面积所传递的热量 影响因素: 流体物性 、、、c p 流速

换热表面的形状、大小与布置
研 究 对 流 换 热 的 基 本 任 务 就 是 确 定 h

1传热学第一章课件

1传热学第一章课件
物体的温度越高、辐射能力越 强; 若物体的种 类 不同、 表面状况 不 同,其辐射能力不同
辐射换热:物体间靠热 辐射进行的 热量传递
2.辐射换热的特点
➢不需要冷热物体的直接接触; 即:不需要 介质的 存在,在真空中就可 以传递能量
➢在辐射换热过程中伴随 着能量 形式的转换 物体热 力学能 电 磁波能 物体热力学能
热 力学: tm , Q
传热学:过程的速率
水,M2
20oC
t = f ( x , y , z , ); Q = f ( )
传热学研究内容 热量传递的机理和速率、温度 场的变化
传热学的工程应用
1、 强化传热:即在一定的 条件下, 增加 所传递 的热量。 如热水的 搅拌冷 却
2 、 削弱传热,也称 热绝缘 :即在一 定的温差 下,使 热量的传递 减到最小。如热 水瓶
教材
《传热学》,戴锅生著,第二版
学时
总学时:24,讲课:22,实验:2
参考资料:《传热学》,杨世铭、陶文铨编著,第四版 《传热学重点难点及典型题精解》,王秋旺,西安交大出版社
辅导
周四 4:00-5:00pm,一校区教4楼 热能教研室
第一章 绪论
§1-1 传热学概述 §1-2 热量传递的基本方式 §1-3 传热过程与热阻
燃煤电厂的基本流程
锅 炉 工 作 原 理
三、传热学与工程热力学的关系
相同点: 传热学以热力学第一定律和第二定律为基础
热力学第一定律
热量始终是从高温物体向低温物体传递,在热量传递过程中 若无能量形式的转换,则热量始终保持守恒。
热力学第二定律
热量能自发的从高温物体传递到低温物体
不同点 a. 工程热力学:热能与机械能及其他形式能量之间 相互转换的规律。不考虑热量传递过程的时间。

传热学课件课件

传热学课件课件
传热学课件课件
A dt
dx
(1-1)
式中 是比例系数,称为热导率,又称导
热系数,负号表示热量传递的方向与温度
升高的方向相反。
传热学课件课件
传热学课件课件
传热学课件课件
❖ ( 2 )导电固体:其中有许多自由电子, 它们在晶格之间像气体分子那样运动。自 由电子的运动在导电固体的导热中起主导 作用。
❖ ( 3 )非导电固体:导热是通过晶格结构 的振动所产生的弹性波来实现的,即原子、 分子在其平衡位置附近的振动来实现的。
传热学课件课件
❖( 4 )液体的导热机理:存在两种不同的 观点:第一种观点类似于气体,只是复杂些, 因液体分子的间距较近,分子间的作用力对 碰撞的影响比气体大;第二种观点类似于非 导电固体,主要依靠弹性波(晶格的振动, 原子、分子在其平衡位置附近的振动产生的) 的作用。
传热学课件课件
(2) 特别是在下列技术领域大量存在传热问题
动力、化工、制冷、建筑、机械制造、新 能源、微电子、核能、航空航天、微机电 系统(MEMS)、新材料、军事科学与技 术、生命科学与生物技术…
传热学课件课件
(3) 几个特殊领域中的具体应用
a 航空航天:高温叶片气膜冷却与发汗冷 却;火箭推力室的再生冷却与发汗冷却; 卫星与空间站热控制;空间飞行器重返大 气层冷却;超高音速飞行器(Ma=10)冷 却;核热火箭、电火箭;微型火箭(电火 箭、化学火箭);太阳能高空无人飞机
的热传递过程属稳态传热过程;而在启动、停
机、工况改变时的传热过程则属 非稳态传热
过程。
传热学课件课件
二、讲授传热学的重要性及必要性
1 、传热学是热工系列课程教学的主要内容 之一,是建环专业必修的专业基础课。是 否能够熟练掌握课程的内容,直接影响到 后续专业课的学习效果。

传热学第1章

传热学第1章

一、导言
因此,对于所有微电子机械系统的设计及应用 来说,全面了解系统在特定尺度内的微机电性质及 材料的热物性、热行为等已经成了迫在眉睫的任务。 然而,目前的科学和工程水平尚无法做到这一步, 于是现代热科学中的一门崭新学科——微米/纳米尺 度传热学应运而生。 早期的微尺度传热学研究主要集中在导热问 题上,之后则扩展到辐射和对流问题。 为说明微尺度传热学的主要研究内容,如下 扼要地介绍一些典型例子,以开拓读者的思路,但 其远远不能代表该学科的全貌,因为微尺度传热的 内涵正不断扩展
二、一些典型微热器件及其相应的热现象
到7000W/m³ 。如此高密度的热量输运是一个富有挑 战性的课题。
图1.3 计算机体系内热耗散与系 统体积的关系
二、一些典型微热器件及其相应的热现象
冷却微小系统的困难在于: 首先,冷却空气速率不能太高,以尽可能减 小声学噪音; 其次,器件结构紧凑性要求仅允许保留有限的 冷却流体空间; 第三,同样的要求不允许在模板上安装大容量 热沉; 第四,低造价的原则要求尽可能地采用塑料封 装芯片,而这又会增大芯片与模板表面之间的导热 热阻,于是热量将主要聚集在基底材料上。
二、一些典型微热器件及其相应的热现象
个量级。所以,分析薄膜中的传热问题自然成为进 一步提高仪器性能的关键步骤。 一系列的研究表明Fourier定律不适于分析高 温超导薄膜及介电薄膜在一定温度和厚度区域内的 热传导问题。在这方面,Boltzmann方程被公认为 是一种最具普适性和有效性的工具。Majumdar发 展了一个基于Boltzmann理论的声子辐射输运方程, 以分析单个薄膜中的导热。其研究表明,在微尺度 区域内,晶格振动或声子的热传导表现为辐射传热 的形式。
二、一些典型微热器件及其相应的热现象

1传热学-第一章课件讲解

1传热学-第一章课件讲解

热 力学: tm , Q 传热学:过程的速率
水,M2 20oC
t = f ( x , y , z , ); Q = f ( )
传热学研究内容 热量传递的机理和速率、温度 场的变化
传热学的工程应用
1、 强化传热:即在一定的 条件下, 增加 所传递 的热量。 如热水的 搅拌冷 却 2 、 削弱传热,也称 热绝缘 :即在一 定的温差 下,使 热量的传递 减到最小。如热 水瓶 3 、温度控 制:为使 一些设备能安全 经济 地 运 行 ,需要对热量传递中的 关键部位进行温 度控 制 。如航 天器返回 地面, 笔记本的 散热
四、传热问题的分类和主要计算量


稳态传热过程: 传热过程中各处温度不 随时间变化。 非稳态传热过程:传热过程中各 处温度随时间变化。
热流量:
dQ Φ= d
[W]
W 2 m
热流密度:
t Φ q= = A
§1-2热量传递的基本方式
热量传递基本方式:热传导、热对流、热辐射
l
l
为什么水壶的提把要包上橡胶?
不同材质的汤匙放入热水中,哪个黄油融解更快?
在下列技术领域大量存在传热问题
动力、化工、制冷、建筑、环境、机械制造、新 能源、微电子、核能、 航空航天、微机电系统 (MEMS)、新材料、军事科学与技术、生 命科 学与生物技术…
燃煤电厂的基本流程
锅 炉 工 作 原 理
三、传热学与工程热力学的关系
相同点: 传热学以热力学第一定律和第二定律为基础 热力学第一定律
热量始终是从高温物体向低温物体传递,在热量传递过程中 若无能量形式的转换,则热量始终保持守恒。
热力学第二定律
热量能自发的从高温物体传递到低温物体

华中科技大学传热学课程PPT课件

华中科技大学传热学课程PPT课件

2021/6/15
随着流动从层流变为紊流,热边界层亦有层流 和紊流热边界层之分。
5
第5页/共68页
流动进口段 层流:L 0.06 Re; 紊流 : L 50
d
d
热进口段长度:层流:LTtw 0.055Re Pr;
Lqw t
0.07 Re Pr
d
d
紊流 : L 50 d
2021/6/15
6
Nu
1.86 Re
Pr
d l
1 3
f w
0.14
适用范围 :Re<2200,Pr>0.6,RePr d/L>10, 用于平直管。特征尺寸、特征流速和定性温度 与管内紊流换热准则关系式相同。
2021/6/15
19
第19页/共68页
对于流体在管内(仅限圆管)作层流流动, 其在热充分发展段对流换热的平均Nu数可由 理论计算得
充分发展区:边界层汇合于管子中心线以后的 区域,即进入定型流动的区域。
2021/6/15
2
第2页/共68页
入口段热边界层较薄,局部表面传热系数比 充分发展段高,且沿主流方向逐渐降低。
如果边界层在管中心 处汇合时流体流动仍 然保持层流,那么进 入充分发展区后也就 继续保持层流流动状 态,从而构成流体管 内层流流动过程。
[解] 查出20℃时空气的运动粘度为=15.0610-6
m2/s 假设进入过渡区的距离为L1,
由雷诺数Re1=uL1/ =2105, 计算出L1=0.30m;
假设进入紊流区的距离为L2,
由雷诺数Re2= uL2/ =5105, 计算出L2=0.75m。
2021/6/15
30
第30页/共68页

《传热学》电子课件

《传热学》电子课件

第1章绪论§1.1 传热学的研究内容及其应用四、传热学在科学技术各个领域中的应用3.3.温度控制温度控制温度控制::为使一些设备能安全经济地运行为使一些设备能安全经济地运行,,或者为得到优质产品为得到优质产品,,要对热量传递过程中物体关键部位的温度进行控制部位的温度进行控制。

例如例如::电子器件的冷却航天器重返大气层时的热防护原子及自由电子等微观粒子热运动而传递热量:定律有:绪论第1章绪论§1.2 热能传递的三种基本方式二、对流对流((热对流热对流))(Convection )4. 对流对流换热的特点换热的特点第1章绪论§1.2 热能传递的三种基本方式二、对流对流((热对流热对流))(Convection )5. 对流对流换热量的计算换热量的计算换热量的计算------牛顿冷却定律牛顿冷却定律() w f ΦhA t t =− () w f q ΦA h t t ==−h —表面传热系数表面传热系数[[W/(m 2K)]Φ—热流量热流量[[W ],单位时间传递的热量q —热流密度热流密度[[W/m 2]A—与流体接触的壁面面积与流体接触的壁面面积[[m 2 ]w t —固体壁表面温度固体壁表面温度[[o C ]f t —流体温度流体温度[[o C ]()f w ΦhA t t =− ()f w q ΦA h t t ==−流体受冷流体受热第1章绪论§1.2 热能传递的三种基本方式二、对流对流((热对流热对流))(Convection )6. 表面传热系数表面传热系数((h )是过程量是过程量,,与具体的换热过程有关与具体的换热过程有关,,受许多因素影响第1章绪论§1.2 热能传递的三种基本方式二、对流对流((热对流热对流))(Convection )7. 对流热阻=1h t t ΦR hA ∆∆= =1h t t q r h∆∆=wt ft ΦhR 有限面积对流热阻1h R hA=单位面积对流热阻1h r h=第。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设备启动、停机
思考
冬天温度相同的铁和木头,为什么摸起来感 觉不同?
1.2.1 热传导(Heat Conduction)
定义:当物体内有温度差或两个不同温度的物体接触时,物体 各部分之间不发生相对位移时,依靠分子、原子及自由电子等 微观粒子的热运动而产生的热能传递。
要素:温度差,不发生相对位移,热运动
油田常温集输现场试验装置
传热学在科技与工程中的应用
建筑节能领域:复合保温墙体及屋面、地板辐射采暖系统
大气长 波辐射
太阳直 射辐射 太空 散射 辐射
环境长波辐射
地面 长波 地面反射辐 辐射 射
对流 换热
壁体得热
传热学在科技与工程中的应用
航空航天领域:航天飞机、火箭发射、卫星与空间站热控 制、空间飞行器重返大气层冷却
哥伦比亚航天飞机事故(2019)
航空航天领域:载人航天器的热控制与热保护问题
传热学在科技与工程中的应用 微电子领域
传热学在科技与工程中的应用
生物医学领域:肿瘤高温热疗;生物芯片;组织与器 官的冷冻保存;激光手术;低温外科等等
传热学在科技与工程中的应用
发电冷却塔
新能源汽车
热电厂 (热能机械能)
以及热应力和热变形计算等。
1.2 热量传递的三种基本方式(What and How)
传热是因存在温差而发生的热能的转移。
设备稳定运行
• 热传导(Heat conduction) • 热对流(Heat convection) • 热辐射(Thermal radiation)
稳态 (Steady state) 非稳态 (Unsteady state)
关心的是热 量传递的过 程,即热量 传递的速率。
t(x, y, z, )
tm Φ
Φ f ( )
铁块, M1 300oC
水,M2 20oC
1.1 传热学在科学技术和工程中的应用
1. 传热学在生活中的应用 2. 传热学在科学技术中的应用
传热学在生活中的应用
• 为什么水壶的把手上要包上塑料?
• 不同材质的汤勺放入热水中,哪个黄油融解的更快?
物质的属性:可以在固体、液体、气体中发生
导热特点:纯导热过程中,物体各部分之间不发生相对位移, 也无能量形式的转换。
如图示,一块平板,厚为δ,表面 积为A,两表面分别维持均匀温度 tw1和tw2.单位时间从表面1传导到 表面2的热量为Q。(沿X轴方向)
Atw1 tw2
单位面积:
q tw1 tw2
t
tX
w 1 tw 2
导热率(导热系数)
物理意义:具有单位温度差(1K)的单位厚度的物体(1m), 在它的单位面积上(1m2),单位时间(1s)的导热量(J)。 性质: 导热系数是表征材料导热性能优劣的参数,
是一种热物性参数,由试验确定。
A t/tq/
金 属非金属 液 固 体 体 气体
纯铜 39W 8/(m℃) 水 ; 0.6W/(m℃) 空气 0.02W 6/(m℃) 2℃ 0()
汽车(热能机械能)
绝热材料
飞机 (热能机械能)
传热学在科技与工程中的应用
• 青藏铁路三大措施保持路基冻土
1)“热棒”—不用电的“冰箱”。在冻土区,路基两旁插有一排碗口粗细、 看上去像护栏的金属棒,它们的间隔为2m,高出路面2m,插入路基下5m.棒 体是封闭中空的,里面灌有液态的氨,外表顶端有散热片。 2)“抛石路基”—天然的“空调”。在冻土区修筑路基时,其土层路基的中 间,抛填了一定厚度的碎石块,碎石之间的空隙不填实,并且与外界空气相 通.这样的结构具有“空调”的功能,使得冻土层的温度基本不随外界气温 变化,能有效地保持冻土的稳定性. 3)“遮阳板路基”——隔热“外衣”。遮阳板路基,是在路基的边坡上架设 一层遮挡太阳的板材,能有效地减弱太阳热对路基温度的影响。
• 目前,国内热棒工质一般为氨,熔点为-77.75℃,沸点为-33.42℃。 启动温度在-33℃左右。地下热棒周围的热不断蒸发将热棒周围的 土冻结,增加冻土厚度使冻层厚度加厚这样减少热胀冷缩将冻层 拉裂的情况发生。
传热学在科技与工程中的应用
• 军 事:飞机、坦克;激光武器;弹药贮存; • 制 冷:跨临界二氧化碳汽车空调/热泵,高温水源热泵; • 新能源:太阳能;燃料电池
第一章 绪论
参考书:戴锅生 高等教育出版社 先修课程:高等数学,工程热力学和流体力学等
何谓传热(What)? 传热的重要性何在(Why)? 热能是如何传输的(How)?
教学目的
通过本章的学习,对热量传递的三种基本方式、 传热过程及热阻的概念有所了解,并能进行简 单的计算,能对工程实际中简单的传热问题进 行分析。
• 传热学是能源、动力、化工、机械、电子、土木等学科的 主干技术基础课。
• 传热学、流体力学以及工程热力学并称能源动力类专业的 三大支柱学科。
温差随处可见,热量传递非常普遍!
工程上的传热分类
• 更有效地增强或削弱热量的 (x,y,z, ) 传递 • 确定物体内的温度分布,进
而进行现象判断、温度控制 tf(x,y,z, )
重点和难点
• 重点:热量传递的三种基本方式特点及 计算方法;
• 难点:三种热量传热方式较抽象,不易 理解,学会分析实际工程传热问题由哪 些基本热量传递方式组成。
第一章 绪论
热力学第二定律:凡是有温差存在的地方,就有热能
自发地从高温物体向ຫໍສະໝຸດ 温物体传递。传热:物质在温差作用下所发生的热量传递 传热学:工程热物理的一个分支,研究热量传递的规律。 内容:传热学的在科学技术和工程中的应用
传热学在生活中的应用
• 煮好的鸡蛋表面湿润和干燥哪个更烫 手?
• 暖瓶和保温杯为什么保温?
传热学在生活中的应用
传热学在生活中的应用
严寒地区为什么采用双层玻璃?
传热学在生活中的应用
塑料大棚是什么原理?
传热学在科技与工程中的应用
石油化工领域:反应釜、蒸汽吞吐井、稠油热采、油气集输
井口加热保温装置
热能传递的三种基本方式及热阻 传热过程 。
传热学与热力学的区别
相同点:两者都是研究热科学的理论基础;
不同点:热力学研究平衡态,不考虑热量传 递的速率,没有时间观念;传热学研究非平 衡态,强调热量传递的速率及所需时间,有 时空概念。
热力学 + 传热学 = 热科学
系统从一个平 衡态到另一个 平衡态的过程 中传递热量的 多少。
相关文档
最新文档