计算方法--矩阵特征值的数值计算方法(2011)
矩阵特征值问题的数值解法

( aii)xi j1,jiaijxj。
由x于 j /xi 1(ji)有 ,
a i i j ia i jx j/x i j ia i j .
说明 属于 Di.定理得 . 证
从定理的证明可见,如果一个特征向量的第i个分量按模最大,则对应 的特征值一定属于第i个圆盘中.利用定理7.2,我们可以由A的元素估计 特征值的范围.A的n个特征值均落在n个圆盘上,但不一定每个圆盘都有 一个特征值.
第七章 特征值与特征向量的数值求法
第七章 特征值与特征向量的数值求法
第七章 特征值与特征向量的数值求法
第七章 特征值与特征向量的数值求法
第七章 特征值与特征向量的数值求法
证 :设 为 A的任意一 ,x 个 0为 特 对 征
记 x ( x 1 ,x 2 ,.x . n ) T .,x .i .m , x k ,则 a x i x 0 ,
(1)对任何非x 零 Rn,向 有n量 R(x)1。 (2)10m xRanRx(x)R(x1)。 (3)n 0m xRinnR(x)R(xn)。
挪威语:Takk
第七章 特征值与特征向量的数值求法
定义 7.1:设 A为 n阶实对称 ,对矩 于阵 任一非 x,称 零向量
R(x) (Ax,x) (x, x)
为对应于向量x的Rayleigh商.
定理7.3 设A为n阶实对称矩阵,其特征值都为实数,排列为
12... ..n.,
对应的特 x1,x征 2,..向 .x.n组 ..量 成正交 ,则 向 有 量组
(完整word版)第9章 矩阵特征值的数值解法

第9章 矩阵特征值的数值解法9.1 引言矩阵特征值问题有广泛的应用背景. 例如动力系统和结构系统中的振动问题、电力系统的静态稳定分析上、工程设计中的某些临界值的确定等,都归结为矩阵特征值问题. 数学中诸如方阵的对角化及解微分方程组等问题,都要用到特征值的理论. 本章介绍n 阶实矩阵n n ⨯∈R A 的特征值与特征向量的数值解法.定义9.1.1 已知n 阶实矩阵()n n ij a ⨯=∈R A ,如果存在常数λ和非零向量x ,使λ=Ax x 或 ()λ-=0A I x (9.1.1)那么称λ为A 的特征值(eigenvalue),x 为A 的相应于λ的特征向量(eigenvector). 多项式111212122212()det()n n n n n nn a a a a a a p a a a λλλλλ-⎡⎤⎢⎥-⎢⎥=-=⎢⎥⎢⎥-⎣⎦A I (9.1.2)称为特征多项式(characteristic polynomial),det()0λ-=A I (9.1.3)称为特征方程(characteristic equation).注 式(9.1.3)是以λ为未知量的一元n 次代数方程,()det()n p λλ=-A I 是λ的n 次多项式. 显然,A 的特征值就是特征方程(9.1.3)的根. 特征方程(9.1.3)在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此n 阶矩阵A 在复数范围内有n 个特征值. 除特殊情况 (如2,3n =或A 为上(下)三角矩阵)外,一般不通过直接求解特征方程(9.1.3)来求A 的特征值, 原因是这样的算法往往不稳定. 在计算上常用的方法是幂法与反幂法和相似变换方法. 本章只介绍求矩阵特征值与特征向量的这两种基本方法. 为此将一些特征值和特征向量的性质列在此处.定理9.1.2 设n 阶方阵()ij n n a ⨯=A 的特征值为12,,,n λλλ,那么(1) 121122n nn a a a λλλ+++=+++;(2) 12det n λλλ=A .定理9.1.3 如果λ是方阵A 的特征值,那么(1) kλ是kA 的特征值,其中k 是正整数;(2) 当A 是非奇异阵时,1λ是1-A 的特征值. (3) ()n p λ是()n p A 的特征值,其中()n p x 是多项式2012()n n n p x a a x a x a x =++++.定义9.1.4 设,A B 都是n 阶方阵. 若有n 阶非奇异阵P ,使得1-=P AP B ,则称矩阵A 与B 相似(similar),1-P AP 称为对A 进行相似变换(similarity transformation),P 称为相似变换矩阵(similarity transformation matrix).定理9.1.5 若矩阵A 与B 相似,则A 与B 的特征值相同. 定理9.1.6 如果A 是n 阶正交矩阵,那么 (1) 1T -=A A ,且det 1=A 或1-; (2) 若=y Ax ,则22=yx , 即T T ⋅=⋅x x y y .定理9.1.7 设A 是任意n 阶实对称矩阵,则 (1) A 的特征值都是实数; (2) A 有n 个线性无关的特征向量.定理9.1.8 设A 是任意n 阶实对称矩阵,则必存在n 阶正交矩阵P ,使得1T -==P AP P AP Λ,其中12diag(,,,)n λλλ=Λ是以A 的n 个特征值12,,,n λλλ为对角元素的对角矩阵.定理9.1.9 (圆盘定理) 矩阵()ij n n a ⨯=A 的任意一个特征值至少位于复平面上的几个圆盘1,2,,n ,中的一个圆盘上。
矩阵特征值计算

矩阵特征值计算
1 矩阵特征值计算
矩阵特征值计算是数学分析中一种重要的概念,它与矩阵的属性
密切相关。
一般情况下,矩阵特征值是指与矩阵有关的实值函数。
它
可以提供有关矩阵行列式和特征向量的有关信息。
矩阵特征值计算的定义为:设A是m×n的实矩阵,若存在一个实
数λ,使得A的每个元素都等于λ的倍数,则称λ为A的特征值(eigenvalue)。
所有不同的特征值构成A的特征值多项式,即特征
多项式的多项式,由
λ ^ n+λ ^ (n-1)+...+λ ^ 1+λ ^ 0
组成。
这里λ重复出现n次,证明A有n个线性无关的特征向量。
特征值是矩阵分析中最重要的因素。
一个矩阵的特征值有助于分
析数学问题,特别是矩阵和相对应的特征向量,以及A的分解及A的秩。
特征值及其特征向量也有助于我们解决具体问题,如求解最大值、最小值、最优解等。
计算矩阵特征值一般有两种方法:一种是近似方法,即迭代法;
另一种是精确方法,即行列式法和特征多项式法。
迭代法可以快速求
得与原矩阵几乎相等的特征值,但精确的特征值只能通过行列式法和
特征多项式法求出。
由于矩阵特征值的重要性,众多学者和研究者致力于提出更好的特征值计算方法。
而在数学和计算机科学领域,研究者更多地关注矩阵特征值,研究其计算方法和性能,以求取更好的计算效率提高计算精度。
矩阵特征值的计算

矩阵特征值的计算一、特征值的定义和性质矩阵A的特征值是指满足下列条件的数λ:存在一个非零向量x,使得Ax=λx,即为矩阵A作用在向量x上的结果是该向量的数量倍,其中λ为特征值。
定义特征值之后,可以证明如下性质:1.相似矩阵具有相同的特征值;2.矩阵的特征值个数等于矩阵的阶数;3.特征值可以是实数也可以是复数;4.如果一个矩阵的特征向量独立,则该矩阵可对角化。
二、特征值的计算方法特征值的计算方法有多种,包括直接计算、特征向量迭代法等。
以下介绍两种常用的方法,分别是雅可比法和幂法。
1.雅可比法雅可比法是最基本和最直接的求解特征值和特征向量的方法。
首先,构造一个对称阵J,使其主对角线元素等于矩阵A的主对角线元素,非对角线元素等于矩阵A的非对角线元素的平方和的负数。
然后,对J进行迭代计算,直到满足迭代终止条件。
最终得到的J的对角线元素就是矩阵A 的特征值。
雅可比法的优点是计算量相对较小,算法比较简单,可以直接计算特征值和特征向量。
但是,雅可比法的收敛速度较慢,对于大规模矩阵的计算效率较低。
2.幂法幂法是一种迭代算法,用于计算矩阵的最大特征值和对应的特征向量。
首先,随机选择一个非零向量b作为初值。
然后,迭代计算序列b,A*b,A^2*b,...,直到序列趋向于收敛。
最终,特征值是序列收敛时的特征向量的模长,特征向量是序列收敛时的向量。
幂法的优点是可以计算矩阵的最大特征值和对应的特征向量。
此外,幂法对于大规模矩阵的计算效率较高。
然而,幂法只能计算最大特征值,对于其他特征值的计算不适用。
三、特征值的应用1.特征值分解特征值分解是将一个矩阵分解为特征值和特征向量构成的对角矩阵的乘积。
特征值分解是一种重要的矩阵分解方法,它在信号处理、图像压缩、最优化等领域有广泛应用。
通过特征值分解,可以对矩阵进行降维处理、数据压缩和特征提取等操作。
2.矩阵的谱半径矩阵的谱半径是指矩阵的所有特征值的模的最大值。
谱半径在控制系统、网络分析和量子力学等领域有广泛的应用。
矩阵特征值与特征向量的计算方法

矩阵特征值与特征向量的计算方法矩阵是一个广泛应用于线性代数、微积分和物理学等领域的数学对象。
在许多问题中,矩阵和线性变换起着重要作用,并且特征值与特征向量是矩阵理论中的两个核心概念。
本文将介绍矩阵特征值与特征向量的定义、性质以及计算方法。
一、特征值与特征向量的定义给定一个n阶矩阵A,如果存在一个非零向量x,使得A与x的线性组合仍然是x的倍数,即有Ax = λx其中λ为常数,称λ为A的特征值,x为对应于λ的特征向量。
从几何意义上理解,特征向量是不被矩阵变换影响方向,只被影响长度的向量。
特征值则是描述了矩阵变换对于特定方向上的伸缩倍数。
二、特征值与特征向量的性质1. 特征向量构成的向量空间没有零向量。
证明:设x为A的特征向量,有Ax=λx,则A(cx) =cAx=cλx=λ(cx),即A的任意常数倍(cx)仍是x的倍数,因此cx也是A的特征向量。
特别地,对于λ≠0时,x/λ也是A的特征向量。
2. A的特征值的个数不超过n个。
证明:考虑特征值λ1, λ2,…,λt,对应于各自的特征向量x1,x2,…,xt。
利用向量线性无关性可得,至少存在一个向量y不属于x1,x2,…,xt的张成空间内,此时Ay不能被表示成λ1x1,λ2x2,…,λtxt的线性组合,因此Ay与y方向没有重合部分,由此可得λ1, λ2,…,λt最多就是n个。
3. 如果特征向量x1,x2,…,xt彼此不共线,则它们就可以作为Rn空间的一组基。
证明:设x1,x2,…,xt是不共线的特征向量,考虑它们张成的向量空间V,在此空间中,A的作用就是对向量做伸缩变换,且Λ(xj) = λj。
对于每个向量y ∈ V,y可以表示成如下形式:y = c1x1 + c2x2 + ··· + ctxt由于x1,x2,…,xt构成V的基,因此c1,c2,…,ct唯一确定了向量y。
因此,对于任意的向量y,可以得到:Ay = A(c1x1 + c2x2 + ··· + ctxt)= c1Ax1 + c2Ax2 + ··· + ctAxt= λ1c1x1 + λ2c2x2 + ··· + λtctxt由于{x1,x2,…,xt}是V的一组基,c1,c2,…,ct是唯一确定的,因此Ay也被唯一确定了。
矩阵特征值的求法

矩阵特征值的求法
矩阵特征值是矩阵在线性代数中的重要概念,它可以帮助我们解决许多实际问题。
矩阵的特征值表示的是在矩阵作用下,某个向量方向不发生改变的情况下,对应的缩放比例。
特征值可以用于求解线性方程组、矩阵对角化等问题
求矩阵特征值的方法有多种,其中较为常见的是使用特征方程的方法。
即根据矩阵的定义,暴力枚举每个特征值,然后求解对应的特征向量,最后将所有特征向量拼成一个矩阵,这个矩阵就是矩阵A的特征向量矩阵。
另外,还可以使用雅可比迭代法、QR分解等方法来求解矩阵的特征值。
这些方法在实际应用中有着广泛的应用。
例如,QR分解被用于矩阵对角化、奇异值分解、线性最小二乘问题等领域。
总之,求解矩阵的特征值是在线性代数中十分重要的问题。
不同的求解方法有着各自的优缺点,根据实际需求选择合适的方法可以提高计算效率和准确度。
- 1 -。
计算方法之计算矩阵的特征值和特征量

计算方法之计算矩阵的特征值和特征量计算矩阵的特征值和特征向量是线性代数中的一个重要问题,它在科学研究和工程应用中有着广泛的应用。
本文将介绍计算矩阵特征值和特征向量的方法,包括特征方程法、幂法、反幂法和QR方法。
一、特征值和特征向量的定义给定一个n阶方阵A,如果存在一个非零向量x和一个标量λ,满足以下方程:Ax=λx其中,x被称为A的特征向量,λ被称为A的特征值。
二、特征方程法特征方程法是计算矩阵特征值和特征向量的一种常用方法,其基本思想是通过求解矩阵的特征方程来求得特征值。
对于一个n阶方阵A,其特征方程为:A-λI,=0其中,I是n阶单位矩阵,A-λI,表示A-λI的行列式。
解特征方程可以得到n个特征值λ₁,λ₂,...,λₙ。
然后,将这些特征值带入原方程组(A-λI)x=0,求解线性方程组得到n个特征向量x₁,x₂,...,xₙ。
三、幂法幂法是一种通过迭代来计算矩阵最大特征值和对应的特征向量的方法。
首先,随机选择一个非零向量b₀,并进行归一化,得到单位向量x₀=b₀/,b₀。
然后,通过迭代的方式,计算xₙ₊₁=Axₙ,其中xₙ为第k次迭代得到的向量。
在迭代过程中,向量xₙ的模长会逐渐趋近于最大特征值对应的特征向量。
当迭代收敛后,xₙ就是矩阵A的最大特征值对应的特征向量。
四、反幂法反幂法是一种通过迭代来计算矩阵最小特征值和对应的特征向量的方法。
首先,随机选择一个非零向量b₀,并进行归一化,得到单位向量x₀=b₀/,b₀。
然后,通过迭代的方式,计算xₙ₊₁=(A-σI)⁻¹xₙ,其中σ为待求的特征值。
在迭代过程中,向量xₙ的模长会逐渐趋近于特征值σ对应的特征向量。
当迭代收敛后,xₙ就是矩阵A的特征值为σ的特征向量。
五、QR方法QR方法是一种通过迭代来计算矩阵特征值和特征向量的方法。
首先,将矩阵A进行QR分解,得到矩阵A=QR,其中Q是正交矩阵,R是上三角矩阵。
然后,计算矩阵B=RQ,重复以上步骤,直到矩阵B收敛。
第章矩阵特征值的计算

第章矩阵特征值的计算矩阵特征值是矩阵理论中的一个重要概念,它在很多领域中都有广泛的应用,如物理、化学、工程等。
本文将从特征值的定义、计算方法和应用举例等方面进行阐述。
一、特征值的定义对于一个n阶方阵A,如果存在一个非零向量x,使得Ax=kx,其中k 是一个常数,那么k称为A的特征值,x称为A的对应于特征值k的特征向量。
从定义可以看出,矩阵A的特征值和特征向量是成对出现的,特征向量可以是一个实数或是一个向量,特征值可以是实数或是复数。
二、特征值的计算方法1.直接计算法此方法适合于较小的矩阵。
给定一个n阶矩阵A,首先构造特征方程det(A-λI)=0,其中I是n阶单位矩阵,λ是未知数,然后求解特征方程得到特征值,将特征值代入(A-λI)x=0求解对应的特征向量。
2.幂法幂法是一种迭代方法,适用于大型矩阵。
假设特征值的绝对值最大,那么从非零向量b开始迭代过程,令x0=b,求解x1=A*x0,然后再将x1作为初始值,求解x2=A*x1,以此类推,直到收敛为止。
最后,取最终得到的向量xn,其模即为特征值的近似值。
3.QR方法QR方法是一种迭代方法,可以用于寻找特征值和特征向量。
首先将矩阵A分解为QR,其中Q是正交矩阵,R是上三角矩阵,然后对R进行迭代,重复进行QR分解,直到收敛。
最后,得到的上三角矩阵的对角元素即为特征值的近似值,在QR分解的过程中,特征向量也可以得到。
三、特征值的应用举例1.物理学中的量子力学量子力学中的哈密顿算符可以表示为一个矩阵,物理量的测量值就是对应的特征值。
例如,电子的自旋可以有上自旋和下自旋两种状态,上自旋对应的特征值为1,下自旋对应的特征值为-12.工程中的振动问题在工程中,矩阵特征值可以用来求解振动问题。
例如,振动系统的自由度决定了特征向量的个数,而特征值则表示了振动的频率。
通过计算矩阵的特征值和特征向量,可以预测系统的振动频率和振型。
3.网络分析中的中心性度量在网络分析中,矩阵特征值可以用来计算节点的中心性度量。