小学奥数中解方程
完整版)奥数-五年级解方程练习题

完整版)奥数-五年级解方程练习题五年级数学练题一、解方程:0.96x - 0.75x = 0.421.5 × 4 + 3.2x = 143(8 + x) ÷ 2 = 1812 - x ÷ 2 = 812x = 18 × 1.1 + 9x1.8 × 1.5 - 0.5x = 0.4x2、解方程:3.2x - 9 = 233(5x - 4) = 453x + 24 = 5x - 1258 - 5x = 43x = 2x + 155(2x + 3) = 203(8 + x) ÷ 2 = 181.5x + 2x =2.88.4 - 4(x - 2) = 7.6 + 2.4 5x - 1.8 + 1.2 = 6.46.8 + 1.2 ÷ x = 10.8x ÷ 10 + 2x ÷ 10x = 0.06x + 3二、根据题意,写出等量关系式,再列出方程1.两列火车同时从相距260千米的两地相向而行,甲车每小时行46千米,乙车每小时行58千米,几小时后两车还相距52千米?设t为两车相遇的时间,列方程:46t + 58t = 260 + 522.甲乙两个码头之间的路程是3200米,A、B两艘渡轮分别从这两个码头开出,相向而行。
A渡轮先行了380米后,B 渡轮再开出。
A渡轮平均每分钟行了190米,B渡轮平均每分钟行了210米,B渡轮经过多少时间与A渡轮在途中相遇?设t为B渡轮开出后与A渡轮相遇的时间,列方程:190t + 380) + 210t = 32003.XXX和XXX两家间的路程是2070米,两人同时从家里出发相向而行,途中XXX顺路去银行办了一点事耽误了10分钟,XXX15分钟后与XXX在途中相遇,已知小每分钟行68米,XXX平均每分钟行多少米?设XXX每分钟行x米,列方程:10/60)x + (15/60 + t)68 = 20704.一条铁路全长288千米,两列火车同时从两地开出相向而行,途中一列火车停靠了约0.5小时,结果两列火车4.5小时后相遇,一列火车平均每小时行40千米,另一列火车平均每小时行多少千米?设另一列火车的速度为x千米/小时,列方程:4.5 - 0.5)(40 + x) = 288三、列方程解应用题1.两列火车从相距400千米的两地相向而行,客车的速度是60千米/时,货车的速度是40千米/时,这两列火车经过几小时还相距100千米?设t为两车经过的时间,列方程:60t + 40t = 400 - 1002.一条隧道长230米,两个工程队从两侧开始施工,XXX先挖38米后,第二队才开始挖,第一队平均每天可挖 3.9米,第二队平均每天可挖4.1米,多少天后两队可以完成这项工程?设t为两队完成工程所需的时间,列方程:38 + 3.9t + 4.1t = 230解得t,即可求出多少天后两队可以完成工程。
小学五年级奥数题 列方程解应用题

小学五年级奥数题列方程解应用题1.解方程求未知数已知一个数加上它的1.8倍等于0.56,求这个数。
设这个数为x,根据题意得到方程x+1.8x=0.56,化简得到2.8x=0.56,解得x=0.2.2.解方程求未知数已知2.9与0.5的积比一个数的5倍少1.65,求这个数。
设这个数为x,根据题意得到方程2.9×0.5=5x-1.65,化简得到x=0.83.3.解方程求未知数已知某数的8倍加上10等于它的10倍减去8,求这个数。
设这个数为x,根据题意得到方程8x+10=10x-8,化简得到2x=-18,解得x=-9.4.解方程求未知数已知XXX有64张画片,XXX送给她12张,这时XXX和XXX的画片数相等。
XXX有画片多少张?设XXX有画片为x,根据题意得到方程x+12=64-x,化简得到x=26.5.解方程求未知数已知甲桶里有油45千克,乙桶里有油24千克,问从甲桶里倒多少千克的油到乙桶里,才能使甲桶里的油的重量是乙桶里的1.5倍?设从甲桶里倒x千克的油到乙桶里,根据题意得到方程(45-x)/(24+x)=1.5,化简得到x=9.6.解方程求未知数已知一个三位数,个位上的数字是5,如果把个位上的数字移到百位上,原百位上的数字移到十位上,原十位上的数字移到个位上,那么所成的新数比原数小108,原数是多少?设原数为abc,根据题意得到方程100a+10b+c-100b-10c-a=108,化简得到99a-89b=108,由于a和b都是整数,可以得到a=2,b=1,c=5,原数为215.7.解方程求未知数已知某校附小举行了两次数学竞赛,第一次及格人数是不及格人数的3倍还多4人,第二次及格人数增加5人,正好是不及格人数的6倍,问参加竞赛的有多少人?设第一次及格人数为x,不及格人数为y,则根据题意得到方程x=3y+4和x+5=6(y+5),化简得到y=11,x=37,参加竞赛的人数为48.8.解方程求未知数已知10年前XXX的妈妈的年龄是她的7倍,15年后XXX的年龄正好是妈妈年龄的一半,问XXX现在多少岁?设XXX现在的年龄为x,妈妈现在的年龄为y,则根据题意得到方程y-10=7(x-10)和2(y+15)=x+15,化简得到y=55,x=25,XXX现在25岁。
四年级奥数 解方程

第10讲第一天1.方程13-x=9的解是x=()。
A.4B.5C.6D.7【答案】A【解析】x=13-9=4。
2.方程x÷4=8的解是x=()。
A.24B.27C.32D.36【答案】C【解析】x=8×4=32。
第二天1.方程9x+3=4x+18的解是x=()。
A.2B.3C.4D.5【答案】B【解析】移项:9x-4x=18-3,合并同类项:5x=15,解得:x=3。
2.方程7x-6=3x+26的解是x=()。
A.5B.6C.7D.8【答案】D【解析】移项:7x-3x=26+6,合并同类项:4x=32,解得:x=8。
第三天1.方程3(5+x)=36的解是x=()。
A.9B.6C.7D.4【答案】C【解析】去括号:15+3x=36,移项、合并同类项:3x=21,解得:x=7。
2.方程5(3x-8)=65的解是x=()。
A.6B.7C.8D.9【答案】B【解析】去括号:15x-40=65,移项、合并同类项:15x=105,解得:x=7。
第四天1.方程14x+(20-5x)=47的解是x=()。
A.4B.2C.5D.3【答案】D【解析】去括号:14x+20-5x=47,移项、合并同类项:9x=27,解得:x=3。
2.方程13x-(8x+18)=42的解是x=()。
A.12B.8C.10D.6【答案】A【解析】去括号:13x-8x-18=42,移项、合并同类项:5x=60,解得:x=12。
第五天1.方程8+5(x-12)=86-x的解是x=()。
A.13B.16C.21D.23【答案】D【解析】去括号:8+5x-60=86-x,移项:5x+x=86+60-8,合并同类项:6x=138,解得:x=23。
2.方程21-2(x-7)=3x的解是x=()。
A.9B.8C.7D.6【答案】C【解析】去括号:21-2x+14=3x,移项:21+14=3x+2x,合并同类项:5x=35,解得:x=7。
小学五年级奥数题 解方程应用题

小学五年级奥数题解方程应用题
题目1
某商店里有一些球,其中红球比白球少5个,总共有26个球。
请问这个商店里有多少个红球和白球各有多少个?
解答1
设红球的数量为x,白球的数量为y。
根据题目中的条件可以列出方程组:
x - y = 5 (红球比白球少5个)
x + y = 26 (总共有26个球)
解这个方程组可以得到红球的数量为15个,白球的数量为11个。
题目2
某花店里有一些玫瑰花和牡丹花,其中玫瑰花的束数是牡丹花束数的3倍,总共有20束花。
请问这个花店里有多少束玫瑰花和牡丹花各有多少束?
解答2
设玫瑰花束数为x,牡丹花束数为y。
根据题目中的条件可以列出方程组:
x = 3y (玫瑰花的束数是牡丹花束数的3倍)
x + y = 20 (总共有20束花)
解这个方程组可以得到玫瑰花束数为15束,牡丹花束数为5束。
题目3
某班级里有男生和女生共20人,男生比女生多5人。
请问这个班级里有多少男生和女生各有多少人?
解答3
设男生的人数为x,女生的人数为y。
根据题目中的条件可以列出方程组:
x - y = 5 (男生比女生多5人)
x + y = 20 (男生和女生共20人)
解这个方程组可以得到男生的人数为12人,女生的人数为8人。
奥数五年级解方程练习题

奥数五年级解方程练习题解方程在数学中是一个非常重要且基础的概念。
通过解方程,我们可以找到未知数的值,从而解决实际问题。
在五年级的奥数中,解方程已经成为了必不可少的内容。
本文中,我将为大家提供一些五年级奥数解方程的练习题。
练习题1:小明有一些糖果,他第一天吃了糖果的三分之一,第二天吃了剩下糖果的一半,并且还多吃了2颗,最后还剩下4颗糖果。
那么小明一开始有多少颗糖果?解题思路:设小明一开始有x颗糖果,根据题目中的描述,我们可以列出方程:x - ⅓x - (½x - 2) = 4化简得到:x - ⅓x - ½x + 2 = 4继续化简:5/6x = 2x = 2 / (5/6)最后计算得到:x = 2.4练习题2:某书店原来书架上放了n本书,卖掉了其中的10本之后,书架上的书的数量是卖掉前的1/4。
那么原来书架上有多少本书?解题思路:设原来书架上有x本书,根据题目中的描述,我们可以列出方程:x - 10 = (1/4)x化简得到:4x - 40 = x继续化简:3x = 40x = 40 / 3最后计算得到:x ≈ 13.33练习题3:李华的年龄是小明的年龄的三倍加2,而小明的年龄是小红的年龄的两倍减5,已知小红的年龄是7岁,那么李华的年龄是多少岁?解题思路:设李华的年龄为x岁,根据题目中的描述,我们可以列出方程:x = 3(2x - 5) + 2化简得到:x = 6x - 15 + 2继续化简:5x = 17x = 17 / 5最后计算得到:x ≈ 3.4练习题4:甲、乙两人一起购买汽车,总共需要支付60000元。
甲支付了乙的1/4,并且自己还支付了18000元。
那么乙支付了多少元?解题思路:设乙支付的金额为x元,根据题目中的描述,我们可以列出方程:(1/4)x + 18000 + x = 60000化简得到:(5/4)x = 42000最后可以得到:x = 42000 / (5/4)最后计算得到:x = 33600练习题5:一些小动物在一个圆形的宠物笼里玩,小明先放进去了4只兔子,然后每5分钟放进去一只兔子,最后小明总共放了20只兔子,那么一开始笼子里有多少只兔子?解题思路:设一开始笼子里的兔子数量为x只,根据题目中的描述,我们可以列出方程:x + 5 * (20 - 4) = 20化简得到:x + 5 * 16 = 20继续化简:x + 80 = 20最后计算得到:x = 20 - 80x = -60以上是五年级奥数解方程的练习题,希望通过这些题目的练习,大家能够更加熟练地运用解方程的方法,提高自己的数学能力。
五年级奥数题:解方程问题

五年级奥数题:解方程问题五年级奥数中,解方程是解题的一种思路,许多同学对于方面了解不是很多,下面就是小编为大家整理的解方程的奥数习题,希望对大家有所帮助!习题一玲玲今年9岁,父亲39岁,再过多少年,父亲的年龄正好是玲玲的2倍?①王明今年8岁,妈妈今年32岁,多少年前妈妈的年龄是王明的7倍?②甲仓的货物是乙的4倍,甲仓运出180件,乙仓运出30件后,剩下两仓的货物相等,甲乙两仓原来各有多少件?③甲袋面粉有50千克,乙袋有26千克,从两袋中各取出相同的重量后,甲剩下的是乙剩下的3倍。
两袋各取出多少面粉?习题二幼儿园老师给小朋友分糖果,每个小朋友分3个,就多出50个,每个小朋友分5个,就少10个,那么有几个小朋友?共有多少个糖果?①学校给三好学生分书,每人5本则多80本,每人7本则多20本。
三好学生多少人?书多少本?②妈妈带了一些钱去买肉,买5千克肉就少14元,买4千克肉就少2元,肉多少元一千克?妈妈共带了多少钱?③同学们去春游,每辆车坐60人,那么有15人上不了车,每辆车多坐5人,那么恰好省出一辆车,问有多少辆车?有多少个学生?习题三甲、乙共有存书100本,其中甲存书的4倍比乙存书的3倍多120本,甲、乙各有多少本?①有两块地共160公顷,第一块的3倍比第二块的2倍还多10公顷。
这两块地各有多少公顷?②甲、乙两人共存款1000元,甲取出240元,乙又存入80元,这时甲的存款是乙的3倍,原来甲乙各有存款多少元?③有两层书架,共有173本书,从第一层拿走38本后,第二层的书是第一层的2倍还多6本,那么第二层有多少本书?习题四修一条公路,未修的长度是已修的3倍,如果再修300米,那么未修的长度是已修的2倍,这条公路有多少米?①从甲地到乙地,小明未行的路是已行的3倍,如果再行150米,这时小明未行的是已行的2倍,求两地的路程?②哥哥的零用钱是妹妹的1.5倍,哥哥给妹妹4元,妈妈又给妹妹5元,这时哥哥还比妹妹多8元,求原来各有多少元钱?③汽车从甲地到乙地,去时每小时行50千米,返回每小时行60千米,来回共用11小时,求甲乙两地相距多少千米?习题五有甲级糖果3千克,乙2千克,丙5千克,制成每千克7.4元的什锦糖,如果甲每千克10元,乙每千克8元,那么丙级糖果每千克多少元?①甲种糖每千克8.4元,乙种糖每千克7.12元,用5千克的乙和若干千克的甲混合后,平均每千克混合糖是7.6元,甲种糖用了多少千克?②商店有布鞋胶鞋共45双,胶鞋每双7元,布鞋每双4.8元全部卖出后,胶鞋比布鞋多收入20元,问两种鞋各有多少双?③甲仓存粮32吨,乙仓存粮57吨,甲仓每天存入4吨,乙仓每天存入9吨,几天后乙仓存粮是甲的2倍?。
五年级解方程式最难练习题奥数

五年级解方程式最难练习题奥数在五年级的数学课程中,解方程式是一个重要的内容。
它不仅仅帮助学生培养逻辑思维能力,还为他们将来在数学竞赛中取得好成绩打下基础。
然而,对于那些寻求挑战的学生来说,最难的练习题便成了他们磨练自己的选择。
在奥数竞赛中,有一道被称为“五年级解方程式最难练习题”的题目尤为出名。
本文将对这道题进行详细解析,让我们一起来挑战一下吧!这道题目的内容如下:设有一维方程式5x + 3 + 2x - (8 - x) = 4(x - 2) - x - 1 。
问题一:求解方程式5x + 3 + 2x - (8 - x) = 4(x - 2) - x - 1的解。
问题二:求解方程式(3x - 1) + (2x + 1) - (5 - x) = 2(x - 2) - 3x - 1的解。
问题三:将问题一和问题二的解代入方程式3(x - 1) - (x + 2) = 5 -2(1 - x) - 2x的左边和右边,判断是否成立。
解题过程:首先,我们来解决问题一。
按照方程式的要求,我们将式子化简,得到如下结果:5x + 3 + 2x - 8 + x = 4x - 8 - x - 1。
继续化简,合并同类项,得到:8x - 5 = 3x - 9。
再次化简,将未知数移到一边,常数移到另一边,得到:8x - 3x = -9 + 5。
计算得:5x = -4,进一步化简得:x = -4/5。
因此,问题一的解是:x = -4/5。
接下来,我们继续解决问题二。
按照方程式的要求,我们将式子化简,得到如下结果:3x - 1 + 2x + 1 - 5 + x = 2x - 4 - 3x - 1。
继续化简,合并同类项,得到:6x - 5 = -x - 5。
再次化简,将未知数移到一边,常数移到另一边,得到:6x + x = -5 + 5。
计算得:7x = 0,进一步化简得:x = 0。
因此,问题二的解是:x = 0。
最后,我们解决问题三。
小学奥数之列方程组解应用题(完整版)

1、设未知数的主要技巧和手段:找出与其他量的数量关系紧密的关键量2、用代数法来表示各个量:利用“,x y ”表示出所有未知量或变量3、找准等量关系,构建方程(明显的等量关系与隐含的等量关系)一、列方程解应用题的主要步骤 ⒈ 审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密数量关系; ⒈ 用字母来表示关键量,用含字母的代数式来表示题目中的其他量;⒈ 找到题目中的等量关系,建立方程;⒈ 解方程;⒈ 通过求到的关键量求得题目最终答案.二、解二元一次方程(多元一次方程)消元目的:即将二元一次方程或多元一次方程化为一元一次方程.消元方法主要有代入消元和加减消元. 模块一、列方程组解应用题【例 1】 30辆小车和3辆卡车一次运货75吨,45辆小车和6辆卡车一次运货120吨。
每辆卡车和每辆小车每次各运货多少吨?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设每辆卡车和每辆小车每次各运货x y 、吨,根据题意可得:30375456120x y x y +=⎧⎨+=⎩,解得25x y =⎧⎨=⎩所以,每辆卡车每次运货2吨,每辆小车每次运货5吨。
【答案】每辆卡车每次运货2吨,每辆小车每次运货5吨【巩固】 甲、乙二人2时共可加工54个零件,甲加工3时的零件比乙加工4时的零件还多4个.问:甲每时加工多少个零件?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲每小时加工x 个零件,乙每小时加工y 个零件.则根据题目条件有:2254344x y x y +=⎧⎨-=⎩,解得1611x y =⎧⎨=⎩所以甲每小时加工16个零件,乙每小时加工11个零件.【答案】甲每小时加工16个零件【例 2】 已知练习本每本0.40元,铅笔每支0.32元,老师让小虎买一些练习本和铅笔,总价正好是老师所给的10元钱.但小虎将练习本的数量与铅笔的数量记混了,结果找回来0.56元,那么老师原来打算让小虎买多少本练习本?教学目标 知识精讲列方程组解应用题【解析】 设老师原本打算让小虎买x 本练习本和y 支铅笔,则由题意可列方程组:0.40.32100.40.32100.56x y y x +=⎧⎨+=-⎩,整理得403210004032944x y y x +=⎧⎨+=⎩,即54125(1)54118(2)x y y x +=⎧⎨+=⎩,将两式相加,得9()243x y +=,则27(2)x y +=, ⑴ 4-⨯⒈,得17x =.所以,老师原打算让小虎买17本练习本.【答案】老师原打算让小虎买17本练习本【巩固】 商店有胶鞋、布鞋共45双,胶鞋每双3.5元,布鞋每双2.4元,全部卖出后,胶鞋比布鞋收入多10元.问:两种鞋各多少双?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设布鞋有x 双,胶鞋有y 双.453.5 2.410x y x y +=⎧⎨-=⎩,解得2025x y =⎧⎨=⎩所以布鞋有20双,胶鞋有25双.【答案】布鞋有20双,胶鞋有25双【例 3】 松鼠妈妈采松子,晴天每天可以采20个,雨天每天可以采12个,它一连几天采了112个松子,平均每天采14个,问这几天当中有几天是下雨天?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 根据题意,松鼠妈妈采的松子有晴天采的,也有雨天采的,总的采集数可以求得,采集天数也确定,因此可列方程组来求解.设晴天有x 天,雨天有y 天,则可列得方程组:()()20121121112214x y x y +=⎧⎪⎨+=⎪⎩ ()1化简为5328x y += …………()3用加减法消元:()()253⨯-得:5()(53)4028x y x y +-+=-解得6y =.所以其中6天下雨.【答案】其中6天下雨【例 4】 运来三车苹果,甲车比乙车多4箱,乙车比丙车多4箱,甲车比乙车每箱少3个苹果,乙车比丙车每箱少5个苹果,甲车比乙车总共多3个苹果,乙车比丙车总共多5个苹果,这三车苹果共有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设乙车运来x 箱,每箱装y 个苹果,根据题意列表如下:()()()()433455x y xy xy x y ⎧+--=⎪⎨--+=⎪⎩,化简为4315(1)5415(2)y x x y -=⎧⎨-=⎩ ⒈+⒈,得:230x =,于是15x =.将15x =代入⒈或⒈,可得:15y =.所以甲车运19箱,每箱12个;乙车运15箱,每箱15个;丙车运11箱,每箱20个.三车苹果的总数是:191215151120673⨯+⨯+⨯=(个).【答案】三车苹果的总数是:673个【例 5】 有大、中、小三种包装的筷子27盒,它们分别装有18双、12双、8双筷子,一共装有330双筷子,其中小盒数是中盒数的2倍.问:三种盒各有多少盒?【解析】 设中盒数为x ,大盒数为y ,那么小盒数为2x ,根据题目条件有两个等量关系:227181282330x x y y x x ++=⎧⎨++⨯=⎩ 该方程组解得69x y =⎧⎨=⎩,所以大盒有9个,中盒有6个,小盒有12个. 【答案】大盒有9个,中盒有6个,小盒有12个【巩固】 用62根同样长的木条钉制出正三角形、正方形和正五边形总共有15个.其中正方形的个数是三角形与五边形个数和的一半,三角形、正方形和五边形各有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设三角形的个数为x ,五边形的个数为y ,那么正方形的个数为2x y +⎛⎫ ⎪⎝⎭,由此可列得方程组: 152345622x y x y x y x y ⎧+⎛⎫++= ⎪⎪⎪⎝⎭⎨+⎛⎫⎪++= ⎪⎪⎝⎭⎩该方程组解得:46x y =⎧⎨=⎩,所以52x y +⎛⎫= ⎪⎝⎭,因此三角形、正方形、五边形分别有4、5、6个. 【答案】三角形、正方形、五边形分别有4、5、6个【例 6】 有1克、2克、5克三种砝码共16个,总重量为50克;如果把1克的砝码和5克的砝码的个数对调一下,这时总重量变为34克.那么1克、2克、5克的砝码有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】5克砝码比1克砝码每多1个,对调后总重量将减少514-=克,所以5克砝码比1克砝码多()503444-÷=(个). 在原来的砝码中减掉4个5克砝码,此时剩下12个砝码,且1克砝码与5克同样多,总重量为30克.设剩下1克、5克各x 个,2克砝码y 个,则212(15)230x y x y +=⎧⎨++=⎩,解得36x y =⎧⎨=⎩所以原有1克砝码3个,2克砝码6个,5克砝码347+=个.【答案】原有1克砝码3个,2克砝码6个,5克砝码347+=个【巩固】 某份月刊,全年共出12期,每期定价2.5元.某小学六年级组织集体订阅,有些学生订半年而另一些学生订全年,共需订费1320元;若订全年的同学都改订半年,而订半年的同学都改订全年,则共需订费1245元.则该小学六年级订阅这份月刊的学生共有 人.【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设订半年的x 人,订全年的y 人,则:2.5(612)13202.5(126)1245x y x y ⨯+=⎧⎨⨯+=⎩,得288283x y x y +=⎧⎨+=⎩,两式相加,得3()171x y +=, 所以57x y +=,即该小学六年级订阅这份月刊的学生共有57人.【答案】小学六年级订阅这份月刊的学生共有57人【例 7】 有两辆卡车要将几十筐水果运到另一个城市,由于可能超载,所以要将两辆卡车中的一部分转移到另外一辆车上去,如果第一辆卡车转移出20筐,第二辆卡车转移出30筐,那么第一辆卡车剩下的水果筐数是第二辆的1.2倍,如果第一辆卡车转移出21筐,第二辆卡车转移出25筐,那么第三辆车上的水果筐数是前面两辆车水果筐数和的一半,求原来两辆车上有多少筐水果?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设第一辆卡车上的水果有x 筐,第二辆卡车上的水果有y 筐,则有()()2030 1.2(1)212521252(2)x y x y ⎧-=-⨯⎪⎨-+-=+⨯⎪⎩,由⒈得 1.216x y =-,代入⒈得2.26292y -=,解得70y =,所以 1.21668x y =-=,原来两辆车上分别装有68筐水果和70筐水果.【答案】两辆车上分别装有68筐水果和70筐水果【巩固】 大、小两个水池都未注满水.若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水.已知大池容量是小池的1.5倍,问:两池中共有多少吨水?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设大池中有x 吨水,小池中有y 吨水.则根据题目条件,两池一共有x y +吨水,大池可装5x y +-吨水,小池可装30x y +-吨水,所以可列得方程5(30) 1.5x y x y +-=+-⨯,方程化简为80x y +=,所以两池中共有80吨水.【答案】两池中共有80吨水【例 8】 某公司花了44000元给办公室中添置了一些计算机和空调,办公室每月用电增加了480千瓦时,已知,计算机的价格为每台5000元,空调的价格为2000元,计算机每小时用电0.2千瓦时,平均每天使用5小时,空调每小时用电0.8千瓦时,平均每天运行5小时,如果一个月以30天计,求公司一共添置了多少台计算机,多少台空调?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设添置了x 台计算机,y 台空调.则有5000200044000(1)0.25300.8530480(2)x y x y +=⎧⎨⨯⨯+⨯⨯=⎩⒈式整理得416x y +=,则164x y =-;代入⒈得()5000164200044000y y -+=,解得2y =,则8x =,所以公司一共添置了8台计算机和2台空调.【答案】8台计算机和2台空调【巩固】 甲、乙两件商品成本共600元,已知甲商品按45%的利润定价,乙商品按40%的利润定价;后来甲打8折出售,乙打9折出售,结果共获利110元.两件商品中,成本较高的那件商品的成本是多少?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲、乙两件商品成本分别为x 元、y 元.根据题意,有方程组:600(145%)0.8(140%)0.9600110x y x y +=⎧⎨+⨯+⨯+⨯-=⎩,解得460140x y =⎧⎨=⎩所以成本较高的那件商品的成本是460元.【答案】成本较高的那件商品的成本是460元【巩固】 某市现有720万人口,计划一年后城镇人口增涨0.4%,农村人口增长0.7%,这样全市人口增加0.6%,求这个城市现在的城镇人口和农村人口.【解析】 假设这个城市现在的城镇人口是x 万人,农村人口是y 万人,得:7200.4%0.7%7200.6%x y x y +=⎧⎨+=⨯⎩,解得240480x y =⎧⎨=⎩, 即这个城市现在的城镇人口有240万,农村人口有480万.【答案】城镇人口有240万,农村人口有480万【例 9】 某次数学竞赛,分两种方法给分.一种是先给40分,每答对一题给4分,不答题不给分,答错扣1分,另一种是先给60分,每答对一题给3分,不答题不给分,答错扣3分,小明在考试中只有2道题没有答,以两种方式计分他都得102分,求考试一共有多少道题?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设小明答对了x 道题,答错了y 道题.由题目条件两种计分方式,他都得102分,可得到两条等量关系式:4041026033102x y x y +-=⎧⎨+-=⎩ 解得162x y =⎧⎨=⎩,所以考试一共有162220++=道题. 【答案】考试一共有162220++=道题【巩固】 某次数学比赛,分两种方法给分.一种是答对一题给5分,不答给2分,答错不给分;另一种是先给40分,答对一题给3分,不答不给分,答错扣1分.某考生按两种判分方法均得81分,这次比赛共多少道题?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设答对a 道题,未答b 道题,答错c 道题,由条件可列方程()()52811403812a b a c +=⎧⎪⎨+-=⎪⎩由()1式知,a 是奇数,且小于17.()2式可化简为()3413c a =-由()3式知,a 大于13.综合上面的分析,a 是大于13小于17的奇数,所以15a =.再由()()13式得到3b =,4c =. 153422a b c ++=++=,所以共有22道题.【答案】共有22道题【巩固】 下表是某班40名同学参加数学竞赛的分数表,如果全班平均成绩是2.5分,那么得3分和5分的各有多少人?【考点】列方程组解应用题【解析】 根据题意,只要设得3分和5分的各有多少人,即可利用总人数和总分数而列方程组求解,等量关系有两条:一是各分数段人数之和等于总人数,各分数段所有人得分之和等于总分数.设得3分的人数有x 人,得5分的人数有y 人,那么:471084017210348540 2.5x y x y +++++=⎧⎨⨯+⨯++⨯+=⨯⎩,化简为:()()11135412x y x y +=⎧⎪⎨+=⎪⎩ ()()213-⨯,得到28y =,即4y =,再代入()1,最后得到方程组得解47x y =⎧⎨=⎩,所以40名学生当中得3分的有7人,得5分的有4人.【答案】得3分的有7人,得5分的有4人【例 10】 在S 岛上居住着100个人,其中一些人总是说假话,其余人则永远说真话,岛上的每一位居民崇拜三个神之一:太阳神、月亮神和地球神.向岛上的每一位居民提三个问题:⑴您崇拜太阳神吗?⑴您崇拜月亮神吗?⑴您崇拜地球神吗?对第一个问题有60人回答:“是”;对第二个问题有40人回答:“是”;对第三个问题有30人回答:“是”.他们中有多少人说的是假话?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 我们将永远说真话的人称为老实人,把总说假话的人称为骗子.每个老实人都只会对一个问题“是”.而每个骗子则都对两个问题答“是”.将老实人的数目计为x ,将骗子的数目计为y .于是2130x y +=.又由于在S 岛上居住着100个人,所以100x y +=,联立两条方程,解得30y =.所以岛上有30个人说的是假话.【答案】30个人说的是假话【例 11】 甲、乙两人生产一种产品,这种产品由一个A 配件与一个B 配件组成.甲每天生产300个A 配件,或生产150个B 配件;乙每天生产120个A 配件,或生产48个B 配件.为了在10天内生产出更多的产品,二人决定合作生产,这样他们最多能生产出多少套产品?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 假设甲、乙分别有x 天和y 天在生产A 配件,则他们生产B 配件所用的时间分别为(10)x -天和(10)y -天,那么10天内共生产了A 配件(300120)x y +个,共生产了B 配件150(10)48(10)198015048x y x y ⨯-+⨯-=--个.要将它们配成套,A 配件与B 配件的数量应相等,即300120198015048x y x y +=--,得到7528330x y +=,则3302875y x -=. 此时生产的产品的套数为330283001203001201320875y x y y y -+=⨯+=+,要使生产的产品最多,就要使得y 最大,而y 最大为10,所以最多能生产出132********+⨯=套产品.【答案】最多能生产出1400套产品【巩固】 某服装厂有甲、乙两个生产车间,甲车间每天能生产上衣16件或裤子20件;乙车间每天能生产上衣18件或裤子24件.现在要上衣和裤子配套,两车间合作21天,最多能生产多少套衣服?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 假设甲、乙两个车间用于生产上衣的时间分别为x 天和y 天,则他们用于生产裤子的天数分别为(21)x -天和(21)y -天,那么总共生产了上衣(1618)x y +件,生产了裤子20(21)24(21)9242024x y x y ⨯-+⨯-=--件.根据题意,裤子和上衣的件数相等,所以16189242024x y x y +=--,即67154x y +=,即15476y x -=.那么共生产了15472216181618410633y x y y y -+=⨯+=-套衣服.要使生产的衣服最多,就要使得y 最小,则x 应最大,而x 最大为21,此时4y =.故最多可以生产出22410440833-⨯=套衣服. 【答案】最多可以生产出408套衣服【例 12】 一片青草,每天长草的速度相等,可供10头牛单独吃20天,供60只羊单独吃10天.如果1头牛的吃草量等于4只羊的吃草量,那么,10头牛与60只羊一起吃草,这片草可以吃________天.【考点】列方程组解应用题 【难度】3星 【题型】填空【解析】 把1只羊每天的吃草量当作单位“1 ”,则1头牛每天的吃草量为4,设原有草量为x ,每天的长草量为y ,那么:20410201016010x y x y +=⨯⨯⎧⎨+=⨯⨯⎩解得400x =,20y =,如果10头牛与60只羊一起吃草,这片草可以吃400(41016020)5÷⨯+⨯-=(天).【答案】5【例 13】 甲、乙、丙沿着环形操场跑步,乙与甲、丙的方向相反.甲每隔19分钟追上丙一次,乙每隔5分钟与丙相遇一次.如果甲4分钟跑的路程与乙5分钟跑的路程相同,那么甲的速度是丙的速度的多少倍?甲与乙多长时间相遇一次?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 把环形操场的周长看作1,设甲每分钟跑的路程为x ,丙每分钟跑的路程为y .根据题意可知乙每分钟跑的路程为45x .有: 1194155x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩,解得857557x y ⎧=⎪⎪⎨⎪=⎪⎩. 所以甲的速度是丙的速度的85 1.65757÷=倍; 甲与乙相遇一次所用的时间为884231()35757524÷+⨯=分钟. 【答案】甲的速度是丙的速度的1.6倍;甲与乙相遇一次所用的时间为23324分钟【例 14】 甲、乙二人从相距60千米的两地同时出发,沿同一条公路相向而行,6小时后在途中相遇.如果两人每小时所行走的路程各增加1千米,则相遇地点距前一次地点差1千米.求甲、乙两人的速度.【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲速为每小时x 千米,乙速为每小时y 千米.根据第一次相遇的条件,可知:()660x y +=,则10x y +=,即甲、乙两人的速度和为10千米/小时,所以第二次相遇两人的速度和为12千米/小时.第二次相遇时,甲走的路程可能比第一次少1千米或多1千米,即(61)x -千米,或(61)x +千米.由此可列第二条方程:5(1)61x x +=-或5(1)61x x +=+.因此可列的方程组有:105(1)61x y x x +=⎧⎨+=-⎩解得64x y =⎧⎨=⎩,或105(1)61x y x x +=⎧⎨+=+⎩解得46x y =⎧⎨=⎩. 所以甲、乙(或乙、甲)两人的速度分别为6千米/小时和4千米/小时.【答案】甲、乙(或乙、甲)两人的速度分别为6千米/小时和4千米/小时【例 15】 从甲地到乙地的公路,只有上坡路和下坡路,没有平路.一辆汽车上坡时每小时行驶20千米,下坡时每小时行驶35千米.车从甲地开往乙地需9小时,从乙地到甲地需7.5小时,问:甲乙两地公路有多少千米?从甲地到乙地须行驶多少千米的上坡路?【考点】列方程组解应用题 【难度】3星 【题型】解答【关键词】华杯赛,复赛【解析】 (法1)从甲地到乙地的上坡路,就是从乙地到甲地的下坡路;从甲地到乙地下坡路,就是从乙地到甲地的上坡路.设从甲地到乙地的上坡路为x 千米,下坡路为y 千米,依题意得:920351735202x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得140x =,70y =,所以甲、乙两地间的公路有14070210+=千米,从甲地到乙地须行驶140千米的上坡路.答:甲、乙两地间的公路有210千米,从甲地到乙地须行驶140千米的上坡路.【答案】甲、乙两地间的公路有210千米,从甲地到乙地须行驶140千米的上坡路【巩固】 从A 村到B 村必须经过C 村,其中A 村至C 村为上坡路,C 村至B 村为下坡路,A 村至B 村的总路程为20千米.某人骑自行车从A 村到B 村用了2小时,再从B 村返回A 村又用了1小时45分.已知自行车上、下坡时的速度分别保持不变,而且下坡时的速度是上坡时速度的2倍.求A 、C 之间的路程及自行车上坡时的速度.【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设A 、C 之间的路程为x 千米,自行车上坡速度为每小时y 千米,则C 、B 之间的路程为(20)x -千米,自行车下坡速度为每小时2y 千米.依题意得:2022203124x x y y x x yy -⎧+=⎪⎪⎨-⎪+=⎪⎩, 两式相加,得:202032124y y +=+,解得8y =;代入得12x =. 故A 、C 之间的路程为12千米,自行车上坡时的速度为每小时8千米.【答案】A 、C 之间的路程为12千米,自行车上坡时的速度为每小时8千米【巩固】 华医生下午2时离开诊所出诊,走了一段平路后爬上一个山坡,给病人看病用了半小时,然后原路返回,下午6时回到诊所.医生走平路的速度是每小时4千米,上山的速度是每小时3千米,下山的速度是每小时6千米,华医生这次出诊一共走了 千米.【考点】列方程组解应用题 【难度】3星 【题型】填空【关键词】2004年,南京市,冬令营【解析】 设平路长a 千米,山坡长b 千米,则共走了2()a b +千米,根据题意,列方程3.54346a b a b +++=,1() 3.52a b +=, 2()14a b +=.所以,华医生这次出诊一共走了14千米.【答案】14【例 16】 小明从自己家到奶奶家时,前一半路程步行,后一半路程乘车;他从奶奶家回家时,前13时间乘车,后23时间步行.结果去奶奶家的时间比回家所用的时间多2小时.已知小明步行每小时行5千米,乘车每小时行15千米,那么小明从自己家到奶奶家的路程是多少千米?【考点】列方程组解应用题 【难度】3星 【题型】解答【关键词】迎春杯,决赛【解析】 设小明家到奶奶家的路程为x 千米,而小明从奶奶家返回家里所需要的时间是y 小时,那么根据题意有:112225*********x x y x y y ⎧⎪+=+⎪⎨⎪=⨯+⨯⎪⎩,解得: 15018x y =⎧⎨=⎩ 答:小明从自己家到奶奶家的路程是150千米.【答案】小明从自己家到奶奶家的路程是150千米【例 17】 (保良局亚洲区城市小学数学邀请赛)米老鼠从A 到B ,唐老鸭从B 到A ,米老鼠与唐老鸭行走速度之比是65∶,如下图所示.M 是A 、B 的中点,离M 点26千米的C 点有一个魔鬼,谁从它处经过就要减速25%,离M 点4千米的D 点有一个仙人,谁从它处经过就能加速25%.现在米老鼠与唐老鸭同时出发,同时到达,那么A 与B 之间的距离是 千米.【考点】列方程组解应用题 【难度】3星 【题型】填空【解析】 设AM MB x ==,米老鼠的行走速度为6k ,则唐老鸭的行走速度为5k (0k ≠),如下图,则有米老鼠从A 到B 需要时间 2630466(125%)6(125%)(125%)x x k k k --++⨯-⨯-⨯+ 11614(4)615x x k ⎧⎫=++-⎨⎬⎩⎭, 唐老鸭从B 到A 需要时间4302655(125%)5(125%)(125%)x x k k k --++⨯+⨯-⨯+ 11620(26)515x x k ⎧⎫=++-⎨⎬⎩⎭. 因为米老鼠与唐老鸭用的时间相同,所以列方程11611614(4)20(26)615515x x x x k k ⎧⎫⎧⎫++-=++-⎨⎬⎨⎬⎩⎭⎩⎭, 解得46x =.所以,A 、B 两地相距92千米.【答案】A 、B 两地相距92千米x -430x -26A C M D【例 18】 甲、乙两人分别从A 、B 两地同时出发相向而行,5小时后相遇在C 点.如果甲速度不变,乙每小时多行4千米,且甲、乙还从A 、B 两地同时出发相向而行,则相遇点D 距C 点10千米.如果乙速度不变,甲每小时多行3千米,且甲、乙还从A 、B 两地同时出发相向而行,则相遇点E 距C 点5千米.问:甲原来的速度是每小时多少千米?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 甲速度不变,乙每小时多行4千米,相遇点D 距C 点10千米,出发后5小时,甲到达C ,乙到达F ,因为乙每小时多行4千米,所以4520FC =⨯=千米,那么10FD DC ==千米,也就是说相遇后相同的时间内甲、乙走的路程相同,也就是说原来甲比乙每小时多行4千米. 乙速度不变,甲每小时多行3千米,相遇点E 距C 点5千米,出发后5小时乙到达C ,甲到达G ,因为甲每小时多行3千米,所以3515GC =⨯=千米.那么10GE =千米,5EC =千米.所以2EG EC =,即相遇后在相同的时间甲走的路程是乙的2倍,所以甲每小时多行3千米后,速度是乙的两倍.于是可列得方程组:432v v v v =+⎧⎪⎨+=⎪⎩乙甲乙甲,解得117v v =⎧⎨=⎩甲乙,所以甲原来每小时11千米. 【答案】甲原来每小时11千米【例 19】 甲、乙二人共存款100元,如果甲取出49,乙取出27,那么两人存款还剩60元.问甲、乙二人各有存款多少元?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲存款x 元,乙存款y 元,根据题目条件有两条等量关系,一是两人存款加起来等于100元,二是取钱后两人存款加起来有60元.由此可列得方程组:100421006097x y x y +=⎧⎪⎨+=-⎪⎩ 方程组最终解得7228x y =⎧⎨=⎩,所以甲存款72元,乙存款28元. 【答案】甲存款72元,乙存款28元【巩固】 甲、乙两个容器共有溶液2600克,从甲容器取出14的溶液,从乙容器取出15的溶液,结果两个容器共剩下2000克.问:两个容器原来各有多少溶液?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲容器有溶液x 克,乙容器有溶液y 克,根据题目条件有两条等量关系,一是两容器溶液加起来等于2600克,二是取溶液后两容器加起来有2000克.由此可列得方程组: 26001111200045x y x y +=⎧⎪⎨⎛⎫⎛⎫-+-= ⎪ ⎪⎪⎝⎭⎝⎭⎩ 方程组最终解得16001000x y =⎧⎨=⎩,所以甲容器中有溶液1600克,乙容器中有溶液1000克. 【答案】甲容器中有溶液1600克,乙容器中有溶液1000克【例 20】 某班有45名同学,其中有6名男生和女生的17参加了数学竞赛,剩下的男女生人数正好相等.问:这个班有多少名男生?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设有x 名男生和y 名女生,那么根据题目条件有两条等量关系:一是原来男女生人数和为45人,二是剩下的男女生人数相等,由此可列得方程组:451617x y x y +=⎧⎪⎨⎛⎫-=- ⎪⎪⎝⎭⎩该方程组解得2421x y =⎧⎨=⎩,所以这个班有24名男生.【答案】这个班有24名男生【巩固】 甲、乙两班人数都是44人,两班各有一些同学参加了数学小组的活动,甲班参加的人数恰好是乙班未参加人数的13,乙班参加的人数恰好是甲班未参加人数的14,那么共有多少人未参加数学小组?【考点】列方程组解应用题 【难度】3星 【题型】解答 【解析】 设甲、乙两班参加数学小组的人数分别为x 人、y 人,未参加人数分别为()44x -人、()44y -人,由题设已知条件可以得到:1(44)31(44)4x y x y⎧=-⎪⎪⎨⎪-=⎪⎩,解之得128x y =⎧⎨=⎩ 所以未参加兴趣小组的人数()()444468x y =-+-=人.【答案】未参加兴趣小组的人数68人【例 21】 一群小朋友去春游,男孩戴小黄帽,女孩戴小红帽.在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍.问:男孩、女孩各有多少人?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设男孩有x 人,女孩有y 人.根据条件可列方程:(1)52(1)x y x y --=⎧⎨=-⎩由第一条方程可以得到6x y =+,代入第二条方程得到62(1)y y +=- .解得8y =,再代入第一条方程.方程解得148x y =⎧⎨=⎩.所以男孩有14人,女孩有8人.【答案】男孩有14人,女孩有8人【巩固】 有大小两盘苹果,如果从大盘中拿出一个苹果放在小盘里,两盘苹果一样多;如果从小盘里拿出一个苹果放在大盘里,大盘苹果的个数是小盘苹果数的3倍.大、小两盘苹果原来各有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答 【解析】 设原来大盘有苹果x 个,小盘有苹果y 个.那么可列方程组:()11131x y x y -=+⎧⎪⎨+=-⎪⎩,方程组解得53x y =⎧⎨=⎩,所以大盘原来有苹果5个,小盘原来有苹果3个.【答案】大盘原来有苹果5个,小盘原来有苹果3个【巩固】 教室里有若干学生,走了10名女生后,男生是女生人数的2倍,又走了9名男生后,女生是男生人数的5倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥数中的解方程
知识精讲
1、 含有未知数的等式叫做方程。
2、 左右两边都相等的式子叫做等式。
3、 等式的两边同时加(或减)相同的数,等式不变。
4、 等式的两边同时乘(或除以)相同的数(0除外),等式不变。
本讲我们要解决稍复杂的方程,像方程两边都含有未知数,如()62108+=-x x ;等号两边都是分数形式的方程,如3
7615=+x 。
解稍复杂的方程,要先加以变形,变为较简单的简易方程。
所说的变形要求,常用的方法是:
1、 运用乘法分配律,去掉括号;
2、 两边是分数形式的方程,运用交叉相乘法,转化为不是分数形式的方程。
3、 方程的两边都加上或减去相等的数或相等的式子,等式仍然成立,这时等式的性质。
利用这个性质可以简化方程。
4、 方程的两边都乘以或除以相等的数或相等的式子(这些书与式子不能为0),这也是等式的性质。
利用这个性质也可以化简方程。
5、 根据四则运算中的六个关系式,求出方程的解。
解方程步骤要规范,求出得数后腰加以检验,看得数是否正确,是否合理。
例1、 解方程:
6437+=-x x
练习1、94.18.94.3+=-x x 2、x x 82552-=+
例2、()()72225+=+x x
练习1、()()75726+=-x x 2、()()5.0624.135-=-x x
例3、 解方程:()6
.06.06.06=--x
练习1、()5422.5=--x 2
、()x x 265.55.1=⨯--
例4、()72423-=÷+x x
练习1、()()52144=+÷+x x 2、()153813-=÷+x x
例5、 解方程:32
400400
6.0=++x x
练习1、27
23914=-+x x
2、4.05.08.109=-+x x
3、()()()
12421752413---=+-x x x x。