第17章 勾股定理复习试题

合集下载

人教版八年级数学下册第十七章-勾股定理综合训练试题(含详细解析)

人教版八年级数学下册第十七章-勾股定理综合训练试题(含详细解析)

人教版八年级数学下册第十七章-勾股定理综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一个直角三角形两直角边边长分别为6和8,则斜边边长为()A.10B.C.15D.10或2、如图,在△ABC中,BC=C=45°,若D是AC的三等分点(AD>CD),且AB=BD,则AB的长为()A.2B C D.5 23、小亮想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多2m,当他把绳子的下端拉开8m 后,下端刚好接触到地面,则学校旗杆的高度为()A.10m B.12m C.15m D.18m4、已知直角三角形的斜边长为5cm ,周长为12cm ,则这个三角形的面积( )A .24cmB .25cmC .26cmD .212cm5、下列各组数中,是勾股数的是( )A .0.3,0.4,0.5B .52,6,132 C 2 D .9,12,156、如图,数轴上点A 所表示的数是( )A B C D 17、如图,在Rt △ABC 中,AB =6,BC =8,AD 为∠BAC 的平分线,将△ADC 沿直线AD 翻折得△ADE ,则DE 的长为( )A .4B .5C .6D .78、如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要( )A .8 cmB .10 cmC .12 cmD .15 cm9、下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A .2、3、4 BC .5、12、13D .30、50、6010、满足下列条件的△ABC ,不是直角三角形的是( )A .∠A :∠B :∠C =5:12:13B .a :b :c =3:4:5C .∠C =∠A ﹣∠BD .b 2=a 2﹣c 2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么_____.2、△ABC 的三条边长a 、b 、c 满足8c =60b -=,则△ABC ____直角三角形(填“是”或“不是”)3、已知:点A 的坐标为()3,4,点B 坐标为()1,1-,那么点A 和点B 两点间的距离是______.4、如图,已知△ABO 为等腰三角形,且OA =AB =5,B (﹣6,0),则点A 的坐标为_____.5、如图,△ABC 是边长为12的等边三角形,D 是BC 的中点,E 是直线AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转60°得到FC ,连接DF .则在点E 的运动过程中,当DF 的长度最小时,CE 的长度为______.三、解答题(5小题,每小题10分,共计50分)1、(阅读理解)我国古人运用各种方法证明勾股定理,如图①,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形.其中四个直角三角形直角边长分别为a 、b ,斜边长为c .图中大正方形的面积可表示为()2a b +,也可表示为2142c ab +⨯,即()22142a b c ab +=+⨯=,所以222+=a b c . (尝试探究)美国第二十任总统伽菲尔德的“总统证法”如图②所示,用两个全等的直角三角形拼成一个直角梯形BCDE ,其中BCA ADE △△≌,90C D ∠=∠=︒,根据拼图证明勾股定理.(定理应用)在Rt ABC △中,90C ∠=︒,A ∠、B 、C ∠所对的边长分别为a 、b 、c .求证:222244a c a b c b +=-.2、如图,正方形网格中,每个小正方形的边长为1,求网格上的三角形ABC 的面积和周长.3、如图,在△ABC 中,CA =CB ,∠ACB =90°,AB =5,点D 是边AB 上的一个动点,连接CD ,过C 点在上方作CE ⊥CD ,且CE =CD ,点P 是DE 的中点.(1)如图①,连接AP,判断线段AP与线段DE的数量关系并说明理由;(2)如图②,连接CP并延长交AB边所在直线于点Q,若AQ=2,求BD的长.4、如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做“格点”,以格点为顶点分别按下列要求画三角形:(1)在图①中画出一个钝角三角形,使它的面积为4,并求出该三角形的三边长;(2)在图②中画出一个面积为10的正方形.5、如图,在4×4的正方形网格中,每个小正方形的边长均为1.(1(2)此三角形的面积是.---------参考答案-----------一、单选题1、A【分析】已知两直角边边长分别为6和8,利用勾股定理求斜边即可.【详解】解: ∵一个直角三角形两直角边边长分别为6和8,斜边边长,∴斜边边长为10.故选A .【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中明确直角边或斜边,直接应用勾股定理,如果条件不明确时那条边是斜边,要注意讨论.2、B【分析】作BE ⊥AC 于E ,根据等腰三角形三线合一性质可得AE =DE ,根据∠C =45°,得出∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,可得BE =CE ,利用勾股定理求出CE =BE =2,根据D 是AC 的三等分点得出AE =DE =121233AC AC ⨯==CD ,求出CD =1,利用勾股定理AB 【详解】解:作BE ⊥AC 于E ,∵AB =BD ,∴AE =DE ,∵∠C =45°,∴∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,∴BE =CE ,在Rt △BEC 中,∴(22222+2BE CE CE BC ===,∴CE =BE =2,∵D 是AC 的三等分点,∴CD =13AC ,AD =AC -CD =1233AC AC AC -=,∴AE =DE =121233AC AC ⨯==CD ,∴CE =CD +DE =2CD =2,∴CD =1,∴AE =1,在Rt △ABE 中,根据勾股定理AB故选B .【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键.3、C【分析】根据题意设旗杆的高AB为xm,则绳子AC的长为(x+2)m,再利用勾股定理即可求得AB的长,即旗杆的高.【详解】解:根据题意画出图形如下所示:则BC=8m,设旗杆的高AB为xm,则绳子AC的长为(x+2)m,在Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+2)2,解得x=15,故AB=15m,即旗杆的高为15m.故选:C.【点睛】此题考查了学生利用勾股定理解决实际问题的能力,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.4、C【分析】设该直角三角形的两条直角边分别为a、b,根据勾股定理和周长公式即可列出方程,然后根据完全平方公式的变形即可求出2ab 的值,根据直角三角形的面积公式计算即可.【详解】解:设该直角三角形的两条直角边分别为a 、b ,根据题意可得:22251257a b a b ⎧+=⎨+=-=⎩①② 将②两边平方-①,得224ab =∴12ab = ∴该直角三角形的面积为2126ab cm = 故选:C【点睛】此题考查的是直角三角形的性质和完全平方公式,根据勾股定理和周长列出方程是解决此题的关键.5、D【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【详解】解:A 、不是勾股数,因为0.3,0.4,0.5不是正整数,故此选项不符合题意;B 、不是勾股数,因为52,132不是正整数,故此选项不符合题意;CD 、是勾股数,因为222912=15+,故此选项符合题意;故选D .【点睛】本题考查勾股数的概念,勾股数是指:①三个数均为正整数;②其中两个较小的数的平方和等于最大的数的平方.6、D【分析】先根据勾股定理计算出BC BA=BC AD的长,接着计算出OA的长,即可得到点A所表示的数.【详解】解:如图,BD=1﹣(﹣1)=2,CD=1,∴BC∴BA=BC∴AD2,∴OA=21,∴点A1.故选:D【点睛】本题主要考查了勾股定理,实数与数轴的关系,熟练掌握勾股定理,实数与数轴的关系是解题的关键.7、B【分析】在Rt ABC∆中利用勾股定理求出AC长,利用折叠性质:得到ADE ADC∆∆≌,求出对应相等的边,设DE=x,在Rt BDE∆中利用勾股定理,列出关于x的方程,求解方程即可得到答案.【详解】解:∵AB=6,BC=8,∠ABC=90°,∴AC2222BC,6810∵AD为∠BAC的平分线,将△ADC沿直线AD翻折得△ADE,≌,∴∆∆ADE ADC∴A、B、E共线,AC=AE=10,DC=DE,∴BE=AE﹣AB=10﹣6=4,在Rt△BDE中,设DE=x,则BD=8﹣x,∵BD2+BE2=DE2,∴(8﹣x)2+42=x2,解得x=5,∴DE=5,故选:B.【点睛】本题主要是考查了直角三角形的勾股定理以及折叠中的三角形全等的性质,熟练利用折叠得到全等三角形,找到直角三角形中的各边的关系,利用勾股定理列方程,并求解方程,这是解决该类问题的关键.8、B【分析】立体图形展开后,利用勾股定理求解.【详解】解:将长方体沿着AB边侧面展开,并连接'AB,如下图所示:由题意及图可知:'13138AB cm=,=+++=,''6AA cm两点之间,线段最短,故'AB的长即是细线最短的长度,''∆中,由勾股定理可知:'10Rt AAB===,AB cm故所用细线最短需要10cm.故选:B.【点睛】本题主要是考查了勾股定理求最短路径、两点之间线段最短以及立体图形的侧面展开图,因此,正确得到立体图形的侧面展开图,熟练运用勾股定理求边长,是解决此类问题的关键.9、C【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可.【详解】解:A、22+32≠42,不能构成直角三角形,故此选项不符合题意;B、2+22,不能构成直角三角形,故此选项不符合题意;C、52+122=132,能构成直角三角形,故此选项符合题意;D、302+502≠602,不能构成直角三角形,故此选项不符合题意.故选:C.【点睛】本题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.10、A【分析】根据三角形的内角和定理和勾股定理逆定理对各选项分析判断利用排除法求解.【详解】解:A、∵∠A:∠B:∠C=5:12:13,∴∠C=180°×1325=93.6°,不是直角三角形,故此选项正确;B、∵32+42=52,∴是直角三角形,故此选项不合题意;C、∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴∠A=90°,∴是直角三角形,故此选项不合题意;D、∵b2=a2﹣c2,∴a2=b2+c2,是直角三角形,故此选项不合题意;故选:A.【点睛】本题考查了直角三角形的性质,主要利用了三角形的内角和定理,勾股定理逆定理.二、填空题1、222+=a b c【分析】利用勾股定理:两条直角边长的平方和等于斜边长的平方和,即可得到答案.【详解】解:在直角三角形中,由勾股定理可知:222+=a b c .故答案为:222+=a b c .【点睛】本题主要是考查了直角三角形的勾股定理,熟练掌握勾股定理的内容,注意区分好直角边和斜边,这是解决该类问题的关键.2、不是【分析】根据二次根式有意义的条件以及绝对值的非负性,得出,a b 的值,运用勾股定理逆定理验证即可.【详解】60b -=,∴40a -=,60b -=,∴4,6a b ==,则22246528+=≠,∴222a b c +≠,∴△ABC 不是直角三角形,故答案为:不是.【点睛】本题考查了二次根式有意义的条件,绝对值的非负性,勾股定理逆定理等知识点,根据题意得出,a b 的值是解本题的关键.3、5【分析】根据两点间距离公式求解即可.【详解】∵点A 的坐标为()3,4,点B 坐标为(1,1)-,∴点A 和点B 5=.故答案为:5.【点睛】本题考查两点间距离,若11(,)A x y ,22(,)B x y ,则两点间的距离是AB 距离公式是解题的关键.4、(﹣3,4)【分析】过点A 作AC x ⊥ 轴于点C ,AD y ⊥轴于点D ,根据AB =AO ,AC ⊥BO ,得OC =132OB =,在Rt △AOC 中,由勾股定理得:AC =4,即可求出点A 的坐标.【详解】解:如图,过点A 作AC x ⊥ 轴于点C ,AD y ⊥轴于点D ,∵B(﹣6,0),∴OB=6,∵AB=AO,AC⊥BO,∴OC=132OB=,在Rt△AOC中,由勾股定理得:AC4=,∴A(﹣3,4).故答案为:(﹣3,4)【点睛】本题主要考查了坐标与图形,等腰三角形的性质,勾股定理,熟练掌握相关知识点是解题的关键.5、【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD CG=以及FCD ECG,由旋转的性质可得出EC FC=,由此即可利用全等三角形的判定定理SAS证出ΔΔFCD ECG≅,进而即可得出DF GE=,再根据点G为AC的中点,求出AD和DE的长,由勾股定理可得出答案.【详解】取线段AC的中点G,连接EG,如图所示.ABC ∆为等边三角形,且AD 为ABC ∆的对称轴,162CD CG AB ∴===,60ACD ∠=︒, 60ECF =︒∠,FCD ECG .在ΔFCD 和ECG ∆中,FC EC FCD ECG DC GC =⎧⎪∠=∠⎨⎪=⎩, ΔΔ()FCD ECG SAS ∴≅,DF GE ∴=.当//EG BC 时,EG 最小,此时E 为AD 的中点,12AB BC ==,6DC =,AD ∴==12DE AD ∴==CE ∴==故答案为【点睛】本题考查了勾股定理,旋转的性质,等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出DF GE =.三、解答题1、尝试探究:证明见解析;定理应用:证明见解析【分析】尝试探究:根据全等三角形性质,得BAC AED ∠=∠,结合题意,根据直角三角形两锐角互余的性质,推导得90BAE ∠=︒;结合梯形、三角形面积计算公式,通过计算即可证明222+=a b c ;定理应用:根据提取公因式、平方差公式的性质分析,即可完成222244a c a b c b +=-证明.【详解】尝试探究:∵BCA ADE △△≌,∴BAC AED ∠=∠.∵90D ∠=︒∴90DAE AED ∠+∠=︒.∴90DAE BAC ∠+∠=︒.∵180BAC AED BAE ∠+∠+∠=︒.∴90BAE ∠=︒. ∵直角梯形的面积可以表示为()212a b +,也可以表示为211222ab c ⨯+, ∴()221112222a b ab c +=⨯+, 整理,得222+=a b c .定理应用:在Rt ABC △中,90C ∠=︒,∴222+=a b c ;∵2222a c a b +()222a c b =+.44c b -()()()2222222c b c b a c b =+-=+∴222244a c a b c b +=-.【点睛】本题考查了勾股定理、直角三角形、全等三角形、平方差公式的知识;解题的关键是熟练掌握全等三角形、直角三角形两锐角互余、平方差公式的性质,从而完成求解.2、面积是7【分析】利用面积和差和勾股定理求解即可.【详解】解:△ABC 的面积=111441432247222⨯-⨯⨯-⨯⨯-⨯⨯=;由勾股定理得:ABBC =AC ==所以△ABC【点睛】本题考查了勾股定理,解题关键是熟练运用勾股定理求线段长.3、(1)AP =12DE ,理由见解析;(2)BD =56或4514【分析】(1)连接AE ,首先根据∠ACB =∠ECD =90°,得到∠ECA =∠DCB ,然后证明△BCD ≌△ACE (SAS ),根据全等三角形对应角相等得到∠EAC =∠B =45°,进一步得出∠EAD =90°,最后根据直角三角形斜边上的中线等于斜边的一半即可得出AP =12DE ;(2)分两种情况讨论:当Q 在线段AB 上时和当Q 在线段BA 延长线上时,连接AE ,EQ ,根据题意得出CQ 垂直平分DE ,进而根据垂直平分线的性质得到EQ =DQ ,设BD =AE =x ,在Rt △AEQ 中根据勾股定理列方程求解即可;【详解】解:(1)AP =12DE ,理由:连接AE ,如图,∵CA =CB ,∠ACB =90°,∴∠CAB =∠CBA =45°.∵∠ACB =∠ECD =90°,∴∠ECA =∠DCB .在△BCD 和△ACE 中,CE CD ECA DCB AC BC =⎧⎪∠=∠⎨⎪=⎩, ∴△BCD ≌△ACE (SAS ).∴∠EAC =∠B =45°.∴∠EAD=∠EAC+∠BAC=90°.又∵P为DE中点,∴AP=12DE.(2)情况(一),当Q在线段AB上时,连接AE,EQ,如图,∵CE⊥CD,且CE=CD,点P是DE的中点,∴CP⊥DE.即CQ垂直平分DE,∴EQ=DQ.设BD=AE=x,EQ=DQ=AB﹣AQ﹣BD=3﹣x,由(1)知:∠EAB=90°,∴EA2+AQ2=EQ2.∴x2+22=(3﹣x)2,解得x=56,即BD=56;情况(二),当Q在线段BA延长线上时,连接AE,EQ,如图,∵CE⊥CD,且CE=CD,点P是DE的中点,∴CP⊥DE.即CQ垂直平分DE,∴EQ=DQ.设BD=AE=x,同理可得方程:x2+22=(7﹣x)2,解得x=45 14.综上:BD=56或4514.【点睛】此题考查了全等三角形的性质和判定,勾股定理的运用,垂直平分线的性质,直角三角形斜边中线的性质等知识,解题的关键是根据题意正确作出辅助线.4、 (1)三角形如图①所示,三边长分别为2、(2)正方形如图②所示.【分析】(1)画一个底边长是2,高为4的钝角三角形即可,然后利用勾股定理可以求出各边长.(2【详解】(1)如图①所示:很明显,12442EMFS=⨯⨯=,且FM=2,又由题意可得:EM=,EF=(2)如图②所示,由题意可得:AB=BC=CD=DA【点睛】本题考查的是勾股定理的综合应用,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.5、(1)画图见解析;(2)5.5【分析】(1)利用勾股定理在网格中确定2222223110,2313,1417,AB AC BC再顺次连接,,A B C即可;(2)利用长方形的面积减去周围三个三角形的面积即可. 【详解】解:(1)如图,ABC即为所求作的三角形,其中:2222223110,2313,1417, AB AC BC(2)11134132314 5.5,222ABCS故答案为:5.5【点睛】本题考查的是网格中作三角形,勾股定理的应用,网格三角形的面积的计算,掌握“利用勾股定理求解网格三角形的边长”是解本题的关键.。

人教版数学八年级下册第十七章勾股定理测试题及答案

人教版数学八年级下册第十七章勾股定理测试题及答案

人教版数学八年级下册第十七章考试试题评卷人得分一、单选题1.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为()A.60海里B.45海里C.海里D.2.一直角三角形的三边分别为2,3,x,那么以x为边长的正方形的面积为()A.13B.5C.4D.13或53.在测量旗杆的方案中,若旗杆高为21m,目测点到杆的距离为15m,则目测点到杆顶的距离为(设目高为1m)().A.20m B.25m C.30m D.35m4.直角三角形斜边的平方等于两条直角边乘积的2倍,这个三角形有一个锐角是() A.15°B.30°C.45°D.60°5.直角三角形两直角边长度为5,12,则斜边上的高()A.6B.8C.1813D.60136.如图1,一架梯子AB长为5m,斜靠在一面墙上,梯子底端B离墙3m,若梯子的顶端A下滑了1m(如图2),则梯子的底端在水平方向上滑动的距离BD为()A.1m B.大于1m C.介于0m和0.5m之间D.介于0.5m和1m之间7.如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=5,如果Rt△ABC的面积为1,则它的周长为()A.5+1B.5+1C.5+2D.5+38.如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点,且PC=23BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A、6 (4π+㎝B、5cmC、35㎝9.如果Rt△的两直角边长分别为k2-1,2k(k>1),那么它的斜边长是()A.2k B.k+1C.k2-1D.k2+110.如图,一个无盖的正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从盒外的D点沿正方体的盒壁爬到盒内的M点(盒壁的厚度不计),蚂蚁爬行的最短距离是()A.25+B.13C29D.5评卷人得分二、填空题11.若一个三角形的三边长分别为1、a、8(其中a为正整数),则以a-2、a、a+2为边的三角形的面积为______.12.若直角三角形两直角边的比为3:4,斜边长为20,则此直角三角形的面积为____.13.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为______.14.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.15.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为.现已知△ABC 的三边长分别为1,2,则△ABC 的面积为______.16.在△ABC ,AB =AC =5,BC =6,若点P 在边AC 上移动,则BP 的最小值是_______.评卷人得分三、解答题17.如图,在△ABC 中,∠C=90°,M 是BC 的中点,MD ⊥AB 于D ,求证:222AD AC BD =+.18.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A ',那么梯子的底端在水平方向滑动了几米?19.已知:如图,四边形ABCD 中,∠ACB=90°,AB=15,BC=9,AD=5,DC=13.试判断△ACD 的形状,并说明理由;20.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点.求证:(1)△ACE ≌△BCD ;(2)222AD DB DE +=.21.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.22.如图,在等腰直角△ABC的斜边上取异于B,C的两点E,F,使∠EAF=45°,求证:以EF,BE,CF为边的三角形是直角三角形.参考答案1.D【解析】试题分析:根据条件易知△APB是直角三角形,AP=30,∠A=60°,∠B=30°,运用三角函数定义易求BP.考点:解直角三角形的应用-方向角问题.2.D【解析】【分析】以x为边长的正方形的面积即为x2.此题应考虑两种情况:2和3是直角边,x是斜边或2和x是直角边,3是斜边,运用勾股定理进行计算即可.【详解】当2和3是直角边,x是斜边时,则x2=4+9=13;当2和x是直角边,3是斜边,则x2=9-4=5.故选D.【点睛】此题考查了勾股定理,以及正方形的面积,此类题在没有明确直角边或斜边的时候,一定要注意分情况考虑,熟练运用勾股定理进行计算.3.B【解析】【分析】首先根据题意画出图形,题目已知条件是:已知旗杆AB高21m,目测点C到杆的距离CD 为15m,目高CE为1m.在Rt△BCD中,利用勾股定理求出BC即可.【详解】如图,已知AB=21m,CD=15m,CE=1m,∵∠A=∠ADC=∠AEC=90°,∴四边形ADCE是矩形,∴AD=CE=1.在Rt△BCD中,∵∠CDB=90°,CD=15,BD=AB-AD=21-1=20,∴BC25m,即目测点到杆顶的距离为25m.故选B.【点睛】本题考查了解直角三角形的应用,勾股定理,理解题意正确画出图形是解题的关键.【解析】设直角三角形的两直角边是a、b,斜边是c.根据斜边的平方等于两条直角边乘积的2倍得到:2ab=c2,根据勾股定理得到:a2+b2=c2,因而a2+b2=2ab,即:a2+b2-2ab=0,(a-b)2=0∴a=b,则这个三角形是等腰直角三角形,因而这个三角形的锐角是45°.故选C.点睛:本题考查了的是勾股定理,解答此题的关键是熟知勾股定理、直角三角形的性质及完全平方公式.5.D【解析】【分析】首先根据勾股定理,得:斜边=13.再根据直角三角形的面积公式,求出斜边上的高.【详解】=13.所以斜边上的高=12×5÷13=60 13.故选D.【点睛本题考查了勾股定理.解题的关键是掌握直角三角形斜边上的高等于两条直角边的乘积除以斜边.6.A【解析】解:图(1)中,AB=5m,BC=3m,由勾股定理得AC=4m.∵梯子下滑了1m,∴AE=1m,∴EC=3m,图(2)中,EC=3m,ED=5m,由勾股定理得CD=4m,所以梯子向外端下滑了1m.故选A.点睛:本题考查的是勾股定理的应用,要求熟练掌握.【解析】试题分析:∵在Rt△ABC中,∠ACB=90°,点D是AB的中点,且∴AB=2CD=5.∴AC2+BC2=5又Rt△ABC的面积为1,∴12AC•BC=1,则AC•BC=2.∴(AC+BC)2=AC2+BC2+2AC•BC=9,∴AC+BC=3(舍去负值),∴AC+BC+AB=3+5,即△ABC的周长是5+3.故选D.考点:1.勾股定理2.直角三角形斜边上的中线.D、7cm8.B9.D【解析】试题分析:设斜边长为c,根据勾股定理得:c2=(k2-1)2+(2k)2=k4-2k2+1+4k2=k4+2k2+1=(k2+1)2,∴c=k2+1.故选D.点睛:本题考查了勾股定理,利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.10.D【解析】【分析】利用侧面展开图形成平面图形,再根据两点之间线段最短,勾股定理即可解答.【详解】解:得如图的侧面展开图,由题意得到Rt△NDM,DN=3,NM=4,线段DM的长为最短路径,DM=5=.故选D.【点睛】本题考查的是平面展开-最短路径问题,解答此类问题应先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.11.24【解析】试题解析:∵8-1<a<8+1(其中a为正整数),即7<a<9,∴a=8.∴以a-2、a、a+2为边的三角形的三条边长分别为:6、8、10.∵62+82=102,∴以a-2、a、a+2为边的三角形是直角三角形,∴其面积=12×6×8=24.故答案是:24.点睛:在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.12.96【解析】根据题意,设两直角边是3x、4x,则(3x)2+(4x)2=202,解得x=4,所以两直角边为12,16,12×12×16=96,所以它的面积是96,故答案为96.13.60 13【解析】【分析】利用勾股定理求出斜边长,再利用面积法求出斜边上的高即可.【详解】解:∵直角三角形的两条直角边的长分别为5,12,=13,∵三角形的面积=12×5×12=12×13h (h 为斜边上的高),∴h=6013.故答案为:6013.【点睛】考查了勾股定理,以及三角形面积公式,熟练掌握勾股定理是解本题的关键.14.2.【解析】【详解】∵22251213+=,由勾股定理逆定理可知此三角形为直角三角形,∴它的内切圆半径5121322r +-==,15.1【解析】【分析】把题中的三角形三边长代入公式求解.【详解】∵SABC 的三边长分别为1,2ABC 的面积为:S=1,故答案为1.【点睛】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.16.4.8【解析】【分析】根据点到直线的连线中,垂线段最短,得到当BP 垂直于AC 时,BP 的长最小,过A 作等腰三角形底边上的高AD ,利用三线合一得到D 为BC 的中点,在直角三角形ADC 中,利用勾股定理求出AD 的长,进而利用面积法即可求出此时BP 的长.【详解】解:根据垂线段最短,得到BP ⊥AC 时,BP 最短,过A 作AD ⊥BC ,交BC 于点D ,∵AB=AC ,AD ⊥BC ,∴D 为BC 的中点,又BC=6,∴BD=CD=3,在Rt △ADC 中,AC=5,CD=3,根据勾股定理得:,又∵S △ABC =12BC•AD=12BP•AC ,∴BP=•BC AD AC =645⨯=4.8.故答案为4.8.【点睛】此题考查勾股定理,等腰三角形的三线合一性质,三角形的面积求法,以及垂线段最短,熟练掌握勾股定理是解本题的关键.17.见解析【解析】【分析】连接AM 得到三个直角三角形,运用勾股定理分别表示出AD²、AM²、BM²进行代换就可以最后得到所要证明的结果.【详解】证明:连接MA,∵MD⊥AB,∴AD2=AM2-MD2,BM2=BD2+MD2,∵∠C=90°,∴AM2=AC2+CM2∵M为BC中点,∴BM=MC.∴AD2=AC2+BD2【点睛】本题考查了勾股定理,三次运用勾股定理进行代换计算即可求出结果,另外准确作出辅助线也是正确解出的重要因素.18.(1)24米;(2)8.【解析】【分析】(1)利用勾股定理即可求出;(2)梯子的长度不变,再利用勾股定理算出BC'的长,即可求出梯子滑动的长度.【详解】(1)由题意得:AC=25米,BC=7米,AB(米).答:这个梯子的顶端距地面有24米;(2)由题意得:BA'=AB-A A'=20米,BC'=(米),则:CC'=15﹣7=8(米).答:梯子的底端在水平方向滑动了8米.【点睛】此题考查的是勾股定理的应用,找到两个三角形各边的关系是解决此题的关键19.△ACD是直角三角形.【解析】试题分析:首先利用勾股定理计算出AC 长,再利用勾股定理的逆定理证明90DAC ∠=︒,可得ACD 是直角三角形.试题解析:证明:∵90ACB ∠= ,AB =15,BC =9,∴12AC ,===∵2251213,+=∴222AD AC CD +=,∴90DAC ∠=︒,∴△ACD 是直角三角形.点睛:在三角形中,如果两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.20.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)本题要判定△ACE ≌△BCD ,已知△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,则DC =EC ,AC =BC ,∠ACB =∠ECD ,又因为两角有一个公共的角∠ACD ,所以∠BCD =∠ACE ,根据SAS 得出△ACE ≌△BCD .(2)由(1)的论证结果得出∠DAE =90°,AE =DB ,从而求出AD 2+DB 2=DE 2.【详解】(1)∵∠ACB =∠ECD =90°,∴∠ACD +∠BCD =∠ACD +∠ACE ,即∠BCD =∠ACE .∵BC =AC ,DC =EC ,∴△ACE ≌△BCD .(2)∵△ACB 是等腰直角三角形,∴∠B =∠BAC =45°.∵△ACE ≌△BCD ,∴∠B =∠CAE =45°,AE =BD ,∴∠DAE =∠CAE +∠BAC =45°+45°=90°,∴AD 2+AE 2=DE 2,∴AD 2+DB 2=DE 2.【点睛】本题考查了三角形全等的判定方法,及勾股定理的运用.21.5m【解析】试题分析:由于大门的宽和高与所加固的木板正好构成直角三角形,故可利用勾股定理解答.试题解析:解:设这条木条的长度为x m,由勾股定理得:木条长的平方=门高长的平方+门宽长的平方.即x2=42+32,解得x=5m.答:所需木条的长为5m.点睛:本题考查了勾股定理在实际生活中的运用,属较简单题目,可直接利用勾股定理解答.22.证明见解析.【解析】试题分析:首先把△ACF绕点A顺时针旋转90°,得到△ABG.连接EG,可得△ACF≌△ABG.进而得到AG=AF,BG=CF,∠ABG=∠ACF=45°,再证明△AEG≌△AEF 可得EF=EG,由∠GBE=90°利用勾股定理可得BE2+CF2=EF2,那么根据勾股定理的逆定理得出以EF,BE,CF为边的三角形是直角三角形.试题解析:证明:把△ACF绕点A顺时针旋转90°,得到△ABG.连接EG.则△ACF≌△ABG,∴AG=AF,BG=CF,∠ABG=∠ACF=45°.∵∠BAC=90°,∠GAF=90°,∴∠GAE=∠EAF=45°.在△AEG和△AEF中,∵AG AFGAE EAFAE AE=⎧⎪∠=∠⎨⎪=⎩,∴△AEG≌△AEF(SAS),∴EG=EF.又∵∠GBE=90°,∴BE2+BG2=EG2,即BE2+CF2=EF2,∴以EF,BE,CF为边的三角形是直角三角形.点睛:本题考查了全等三角形的性质和判定,勾股定理及其逆定理,旋转的性质,正确作出辅助线后证出△AEG≌△AEF是解答此题的关键.。

人教版八年级数学下册第十七章 勾股定理练习(含答案)[002]

人教版八年级数学下册第十七章 勾股定理练习(含答案)[002]
11. c a b ;
12.-2
13.(1) 5 ,5,2 2 ,2 5 ;(2)等腰三角形,直角三角形
14.等腰直角三角形 15.1.68. 16.约为 1.2m 17.此车超过每小时 80 千米的限制速度.
18.(1) BAD = 135 ;
(2) S四边形ABCD = SABC + SADC =
A.等腰三角形
B.直角三角形
C.钝角三角形
D.等腰直角三角形
二、填空题
11.如图,每个小正方形的边长都为 1,则 ABC 的三边长 a ,b ,c 的大小关系是________
(用“>”连接).
12.在直线上依次摆着七个正方形(如图),已知斜放置的三个正方形的面积分别为 1,2,3, 正放置的四个正方形的面积是 S1,S2,S3,S4,则 S1+S2-S3-S4=_________.
D.30 3 海里
9.如图,在矩形 ABCD 中,BC=6,CD=3,将△BCD 沿对角线 BD 翻折,点 C 落在点 C′ 2/6
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
处,BC′交 AD 于点 E,则线段 DE 的长为( )
A.3
B. 15 4
C.5
D. 15 2
10.已知三角形的三边长分别为 a,b,c,且 a+b=10,ab=18,c=8,则该三角形的形状是( )
13.如图,在边长为 1 的小正方形组成的网格中,四边形 ABCD 的四个顶点都在格点上, 请按要求完成下列各题.
3/6
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
(1)线段 AB 的长为__,BC 的长为__,CD 的长为__,AD 的长为__; (2)连接 AC,通过计算△ACD 的形状是__;△ABC 的形状是__.

人教版八年级数学下册 第17章 勾股定理 单元复习试题 附答案

人教版八年级数学下册 第17章 勾股定理  单元复习试题  附答案

第17章勾股定理一.选择题(共10小题)1.已知点A的坐标为(2,﹣1),则点A到原点的距离为()A.3B.C.D.12.满足下列条件的三角形中,不是直角三角形的是()A.三内角的度数之比为1:2:3B.三内角的度数之比为3:4:5C.三边长之比为3:4:5D.三边长的平方之比为1:2:33.一个直角三角形两条直角边的长分别为5,12,则其斜边上的高为()A.B.13C.6D.254.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2019次后形成的图形中所有的正方形的面积和是()A.1B.2018C.2019D.20205.历史上对勾股定理的一种证法采用了下列图形:其中两个全等的直角三角形边AE、EB 在一条直线上.证明中用到的面积相等关系是()A.S△EDA=S△CEBB.S△EDA+S△CEB=S△CDBC.S四边形CDAE=S四边形CDEBD.S△EDA+S△CDE+S△CEB=S四边形ABCD6.校园内有两棵树,相距12米,一棵树高为13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞()A.10米B.11米C.12米D.13米7.如图,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要()A.4米B.5米C.7米D.10米8.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1B.+1C.﹣1D.+19.△ABC是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB =50米,如果要在这块空地上种植草皮,按每平方米草皮a元计算,那么共需要资金()A.600a元B.50a元C.1200a元D.1500a元10.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是200米/分,小红用3分钟到家,小颖4分钟到家,小红和小颖家的直线距离为()A.600米B.800米C.1000米D.1400米二.填空题(共7小题)11.在Rt△ABC中,∠C=90°,BC=12,AC=9,则AB=.12.有一个直角三角形的两边为4、5,要使三角形为直角三角形,则第三边等于.13.如图,在数轴上,点A、B表示的数分别为0、2,BC⊥AB于点B,且BC=1,连接AC,在AC上截取CD=BC,以A为圆心,AD的长为半径画弧,交线段AB于点E,则点E 表示的实数是.14.观察下列式子:当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a=,b=,c=.15.如图,正方形网格中,点A,B,C,D均在格点上,则∠ACD+∠BDC=°.16.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.如图在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D为BC边上一点,若△ABD为“准互余三角形”,则BD的长为.17.如图,四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°,若CD=4,则DE长为.三.解答题(共5小题)18.如图,△ABC中,∠ACB=90°,AB=,求斜边AB上的高CD.19.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.20.某消防队进行消防演练,在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12米,即AD=BC=12米,此时建筑物中距地面12.8米高的P 处有一被困人员需要救援,已知消防云梯的车身高AB是3.8米.为此消防车的云梯至少应伸长多少米?21.一架方梯AB长13米,如图,斜靠在一面墙上,梯子底端离墙OB为5米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了3米,那么梯子的底端在水平方向滑动了几米?22.这是某商场自动扶梯示意图,若将扶梯AC水平放置,则刚好与AB一样长.已知扶梯高度CE=5cm,CD=1cm,求扶梯AC的长.参考答案一.选择题(共10小题)1.C.2.B.3.A.4.D.5.D.6.D.7.C.8.D.9.A.10.C.二.填空题(共7小题)11.15.12.3或.13.﹣1.14.2n,n2﹣1,n2+1.15.90.16.或.17..三.解答题(共5小题)18.解:∵∠ACB=90°,AB=,∴AC==,∵×AB•CD=×AC•BC∴CD===.19.解:(1)三边分别为:3、4、5 (如图1);(2)三边分别为:、2、(如图2);(3)画一个边长为的正方形(如图3).20.某消防队进行消防演练,在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12米,即AD=BC=12米,此时建筑物中距地面12.8米高的P 处有一被困人员需要救援,已知消防云梯的车身高AB是3.8米.为此消防车的云梯至少应伸长多少米?解:由题意可知:AB=CD=3.8米,AD=12米,PC=12.8米,∠ADP=90°,∴PD=PC﹣CD=9米,在Rt△ADP中,AP==15米,答:此消防车的云梯至少应伸长15米.21.解:(1)∵AO⊥DO,∴AO===12(m),(2)∵AA′=3m,∴A′O=AO﹣AA′=9m,∴OB′===,∴BB′=OB′﹣OB=﹣5=2﹣5(m),∴梯子的底端在水平方向滑动了2﹣5米.22.解:设AC的长为x米,∵AC=AB,∴AB=AC=x米,∵EB=CD=1米,∴AE=(x﹣1)米,在Rt△ACE中,AC2=CE2+AE2,即:x2=52+(x﹣1)2,解得:x=13,答:扶梯AC的长为13米.。

人教版 八年级数学下册 第十七章 勾股定理 综合复习(含答案)

人教版 八年级数学下册 第十七章 勾股定理 综合复习(含答案)
精品文档,助力人生,欢迎关注小编!
人教版 八年级数学 第十七章 勾股定理 综合
复习
一、选择题(本大题共 10 道小题)
1. 一个直角三角形中,两直角边长分别为 3 和 4,下列说法正确的是( )
A.斜边长为 25
B.三角形周长为 25
C.斜边长为 5
D.三角形面积为 20
2. 一架 25 分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端 7 分米.
【解析】勾股定理树.49cm2.
17. 【答案】 13 或 10 【解析】(1)如解图①所示,当 P 点靠近 B 点时,∵AC
=BC=3,∴CP=2,在 Rt△ACP 中,由勾股定理得 AP= 13;(2)如解图②所 示,当 P 点靠近 C 点时,∵AC=BC=3,∴CP=1,在 Rt△ACP 中,由勾股定 理得 AP= 10.综上可得:AP 长为 13 或 10.
故 ABC 是直角三角形.
9. 【答案】B
【解析】由勾股定理得 a2 + a2 = (a − x)2 + (a + y)2 ,化简得 2a ( x − y) = x2 + y2 0 ,
x y
10. 【答案】B
二、填空题(本大题共 8 道小题)
11. 【答案】 2.3cm
12. 【答案】10
【解析】直接应用勾股定理可知,少走了 5m.又知 2 步为 1 米,所以少走了 10 步.
20. 【答案】 5 cm
【解析】这是立体几何问题.盒子内两点间最长距离是长方体的斜对角线.
L= 82 + 62 +(10 3)2 =20cm. 细木棒露在盒外面的最短长度是 25-20=5cm.
21. 【答案】

人教版八年级数学下册 第17章 勾股定理 单元复习试题 含答案

人教版八年级数学下册 第17章 勾股定理 单元复习试题  含答案

第17章勾股定理一.选择题(共10小题)1.下列各组数是勾股数的是()A.2,3,4 B.0.3,0.4,0.5C.7,24,25 D.,,2.△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2B.a=5,b=12,c=13C.∠A:∠B:∠C═3:4:5 D.∠A=∠B+∠C3.如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,AC的长为半径作弧交数轴于点M,则点M表示的数为()A.﹣1 B.﹣1 C.2 D.4.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=4,BC=6,将四个直角三角形中边长为4的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()A.56 B.24 C.64 D.325.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.B.3 C.D.56.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和7.如图,今年第9号台风利奇马”过后,市体育中心附近一棵大树在高于地面3米处折断,大树顶部落在距离大树底部4米处的地面上,那么树高是()A.7m B.8m C.9m D.12m8.将一根长为25厘米的筷子置于底面直径为5厘米,高为12厘米的圆柱形水杯中,设筷子露在杯子外的长为h厘米,则h的取值范围是()A.12≤h≤13 B.11≤h≤12 C.11≤h≤13 D.10≤h≤129.如图,已知1号、4号两个正方形的面积和为7,2号、3号两个正方形的面积和为4,则a,b,c三个正方形的面积和为()A.11 B.15 C.10 D.2210.如图,高速公路上有A、B两点相距25km,C、D为两村庄,已知DA=10km,CB=15km.DA ⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则AE的长是()km.A.5 B.10 C.15 D.25二.填空题(共6小题)11.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8.AD平分∠BAC交BC边于点D,则BD=.12.如图,有赵爽弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=27,S3=1,则S1的值是.13.观察下列各式:32+42=52;82+62=102;152+82=172;242+102=262;…;你有没有发现其中的规律?请用你发现的规律写出接下来的式子:.14.如图,有一块田地的形状和尺寸如图所示,则它的面积为.15.如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范同内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则AD=米.16.如图,△ABC是边长为12cm的正三角形,动点P从A向B以2cm/s匀速运动,同时动点Q从B向C以1cm/s匀速运动,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t秒,则t=时,△PBQ为直角三角形.三.解答题(共5小题)17.如图,已知在四边形ABCD中,AB=20cm,BC=15cm,CD=7cm,AD=24cm,∠ABC=90°.(1)连结AC,求AC的长;(2)求∠ADC的度数;(3)求出四边形ABCD的面积18.分析探索题:细心观察如图,认真分析各式,然后解答问题.OA22=()2+1=2 S1=;OA32=()2+1=3 S2=;OA42=()2+1=4 S3=…(1)请用含有n(n为正整数)的式子表示S n=;(2)推算出OA10=.(3)求出S12+S22+S32+…+S102的值.19.《中华人民共和国道路交通管理条例》规定:小汽车在城市街道上的行驶速度不得超过70千米/时,如图,一辆小汽车在某城市街道直道上行驶,某一时刻刚好行驶到路对面车速检测仪A(观测点)正前方30米处的C处,过了2秒钟后,测得小汽车与车速检测仪间的距离为50米,问:这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)20.如图1,在△ABC中,∠B=22.5°,AC=5,AD是BC边上的高,AB的垂直平分线交AB 于点E,交BC于点F.(1)判别AD与DF的数量关系并证明;(2)过F点作FG⊥AC于点G,交AD于点O(如图2),若OD=3,求BC的长度.21.如图,在Rt△ABC中,AB=3,BC=4,动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q 的运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止运动,连接PQ,设它们的运动时间为t(t>0)秒.(1)设△CBQ的面积为S,请用含有t的代数式来表示S;(2)线段PQ的垂直平分线记为直线l,当直线l经过点C时,求AQ的长.参考答案一.选择题(共10小题)1.解:A、22+32≠42,故此选项错误;B、0.3,0.4,0.5不是正整数,故此选项错误;C、72+242=252,故此选项正确;D、()2+()2≠()2,同时它们也不是正整数,故此选项错误.故选:C.2.解:A、∵a2+b2=c2,∴∠C=90°,即△ABC是直角三角形,故本选项不符合题意;B、∵a=5,b=12,c=13,∴a2+b2=c2,∴∠C=90°,即△ABC是直角三角形,故本选项不符合题意;C、∵∠A:∠B:∠C=3:4:5,∴最大角∠C=×180°≠90°,∴△ABC是直角三角形,故本选项符合题意;D、∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,即△ABC是直角三角形,故本选项不符合题意;故选:C.3.解:∵AB=3,AD=1,∴AC==,∵点A为圆心,AC的长为半径作弧交数轴于点M,AM=AC=,∵A点表示﹣1,∴M点表示的数为:﹣1,故选:A.4.解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,则x2=82+62=100所以x=10所以“数学风车”的周长是:(10+4)×4=56.故选:A.5.解:∵四边形ABCD是正方形,∴∠B=90°,∴BC2=EC2﹣EB2=22﹣12=3,∴正方形ABCD的面积=BC2=3.故选:B.6.解:设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c2=a2+b2,阴影部分的面积=c2﹣b2﹣a(c﹣b)=a2﹣ac+ab=a(a+b﹣c),较小两个正方形重叠部分的宽=a﹣(c﹣b),长=a,则较小两个正方形重叠部分底面积=a(a+b﹣c),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选:C.7.解:根据勾股定理可知:折断的树高==5米,则这棵大树折断前的树高=3+5=8米.故选:B.8.解:当筷子与杯底垂直时h最大,h最大=25﹣12=13cm.当筷子与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB===13cm,故h=25﹣13=12cm.故h的取值范围是12cm≤h≤13cm.故选:A.9.解:利用勾股定理可得S a=S1+S2,S b=S2+S3,S c=S3+S4,∴S a+S b+S c=S a=S1+S2+S2+S3+S3+S4=7+4+4=15.故选:B.10.解:设AE=x,则BE=25﹣x,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=102+x2,在Rt△BCE中,CE2=BC2+BE2=152+(25﹣x)2,由题意可知:DE=CE,所以:102+x2=152+(25﹣x)2,解得:x=15km.所以,E应建在距A点15km处.故选:C.二.填空题(共6小题)11.解:作DE⊥AC于E,如图所示:∵∠B=90°,AB=6,BC=8.∴DB⊥AB,AC==10,∵AD平分∠BAC,DE⊥AC,∴DE=DB,在Rt△AED和Rt△ABD中,,∴Rt△AED≌Rt△ABD(HL),∴AE=AB=6,∴CE=AC﹣AE=4,设DE=DB=x,则CD=8﹣x,在Rt△CDE中,由勾股定理得:x2+42=(8﹣x)2,解得:x=3,∴BD=3;故答案为:3.12.解:∵八个直角三角形全等,四边形ABCD,EFGH,MNKT是正方形,∴CG=NG,CF=DG=NF,∴S1=(CG+DG)2=CG2+DG2+2CG•DG=GF2+2CG•DG,S2=GF2,S3=(NG﹣NF)2=NG2+NF2﹣2NG•NF,∴S1+S2+S3=GF2+2CG•DG+GF2+NG2+NF2﹣2NG•NF=3GF2=27,∴GF2=9,∴S2=9,∵S3=1,∴S1的值是17.故答案为17.13.解:根据规律,下一个式子是:352+122=372.14.解:作辅助线:连接AB,因为△ABD是直角三角形,所以AB===5,因为52+122=132,所以△ABC是直角三角形,则要求的面积即是两个直角三角形的面积差,即×12×5﹣×3×4=30﹣6=24.15.解:如图,过点D作DE⊥AB于点E,∵AB=2.5米,BE=CD=1.6米,ED=BC=1.2米,则AE=AB﹣BE=2.5﹣1.6=0.9(米).在Rt△ADE中,由勾股定理得到:AD===1.5(米)故答案是:1.5.16.解:∵△ABC是等边三角形,∴AB=BC=6cm,∠A=∠B=∠C=60°,当∠PQB=90°时,∠BPQ=30°,∴BP=2BQ.∵BP=12﹣2x,BQ=x,∴12﹣2x=2x,解得x=3;当∠QPB=90°时,∠PQB=30°,∴BQ=2PB,∴x=2(12﹣2x),解得x=.答:3或秒时,△BPQ是直角三角形.故答案为3或.三.解答题(共5小题)17.解:(1)连接AC,在Rt△ABC中,∠ABC=90°,∵AB=20cm,BC=15cm,∴由勾股定理可得:AC=cm;(2)∵在△ADC中,CD=7cm,AD=24cm,∴CD2+AD2=AC2,∴∠ADC=90°;(3)由(2)知,∠ADC=90°,∴四边形ABCD的面积=,18.解:(1)+1=n+1Sn=(n是正整数);故答案是:;(2)∵OA12=1,OA22=()2+1=2,OA32=()2+1=3,OA42=()2+1=4,∴OA12=,OA2=,OA3=,…∴OA10=;故答案是:;(3)S12+S22+S32+…+S102=()2+()2+()2+…+()2=(1+2+3+ (10)=.即:S12+S22+S32+…+S102=.19.解:在Rt△ABC中,AC=30m,AB=50m,由勾股定理可得:BC==40(m),∴小汽车的速度为v=40÷2=20(m/s)=20×3.6(km/h)=72(km/h),∵72(km/h)>70(km/h),∴这辆小汽车超速行驶.答:这辆小汽车超速了.20.(1)AD=DF,理由如下:证明:如图1,连结AF,∵EF是AB的垂直平分线,∴BF=AF,∴∠BAF=∠B=22.5°,∴∠AFD=45°,∵AD是BC边上的高,∴△AFD是等腰直角三角形,∴AD=DF;(2)解:∵FG⊥AC,AD⊥BC,∴∠FGC=∠ADF=90°,∠GFC+∠C=90°,∠DAC+∠C=90°,∴∠GFC=∠DAC,∵AD=DF,∴△ODF≌△CDA,∴OD=CD=3,在Rt△ACD中,由勾股定理得AD===4,连结AF,在Rt△ADF中,AD=DF=4,∴AF===4,∴BF=AF=4,∴BC=BF+DF+CD=4+4+3=7+4.21.解:(1)如图1,当0<t≤3时,BQ=t,BC=4,∴S=×4×t=2t;如图2,当3<t≤5时,,AQ=t﹣3,则BQ=3﹣(t﹣3)=6﹣t,∴S=×4×(6﹣t)=12﹣2t;(2)连接CQ,如图3,∵QP的垂直平分线过点C,∴CP=CQ,∵AB=3,BC=4,∴AC===5,∴42+t2=(5﹣t)2,解得t=;或42+(6﹣t)2=(5﹣t)2,显然不成立;∴AQ=3﹣=.。

人教版数学八年级下册第十七章勾股定理测试卷附答案

人教版数学八年级下册第十七章考试试题评卷人得分一、单选题1.下列四组线段中,可以构成直角三角形的是()A .3,5,6B .2,3,4C .1,2D .3,42.下列命题中是假命题的是()A .△ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形B .△ABC 中,若a 2=(b +c)(b -c),则△ABC 是直角三角形C .△ABC 中,若∠A ∶∠B ∶∠C =3∶4∶5,则△ABC 是直角三角形D .△ABC 中,若a ∶b ∶c =5∶4∶3,则△ABC 是直角三角形3.如图:图形A 的面积是()A .225B .144C .81D .无法确定4.图1中,每个小正方形的边长为1,ABC 的三边a ,b ,c 的大小关系是:A .a<c<bB .a<b <cC .c<a<bD .c<b<a5.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达该建筑物的最大高度是()A .12米B .13米C .14米D .15米6.如图:在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于()A.75B.100C.120D.125 7.三角形的三边长满足关系:(a+b)2=c2+2ab,则这个三角形是() A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形8.在Rt△ABC中,∠C=90°,AC=9,BC=12,则AB边上的高是()A.365B.1225C.94D.3349.如图,将一个含有45 角的直角三角板的直角顶点放在一张宽为2cm的矩形纸带边沿上,另一个顶点在纸带的另一边沿上,若测得三角板的一边与纸带的一边所在的直线成30 角,则三角板最长的长是()A.2cm B.4cm C.D.10.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()A cm B.4cm C D.3cm11.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为()A.12秒B.16秒C.20秒D.30秒.12.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=15,则S2的值是()A.3B.154C.5D.152评卷人得分二、填空题13.一个直角三角形的两边为6,8,第三边为__.14.若三角形三边之比为3:4:5,周长为24,则三角形面积_____________.15.如图,在一个高为3米,长为5米的楼梯表面铺地毯,则地毯长度为______米.16.如图,Rt△ABC中,AC=5,BC=12,分别以它的三边为直径向上作三个半圆,则阴影部分面积为_____.17.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为_______cm.评卷人得分三、解答题18.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是_____________19.如图,一木杆在离地某处断裂,木杆顶部落在离木杆底部8米处,已知木杆原长16米,求木杆断裂处离地面多少米?20.已知a,b,c为△ABC的三条边的长,且满足b2+2ab=c2+2ac.(1)试判断△ABC的形状,并说明理由;(2)若a=6,b=5,求△ABC的面积.21.如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处?22.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点.求证:(1)△ACE ≌△BCD ;(2)222AD DB DE +=.23.如图,A 市气象站测得台风中心在A 市正东方向300千米的B 处,以107千米/时的速度向北偏西60°的BF 方向移动,距台风中心200千米范围内是受台风影响的区域.(1)A 市是否会受到台风的影响?写出你的结论并给予说明;(2)如果A 市受这次台风影响,那么受台风影响的时间有多长?24.如图l ,在AABC 中,∠ACB=90°,点P 为ΔABC 内一点.(1)连接PB ,PC ,将ABCP 沿射线CA 方向平移,得到ΔDAE ,点B ,C ,P 的对应点分别为点D 、A 、E ,连接CE.①依题意,请在图2中补全图形;②如果BP ⊥CE ,BP=3,AB=6,求CE 的长(2)如图3,以点A 为旋转中心,将ΔABP 顺时针旋转60°得到△AMN ,连接PA 、PB 、PC ,当AC=3,AB=6时,根据此图求PA+PB+PC的最小值.参考答案1.C【解析】3+56≠,不能构成直角三角形,故不符合题意;A、2222+34≠,不能构成直角三角形,故不符合题意;B、2221+=2,能构成直角三角形,故符合题意;C、222D 、2223+4≠,不能构成直角三角形,故不符合题意.故选C .2.C【解析】【分析】有一个角是直角的三角形是直角三角形,两边的平方和等于第三边的平方的三角形是直角三角形,逐一分析即可.【详解】解:A 、∠B+∠A=∠C ,所以∠C=90°,所以△ABC 是直角三角形,故本选项不符合题意.B 、若a 2=(b+c )(b-c ),所以a 2+c 2=b 2,所以△ABC 是直角三角形,故本选项不符合题意.C 、若∠A :∠B :∠C=3:4:5,最大角为75°,故本选项符合题意.D 、若a :b :c=5:4:3,则△ABC 是直角三角形,故本选不项符合题意.故选C .【点睛】本题考查直角三角形的概念,和勾股定理的应用.3.C【解析】试题解析:由勾股定理可得:图形A 的面积22514481.=-=故选C.4.C【解析】通过小正方形网格,可以看出AB=4,AC 、BC 分别与三角形外构成直角三角形,再利用勾股定理可分别求出AC 、BC ,然后比较三边的大小即可.解答:解:∵AC=,=∴b >a >c ,即c <a <b .故选C .5.A【解析】【分析】由题意可知消防车的云梯长、地面和建筑物的高度构成了一个直角三角形,斜边为消防车的云梯长,根据勾股定理就可求出建筑物的高度.【详解】如图所示,=12米,故选A.6.B【解析】【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【详解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=12∠ACB,∠ACF=12∠ACD,即∠ECF=12(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.故选:B.【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.7.B【解析】【分析】根据题意,对(a+b)2=c2+2ab进行化简、整理,可得a2+b2=c2;接下来,由勾股定理的逆定理即可判断出三角形的形状.【详解】解:∵(a+b)2=c2+2ab,∴a2+2ab+b2=c2+2ab,∴a2+b2=c2,由勾股定理的逆定理可知,这个三角形是直角三角形.故选B.【点睛】本题是判断三角形形状的题目,解题的关键是掌握勾股定理的逆定理;8.A【解析】试题解析:设点C到AB的距离为h,在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2,∵AC=9,BC=12,∴,∵S△ABC =12AC•BC=12AB•h,∴h=12936 155⨯=.故选A.9.D 【解析】【分析】过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角边,再由等腰直角三角形求出最大边.【详解】过点C作CD⊥AD,∴CD=3,在直角三角形ADC中,∵∠CAD=30°,∴AC=2CD=2×2=4,又∵三角板是有45°角的三角板,∴AB=AC=4,∴BC2=AB2+AC2=42+42=32,∴BC=,故选D.【点睛】本题考查等腰直角三角形和含30度角的直角三角形,解题的关键是掌握等腰直角三角形和含30度角的直角三角形.10.A【解析】运用直角三角形的勾股定理,设正方形D的边长为x,则22222+++=,x=x(65)(5)10(负值已舍),故选A11.B【解析】【分析】过点A作AC⊥ON,利用锐角三角函数的定义求出AC的长与200m相比较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪音影响的时间.解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵72千米/小时=20米/秒,∴影响时间应是:320÷20=16秒.故选B.【点睛】本题考查勾股定理、点与圆的位置关系,根据火车行驶的方向,速度,以及它在以A为圆心,200米为半径的圆内行驶的BD的弦长,求出对A处产生噪音的时间,解题关键是根据勾股定理求BD的长..12.C【解析】将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=15,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=15,即3x+12y=15,x+4y=5,所以S2=x+4y=5,故答案为5.点睛:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,用x,y 表示出S1,S2,S3,再利用S1+S2+S3=15求解是解决问题的关键.13.或10【解析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】当8是斜边时,第三边长==当6和8是直角边时,第三边长10.故第三边的长为或10故答案为或10【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.14.24【解析】本题主要考查了三角形.设三角形的三边是3x,4x,5x,根据周长公式可求得三边的长,再根据面积公式即可求得其面积.解:设三角形的三边是3x,4x,5x,则3x+4x+5x=24,解得x=2∴三角形的三边是6,8,10∴三角形的面积=12×6×8=2415.7【解析】,所以地毯的长度为4+3=7米.故答案为7.考点:勾股定理的应用.16.30【解析】【分析】根据勾股定理可得:AB=13,根据图形可得:阴影部分的面积=以BC为直径的半圆的面积+以AC为直径的半圆的面积+△ABC的面积-以AB为直径的半圆的面积,由此进行计算即可.Rt△ABC中,AC=5,BC=12,∴=13,∴S阴影=222 1121511135122222222πππ⎛⎫⎛⎫⎛⎫⨯+⨯+⨯⨯-⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=30,故答案为30.17.15.【解析】【分析】过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC 就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C即可.【详解】沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC 就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=12×18cm=9cm,A′Q=12cm-4cm+4cm=12cm,在Rt△A′QC中,由勾股定理得:,故答案为15.18.50【解析】【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.【详解】∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=12(6+4)×16−3×4−6×3=50.19.木杆断裂处离地面6米.【解析】【分析】设木杆断裂处离地面x米,由题意得x2+82=(16-x)2,求出x的值即可.【详解】解:设木杆断裂处离地面x米,由题意得x2+82=(16-x)2,解得x=6米.答:木杆断裂处离地面6米.【点睛】本题考查勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.20.(1)△ABC是等腰三角形,理由见解析;(2)12.【解析】【分析】(1)由已知条件得出b 2-c 2+2ab-2ac=0,用分组分解法进行因式分解得出(b-c )(b+c+2a )=0,得出b-c=0,因此b=c ,即可得出结论;(2)作△ABC 底边BC 上的高AD .根据等腰三角形三线合一的性质得出BD=DC=12BC=3,利用勾股定理求出,再根据三角形的面积公式即可求解.【详解】(1)△ABC 是等腰三角形,理由如下:∵a ,b ,c 为△ABC 的三条边的长,b 2+2ab=c 2+2ac ,∴b 2﹣c 2+2ab ﹣2ac=0,因式分解得:(b ﹣c)(b+c+2a)=0,∴b ﹣c=0,∴b=c ,∴△ABC 是等腰三角形;(2)如图,作△ABC 底边BC 上的高AD.∵AB=AC=5,AD ⊥BC ,∴BD=DC=12BC=3,∴,∴△ABC 的面积=12BC•AD=12×6×4=12.【点睛】本题考查因式分解的应用、等腰三角形的判定、勾股定理以及面积的计算;运用因式分解求出b=c 是解决问题的关键.21.收购站E 应建在离A 点10km 处.【解析】【分析】根据使得C ,D 两村到E 站的距离相等,需要证明DE=CE ,再根据△DAE ≌△EBC ,得出AE=BC=10km ;【详解】∵使得C ,D 两村到E 站的距离相等.∴DE=CE ,∵DA ⊥AB 于A ,CB ⊥AB 于B ,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB−AE=(25−x),∵DA=15km,CB=10km,∴x2+152=(25−x)2+102,解得:x=10,∴AE=10km,∴收购站E应建在离A点10km处.【点睛】此题考查勾股定理的应用,解题关键在于证明DE=CE.22.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EC,AC=BC,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=∠ACE,根据SAS得出△ACE≌△BCD.(2)由(1)的论证结果得出∠DAE=90°,AE=DB,从而求出AD2+DB2=DE2.【详解】(1)∵∠ACB=∠ECD=90°,∴∠ACD+∠BCD=∠ACD+∠ACE,即∠BCD=∠ACE.∵BC=AC,DC=EC,∴△ACE≌△BCD.(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45°.∵△ACE≌△BCD,∴∠B=∠CAE=45°,AE=BD,∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2,∴AD2+DB2=DE2.【点睛】本题考查了三角形全等的判定方法,及勾股定理的运用.23.过点A作AC⊥BF于C,则AC=150千米,150〈200,故A市会受到台风的影响,以A为圆心,200km为半径作弧交BF于C1、C2两点,连接AC1=AC2∵AC⊥BF,∴C1C2=2C1C.在Rt△ACC1中,有C1C=2002−1502=507,∴C1C2=1007km,∴A城受台风干扰的时间为:1007107=10(小时).【解析】(1)会.理由如下:如图所示,过点A作AD⊥BF于D,在Rt△ABD中,∠ABD=30°,AB=300千米.∴A=12A=12×300=150(千米).又∵AD=150千米<200千米,∴A市会受台风影响.(2)设C点刚好受台风影响,E点刚好不受台风影响,则AC=AE=200千米.在Rt△ADC中,由勾股定理得A=B2−A2=2002−1502=507(千米),∴C=2A=1007千米.∴A=10(小时).24.(1)①补图见解析;②33;(2)37【解析】(1)①连接PB、PC,将△BCP沿射线CA方向平移,得到△DAE,点B、C、P的对应点分别为点D、A、E,连接CE,据此画图即可;②连接BD、CD,构造矩形ACBD和Rt△CDE,根据矩形的对角线相等以及勾股定理进行计算,即可求得CE的长;(2)以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN,根据△PAM、△ABN都是等边三角形,可得PA+PB+PC=CP+PM+MN,最后根据当C、P、M、N四点共射线,PA+PB+PC的值最小,此时△CBN是直角三角形,利用勾股定理即可解决问题.解:(1)①补全图形如图所示;②如图,连接BD、CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,CE=CD2−DE2=36−9=27=33;(2)证明:如图所示,当C、P、M、N四点共线时,PA+PB+PC最小由旋转可得,△AMN≌△APB,∴PB=MN易得△APM、△ABN都是等边三角形,∴PA=PM∴PA+PB+PC=PM+MN+PC=CN,∴BN=AB=6,∠BNA=60°,∠PAM=60°∴∠CAN=∠CAB+∠BAN=60°+60°=120°,∴∠CBN=90°在Rt△ABC中,易得BC=AB2−AC2=62−32=33∴在Rt△BCN中,CN=BC2+BN2=27+36=63=37“点睛”本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定和性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.。

人教版 八年级数学上册 第17章 勾股定理 综合训练(含答案)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯人教版八年级数学第17章勾股定理综合训练一、选择题1. 下列说法正确的是()A. 若a b c,,是ABC∆的三边,则222a b c+=B. 若a b c,,是Rt ABC∆的三边,则222a b c+=C. 若a b c,,是Rt ABC∆的三边,90A∠=︒,则222a b c+=D. 若a b c,,是Rt ABC∆的三边,90C∠=︒,则222a b c+=2. 如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A.433B. 4 C. 8 3 D. 4 33. 如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A. 7,24,25B. 312,412,512C. 3,4,5D. 4,712,8124. 下面几组数:①7,8,9;②12,9,15;③22222m n m n mn+-,,(m n,均为正整数,m n>);④2a,21a+,22a+.其中能组成直角三角形的三边长的是( )A. ①②B. ②③C. ①③D. ③④5. 如图,在由单位正方形组成的网格图中标有AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD,EF,GH B.AB,EF,GHC.AB,CD,GH D.AB,CD,EF6. 如图,梯子AB斜靠在墙面上,AC BC AC BC⊥=,,当梯子的顶端A沿AC方向下滑x米时,梯足B沿CB方向滑动y米,则x与y的大小关系是()C.x y<D.不确定CBA7. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为( )A .600米 B. 800米 C. 1000米 D. 不能确定8. 如图所示,在ABC ∆中,三边a b c ,,的大小关系是( )c baC BAA. a b c <<B. c a b <<C. c b a <<D. b a c <<9. 如图所示,底边BC 为23,顶角A 为120°的等腰△ABC 中,DE 垂直平分AB 于D ,则△ACE 的周长为( ) A . 2+2 3 B . 2+ 3 C . 4 D . 3 310. 已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A . 32B . 332C . 32D . 不能确定二、填空题 11. 如图,在Rt △ABC 中,E 是斜边AB 的中点,若∠A =40°,则∠BCE =________.12. 将一根长为24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中,设筷子露在杯子外边的长度为cm h ,则h 的取值范围为13. 已知ABC ∆的A B C ∠∠∠,,的对边分别是a b c ,,,且满足()22220a b a b c -++-=,则三角形ABC 的形状是14. 如图,点P 是AOB ∠的角平分线上一点,过点P 作//PC OA 交OB 于点C .若60,4AOB OC ∠==,则点P 到OA 的距离PD 等于__________.PODC BA15. 如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.16. 如图,一个长为10米的梯子,斜靠在墙上,梯子的顶端距离地面的垂直距离为8米,如果梯子的顶端下滑1米,那么,梯子底端的滑动距离 米(填“大于”、“等于”、“小于”)6817. 若ABC ∆的三边a b c ,,满足条件:222338102426a b c a b c +++=++,则这个三角形最长边上的高为18. 已知ABC ∆是边长为1的等腰直角三角形,以Rt ABC ∆的斜边AC 为直角边,画第二个等腰Rt ACD ∆,再以Rt ACD ∆的斜边AD 为直角边,画第三个等腰Rt ADE ∆,……,依此类推,第n 个等腰直角三角形的斜边长是 .GFED CB A三、解答题 19. 如图,在ABC ∆中,AD 是BC 边上的中线,且AE BC ⊥于E ,若12AB =,=10BC ,=8AC ,求DE 的长.ED CBA20. 如图,Rt ABC ∆中,90CAB ∠=︒,AB AC =,E 、F为BC 上的点,且45EAF ∠=︒,求证:222EF BE FC =+.F E CB A21. 如图1,分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用1S 、2S 、3S 表示,则不难证明123S S S =+.⑴ 如图2,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用1S 、2S 、3S 表示,那么1S 、2S 、3S 之间有什么关系?(不必证明)⑵ 如图3,分别以直角三角形ABC 三边为边向外作三个正三角形,其面积分别用1S 、2S 、3S表示,请你确定1S 、2S 、3S 之间的关系并加以证明.ABC S 1S 3S 2图3ABC S 1S 3S 2图2图1S 2S 3S 1CBA22. 在ABC ∆中,90,,A AB AC D ∠==为斜边上任一点,求证:2222BD CD AD +=.CBA人教版 八年级数学 第17章 勾股定理 综合训练-答案一、选择题 1. 【答案】D 2. 【答案】D3. 【答案】B4. 【答案】B5. 【答案】B6. 【答案】B7. 【答案】C8. 【答案】C9. 【答案】A10. 【答案】B二、填空题 11. 【答案】50°12. 【答案】2.3cm13. 【答案】等腰直角三角形 14.【答案】15. 【答案】1016. 【答案】大于17. 【答案】601318.【答案】n三、解答题19. 【答案】4【解析】设DE x =.由AE BC ⊥于点E 可知: 22222AB BE AE AC CE -==-.又∵12=10=8==5AB BC AC BD CD =,,,,∴222212585x x -+=--()(), 解得=4x ,即4DE =.20. 【答案】过点A 作线段AD ,使CAF BAD ∠=∠,且AD AF =.DF ECB A在ACF ∆和ABD ∆中,AC AB CAF BAD AF AD =⎧⎪∠=∠⎨⎪=⎩∴ACF ABD ∆∆≌ ∴CF BD =,DBA FCA ∠=∠90DBE DBA ABE FCA ABE ∠=∠+∠=∠+∠=︒在ADE ∆和AFE ∆中,45AE AE EAF EAD AD AF =⎧⎪∠=∠=︒⎨⎪=⎩∴ADE AFE ∆∆≌ ∴ED EF =在Rt BDE ∆中,222DE BD BE =+,∴222EF BE FC =+.21. 【答案】设Rt ABC ∆的三边BC 、CA 、AB 的长分别为a 、b 、c ,则222c a b =+ .⑴ 123S S S =+ .⑵ 123S S S =+.证明如下:显然,21S,22S,23S ,∴222231)S S a b S +=+==. 点评:分别以直角三角形ABC 三边为一边向外作“相似形”,其面积对应用1S 、2S 、3S 表示,则123S S S =+.22. 【答案】将ABD ∆绕点A 逆时针旋转90,得ACD '∆.D'DCBA∴,,AD AD BD CD BAD CAD '''==∠=∠. ∵90,A AB AC ∠==,∴45B ACB ACD '∠=∠=∠=,90DAD '∠=. ∴90DCD '∠=, ∴222DD AD '=.∴22222CD CD DD AD ''+==,即2222BD CD AD +=.一天,毕达哥拉斯应邀到朋友家做客。

人教版初2数学8年级下册 第17章(勾股定理)常考题型专题训练(含答案)

人教版八年级数学下册第17章勾股定理常考题型专题训练(附答案)1.由下列条件不能判定△ABC为直角三角形的是( )A.∠A:∠B:∠C=3:4:5B.∠A﹣∠B=∠CC.a=1,b=2,c=D.(b+c)(b﹣c)=a22.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF的长是( )A.14B.13C.14D.143.如图,要使宽为2米的矩形平板车ABCD通过宽为2米的等宽的直角通道,则平板车的长最多为( )A.2B.2C.4D.44.如图,以Rt△ABC的三边为直角边分别向外作等腰直角三角形.若AB=,则图中阴影部分的面积为( )A.B.C.D.55.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN 等于( )A.1.5B.2.4C.2.5D.3.56.如图,赵爽弦图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形两条直角边长分别为a和b.若ab=8,大正方形的边长为5,则小正方形的边长为( )A.1B.2C.3D.47.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是( )A.1.5B.1.8C.2D.2.58.如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′.则这根芦苇的长度是( )A.10尺B.11尺C.12尺D.13尺9.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是( )A.12B.15C.20D.3010.如图,方格中的点A,B称为格点(格线的交点),以AB为一边画△ABC,其中是直角三角形的格点C的个数为( )A.3B.4C.5D.611.平面直角坐标系上有点A(﹣3,4),则它到坐标原点的距离为 .12.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.13.如图,要为一段高5米,长13米的楼梯铺上红地毯,至少需要红地毯 米.14.在Rt△ABC中,斜边AB=3,则AB2+BC2+CA2= .15.如图,在△ABC中,AB=AC=10,BD是边AC上的高,CD=2,则BD= .16.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2= .17.如图所示的网格是正方形网格,△ABC和△CDE的顶点都是网格线交点,那么∠BAC+∠CDE= °.18.如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,点C 到AB边的距离为 .19.已知:直角△ABC的三边分别为a,b,c,且周长为9,斜边为4,则△ABC的面积 .20.如图,一木杆在离地面1.5m处折断,木杆顶端落在离木杆底端2m处,则木杆折断之前的高为 (m).21.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计)22.如图,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新修一条路CH,测得CB=1.5千米,CH =1.2千米,HB=0.9千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明;(2)求新路CH比原路CA少多少千米?23.某中学八(1)班小明在综合实践课上剪了一个四边形ABCD,如图,连接AC,经测量AB=12,BC=9,CD=8,AD=17,∠B=90°.求证:△ACD是直角三角形.24.已知:如图,△ABC的面积为84,BC=21,现将△ABC沿直线BC向右平移a(0<a<21)个单位到△DEF的位置.(1)求BC边上的高;(2)若AB=10,①求线段DF的长;②连接AE,当△ABE时等腰三角形时,求a的值.25.阅读下列一段文字,然后回答下列问题.已知平面内两点M(x1,y1)、N(x2,y2),则这两点间的距离可用下列公式计算:MN=.例如:已知P(3,1)、Q(1,﹣2),则这两点间的距离PQ==.特别地,如果两点M(x1,y1)、N(x2,y2)所在的直线与坐标轴重合或平行于坐标轴或垂直于坐标轴,那么这两点间的距离公式可简化为MN=丨x1﹣x2丨或丨y1﹣y2丨.(1)已知A(1,2)、B(﹣2,﹣3),试求A、B两点间的距离;(2)已知A、B在平行于x轴的同一条直线上,点A的横坐标为5,点B的横坐标为﹣1,试求A、B两点间的距离;(3)已知△ABC的顶点坐标分别为A(0,4)、B(﹣1,2)、C(4,2),你能判定△ABC 的形状吗?请说明理由.26.如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD是直角三角形.27.如图1,一架云梯斜靠在一竖直的墙上,云梯的顶端距地面15米,梯子的长度比梯子底端离墙的距离大5米.(1)这个云梯的底端离墙多远?(2)如图2,如果梯子的顶端下滑了8m,那么梯子的底部在水平方向滑动了多少米?参考答案1.解:A、由题意:∠C=×180°=75°,△ABC是锐角三角形,本选项符合题意.B、∵∠A﹣∠B=∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,本选项不符合题意.C、∵a=1,b=2,c=,∴a2+b2=c2,∴∠C=90°,∴△ABC是直角三角形,本选项不符合题意.D、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,∴b2=a2+c2,∴△ABC是直角三角形,本选项不符合题意.故选:A.2.解:∵AE=10,BE=24,即24和10为两条直角边长时,小正方形的边长=24﹣10=14,∴EF==14.故选:D.3.解:设平板手推车的长度为x米,当x为最大值,且此时平板手推车所形成的△CBP为等腰直角三角形.连接PO,与BC交于点N.∵直角通道的宽为2m,∴PO=4m,∴NP=PO﹣ON=4﹣2=2(m).又∵△CBP为等腰直角三角形,∴AD=BC=2CN=2NP=4(m).故选:C.4.解:S阴影=AC2+BC2+AB2=(AB2+AC2+BC2),∵AB2=AC2+BC2=5,∴AB2+AC2+BC2=10,∴S阴影=×10=5.故选:D.5.解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S△AMC=MN•AC=AM•MC,∴MN===2.4.故选:B.6.解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=52,∴(a﹣b)2=25﹣16=9,∵正方形的边长a﹣b>0,∴a﹣b=3,故选:C.7.解:连接DF,如图所示:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB==5,∵AD=AC=3,AF⊥CD,∴CE=DE,BD=AB﹣AD=2,∴CF=DF,在△ADF和△ACF中,,∴△ADF≌△ACF(SSS),∴∠ADF=∠ACF=90°,∴∠BDF=90°,设CF=DF=x,则BF=4﹣x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4﹣x)2,解得:x=1.5;∴CF=1.5;故选:A.8.解:设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为边长为10尺的正方形,所以B'C=5尺在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即水深12尺,芦苇长13尺.故选:D.9.解:设每个小直角三角形的面积为m,则S1=4m+S2,S3=S2﹣4m,因为S1+S2+S3=60,所以4m+S2+S2+S2﹣4m=60,即3S2=60,解得S2=20.故选:C.10.解:如图所示:以AB为一边画△ABC,其中是直角三角形的格点C共有4个,故选:B.11.解:∵点A(﹣3,4),∴它到坐标原点的距离==5,故答案为:5.12.解:由勾股定理,得路长==5,少走(3+4﹣5)×2=4步,故答案为:4.13.解:根据勾股定理,楼梯水平长度为=12米,则红地毯至少要12+5=17米长,故答案为:17.14.解:∵△ABC为直角三角形,AB为斜边,∴AC2+BC2=AB2,又AB=3,∴AC2+BC2=AB2=9,则AB2+BC2+CA2=AB2+(BC2+CA2)=9+9=18.故答案为:1815.解:由已知得:AD=AC﹣CD=8,AB=10,∵BD是高,∴△ADB是直角三角形,∴BD2+AD2=AB2,∴BD==6.16.解:∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AB2+CD2=AO2+BO2+CO2+DO2,AD2+BC2=AO2+DO2+BO2+CO2,∴AB2+CD2=AD2+BC2,∵AD=2,BC=4,∴AB2+CD2=22+42=20.故答案为:20.17.解:连接AD,由勾股定理得:AD2=12+32=10,CD2=12+32=10,AC2=22+42=20,∴AD=CD,AD2+CD2=AC2,∴∠ADC=90°,∴∠DAC=∠ACD=45°,∵AB∥DE,∴∠BAD+∠ADE=180°,∴∠BAC+∠CDE=180°﹣90°﹣45°=45°,故答案为:45°.18.解:∵S△ABC=3×3﹣×1×2﹣×2×3﹣×1×3=,AB==,∴点C到AB边的距离==.故答案为:.19.解:根据题意,得a+b=5,a2+b2=16,则ab=[(a+b)2﹣(a2+b2)]=(52﹣16)=.故答案是:.20.解:∵一木杆在离地面1.5m处折断,木杆顶端落在离木杆底端2m处,∴折断的部分长为=2.5,∴折断前高度为2.5+1.5=4(m).故答案为:4.21.解:设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.22.解:(1)是,理由是:在△CHB中,∵CH2+BH2=(1.2)2+(0.9)2=2.25,BC2=2.25,∴CH2+BH2=BC2,∴CH⊥AB,所以CH是从村庄C到河边的最近路;(2)设AC=x千米,在Rt△ACH中,由已知得AC=x,AH=x﹣0.9,CH=1.2,由勾股定理得:AC2=AH2+CH2∴x2=(x﹣0.9)2+(1.2)2,解这个方程,得x=1.25,1.25﹣1.2=0.05(千米)答:新路CH比原路CA少0.05千米.23.证明:∵∠B=90°,AB=12,BC=9,∴AC2=AB2+BC2=144+81=225,∴AC=15,又∵AC2+CD2=225+64=289,AD2=289,∴△ACD是直角三角形.24.解:(1)作AM⊥BC于M,∵△ABC的面积为84,∴×BC×AM=84,解得,AM=8,即BC边上的高为8;(2)①在Rt△ABM中,BM==6,∴CM=BC﹣BM=15,在Rt△ACM中,AC==17,由平移的性质可知,DF=AC=17;②当AB=BE=10时,a=BE=10;当AB=AE=10时,BE=2BM=12,则a=BE=12;当EA=EB=a时,ME=a﹣6,在Rt△AME中,AM2+ME2=AE2,即82+(a﹣6)2=a2,解得,a=,则当△ABE时等腰三角形时,a的值为10或12或.25.解:(1)AB==;(2)AB=丨5﹣(﹣1)丨=6;(3)△ABC是直角三角形理由:∵AB==,BC==5,AC==,∴AB2+AC2=()2+()2=25,BC2=52=25.∴△ABC是直角三角形.26.(1)解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC===5;(2)证明:∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=42+32=52=BC2,∴△BCD是直角三角形.27.解:(1)根据题意可得OA=15米,AB﹣OB=5米,由勾股定理OA2+OB2=AB2,可得:152+OB2=(5+OB)2解得:OB=20,答:这个云梯的底端离墙20米远;(2)由(1)可得:AB=20+5=25米,根据题意可得:CO=7米,CD=AB=25米,由勾股定理OC2+OD2=CD2,可得:,∴BD=24﹣20=4米,答:梯子的底部在水平方向滑动了4米。

2022-2023学年人教版八年级数学下册第十七章 勾股定理 单元复习题(含答案)

人教版八年级数学下册第十七章勾股定理单元复习题一、选择题1.在平面直角坐标系中,点(34)Q --,到原点的距离为()A .3B .4C .5D .72.如图,作一个正方形,使其边长为单位长度,以表示数1的点为圆心,正方形对角线的长为半径画弧,交数轴于点A ,则点A 表示的数是()A .12-B .13-C .1-D .13.下列各组数据中,不能作为直角三角形的三边边长的是()A .3,4,6B .6,8,10C .7,24,25D .9,12,154.如图,有一个水池,水面是边长为8尺的正方形,在水池中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度是()A .7.5尺B .8尺C .8.5尺D .9尺5.一个直角三角形的两条边分别为,,那么这个直角三角形的面积是()A B .CD .6.如图,在ABC 中,分别以点A 和点C 为圆心,大于12AC 的长为半径作弧(弧所在圆的半径都相等),两弧相交于M ,N 两点,直线MN 分别与边BC AC ,相交于点D ,E ,连接AD .若45BD DC AE AD ===,,,则AB 的长为()A .9B .8C .7D .67.如图,点A ,B ,C 在边长为1的正方形网格格点上,则AB 边上的高为()A .5B C .6D 8.如图,长方体的底面边长分别为2厘米和4厘米,高为5厘米.若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为()厘米A .8B .10C .12D .13二、填空题9.一个直角三角形的两边长分别为1和2,则第三边长为.10.一艘船以20海里/时的速度从A 港向东北方向航行,另一艘船以15海里/时的速度从A 港向西北方向航行,经过1小时后,它们相距海里.11.如图,在Rt ABC 中,9086C AC BC ∠=︒==,,,D 为AC 上一点,若BD 是ABC ∠的角平分线,则AD =.12.我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成.如图,直角三角形的直角边长为a 、b ,斜边长为c ,若420b a c -==,,则每个直角三角形的面积为.三、解答题13.如图,在四边形ABCD 中,90C ∠=︒,1BC CD ==,2AB =,6AD =.求ABC ∠的度数.14.如图,在ABC 中,3AC =,2AB =,E 是边BC 的中点,且52AE =.求证:ABC 是直角三角形.15.要把宣传牌()AB ,装订在教室的黑板上面(如图所示).一架梯子(5AE =米)靠在宣传牌()AB A ,底端落在地板E 处,然后移动的梯子使顶端落在宣传牌()AB 的B 处,而底端E 向外移到了1米到C 处(1CE =米).测量得4BM =米.求宣传牌()AB 的高度(结果用根号表示).四、综合题16.如图,在四边形ABCD 中,点E 是边BC 上一点,且BE CD =,B AED C ∠=∠=∠.(1)求证:EAD EDA ∠=∠;(2)若60C ∠=︒,4DE =时,求AED 的面积.17.如图,永定路一侧有A 、B 两个送奶站,C 为永定路上一供奶站,CA 和CB 为供奶路线,现已测得8km AC =,15km BC =,AC BC ⊥,130∠=︒.(1)连接AB ,求两个送奶站之间的距离.(2)有一人从点C 处出发,沿永定路路边向右行走,速度为2.5km /h ,多长时间后这个人距B 送奶站最近?18.图1、图2、图3均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,ABC 的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中ABC 的形状是;(2)在图1中确定一点D ,连接DB DC ,,使DBC 与ABC 全等但不成轴对称;(3)在图2中确定一点D ,连接DB DC ,,使DBC 与ABC 成轴对称;(4)在图3中ABC 边BC 上找一个点D ,使得它与点A B ,与点A C ,构成的三角形为等腰三角形.19.如图,点O 是等边 ABC 内一点,将CO 绕点C 顺时针旋转60°得到CD ,连接OD ,AO ,BO ,AD .(1)求证: BCO≌ ACD.(2)若OA=10,OB=8,OC=6,求∠BOC的度数.答案解析部分1.【答案】C【解析】【解答】解:点(34)Q --,到原点的距离为=5,故答案为:C.【分析】直接利用勾股定理计算即可.2.【答案】D【解析】=,则点A 表示的数为1-,故答案为:D .【分析】利用勾股定理求出正方形的对角线的长,即可得到点A 表示的数为13.【答案】A【解析】【解答】解:A 、∵32+42≠62,∴由勾股定理的逆定理可知这三条线段不能作为直角三角形的三边边长,故此选项符合题意;B 、∵62+82=102,∴由勾股定理的逆定理可知这三条线段能作为直角三角形的三边边长,故此选项不符合题意;C 、∵72+242=252,∴由勾股定理的逆定理可知这三条线段能作为直角三角形的三边边长,故此选项不符合题意;D 、∵92+122=152,∴由勾股定理的逆定理可知这三条线段能作为直角三角形的三边边长,故此选项不符合题意;故答案为:A.【分析】分别计算各选项中各数的平方,观察是否满足a 2+b 2=c 2,由勾股定理的逆定理可知:若满足,则可构成直角三角形,反之,不能构成直角三角形,结合各选项即可判断求解.4.【答案】C【解析】【解答】解:设芦苇的长度为x 尺,则AB 为(x-1)尺,根据勾股定理得:2228(1)(2x x -+=,解得:8.5x =,∴芦苇的长度为8.5尺.故答案为:C.【分析】设芦苇的长度为x 尺,则AB 为(x-1)尺,利用勾股定理建立方程,求解即可.5.【答案】C【解析】【解答】解:分两种情况:2==,则S ∆=122⨯=为直角边时,则S ∆=12=;.故答案为:C.为斜边时,用勾股定理求出另一条直角边,然后根据直角三角为直角边时,根据直角三角形的面积等于两直角边乘积的一半可求解.6.【答案】D【解析】【解答】解:由题意可得:MN 是AC 的垂直平分线,∴AC =2AE =8,DA=DC ,∴∠DAC=∠C ,∵BD =CD ,∴BD =AD ,∴∠B =∠BAD ,∵∠B+∠BAD+ZC+∠DAC =180°,∴2∠BAD+2∠DAC =180°,∴∠BAD+∠DAC=90°,∴∠BAC =90°,∵BC =BD+CD =2AD =10,∴6AB ===,故答案为:D.【分析】根据垂直平分线求出AC =2AE =8,DA=DC ,再求出∠B =∠BAD ,最后利用勾股定理计算求解即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第17章《勾股定理》复习试题
满分:100分 时间:70分 班级: 姓名:
一、选择题(每小题3分,共36分)
1、分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,
3;④9,40,41;⑤321,421,52
1
.其中能构成直角三角形的有( )组
A.2
B.3
C.4
D.5
2、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A .26 B.18 C.20 D.21
3、将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形 ( ) A. 可能是锐角三角形 B. 不可能是直角三角形 C. 仍然是直角三角形 D. 可能是钝角三角形
4、如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( ) A.12米 B.13米 C.14米 D.15米
5、△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,AB =8,BC =15,CA =17,则下列结论不正确的是( )
A .△ABC 是直角三角形,且AC 为斜边 B.△ABC 是直角三角形,且∠ABC =90° C.△ABC 的面积是60 D.△ABC 是直角三角形,且∠A =60°
6、已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是( )
A.
52 B.3
7、若ABC ∆中,13,15AB cm AC cm ==,高AD=12,则BC 的长为( ) A.14 B.4 C.14或4 D.以上都不对
8、如图2,分别以直角△ABC 的三边AB ,BC ,CA 为直径向外作半圆.设直线AB 左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( )
A.S 1=S 2
B.S 1<S 2
C.S 1>S 2
D.无法确定
A B C
图2 B C E
D 图3
D
C
B
A 9、如图3所示,A
B =B
C =C
D =D
E =1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE , 则AE =( )
A.1
B.
D.2
10、在△ABC 中,∠C =90°,周长为60,斜边与一直角边比是13∶5,则这个三角形三边长分别是( )
A.5,4,3
B.13,12,5
C.10,8,6
D.26,24,10 11、直角三角形有一条直角边长为13,另外两条边长都是自然数,则周长为( ) A.182 B.183 C.184 D.185
12、已知a 、b 、c 是三角形的三边长,
如果满足2
(6)100a c --=,则三角形的形状是( )
A.底与边不相等的等腰三角形
B.等边三角形
C.钝角三角形
D.直角三角形
二、填空题(每小题3分,共18分)
13、根据下图4中的数据,确定A =_______,B =_______,x =_______.
14、如图5,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米.
15、直角三角形两直角边长分别为5和12,则它斜边上的高为_______.
16、若三角形的三边满足::5:12:13a b c =,则这个三角形中最大的角为______;
17、如图,90,4,3,12C ABD AC BC BD ︒
∠=∠====,则AD= ;
18、如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是

A
B
C
图4
图5
三、解答题(共46分)
19、(8分)如图,为修通铁路凿通隧道AC,量出∠A=40°∠B=50°,AB=5公里,BC=4公里,若每天凿隧道0.3公里,问几天才能把隧道AB凿通?
20、(8分)如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9。

(1)求DC的长。

(2)求AB的长。

C
21、(9分)如图所示,有一条小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,•则这条小路的面积是多少?
C
B A D E
F
22、(9分)如图,Rt △ABC 中,∠ACB=90°
BC=
,AC=.
求斜边AB 上的高CD 。

C
A
B
23、(12分)如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,•长BC 为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长?•。

相关文档
最新文档