八年级上册数学第一章勾股定理同步练习(含答案)
初二上册数学第一章勾股定理练习题及答案

6. 在Rt△ABC中,∠C=90°,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是( )
A. 5、4、3、 B. 13、12、5 C. 10、8、6 D. 26、24、10
7.如图,在同一平面上把三边为BC=3,AC=4、AB=5的三角形沿最长边AB翻折后得到△ABC′,则CC′的长等于( )
处的食物,需要爬行的最短路程大约( )
A. 10cm B. 12cm C. 19cm D. 20cm
三、 解答题 (每小题10分, 共50分)
21. 如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?(先画出示意图,然后再求解)
22. 如图, 在△ABC中, AD⊥BC于D,AB=3,BD=2,DC=1, 求AC2的值.
A. 15° B. 30° C. 45° D. 60°
19. 在△ABC中,AB=12cm,BC=16cm,,AC=20cm,,则△ABC的面积是( )
A. 96cm2 B. 120cm2 C. 160cm2 D. 200cm2
20. 如图:有一圆柱,它的高等于8cm,底面直径等于4cm( )
在圆柱下底面的 点有一只蚂蚁,它想吃到上底面与 相对的 点
A. 4 B. 8 C. 10 D. 12
12. 小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是( )
A. 小丰认为指的是屏幕的长度
B. 小丰的妈妈认为指的是屏幕的宽度
C. 小丰的爸爸认为指的是屏幕的周长
D. 售货员认为指的是屏幕对角线的长度
13. 如图中字母A所代表的正方形的面积为( )
25. 如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积.
(必考题)初中数学八年级数学上册第一单元《勾股定理》测试题(含答案解析)

一、选择题1.一根竹竿插到水池中离岸边1.5m 远的水底,竹竿高出水面0.5m ,若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问水池的深度为( ) A .2m B .2.5cm C .2.25m D .3m2.学习勾股定理后,老师布置的课后作业为“利用绳子(绳子足够长)和卷尺,测量学校教学楼的高度”,某数学兴趣小组的做法如下:①将绳子上端固定在教学楼顶部,绳子自由下垂,再垂直向外拉到离教学楼底部3m 远处,在绳子与地面的交点处将绳子打结;②将绳子继续往外拉,使打结处离教学楼的距离为6m ,此时测得绳结离地面的高度为 1m ,则学校教学楼的高度为( )A .11 mB .13 mC .14 mD .15 m3.如图,在正方形网格中,每个小正方形的边长均为1,△ABC 的三个顶点A ,B ,C 均在网格的格点上,则△ABC 的三条边中边长是无理数的有( )A .0条B .1条C .2条D .3条 4.在周长为24的直角三角形中,斜边长为11,则该三角形的面积为( ) A .6B .12C .24D .48 5.下列各组数中,不能作为直角三角形的三边长的是( ) A .1,2,3 B .3,4,5 C .5,12,13 D .5,7,32 6.如图,用64个边长为1cm 的小正方形拼成的网格中,点A ,B ,C ,D ,E ,都在格点(小正方形顶点)上,对于线段AB ,AC ,AD ,AE ,长度为无理数的有( ).A .4条B .3条C .2条D .1条 7.下列几组数中,能作为直角三角形三边长度的是( )A .2,3,4a b c ===B .5,6,8a b c ===C .5,12,13a b c ===D .7,15,12a b c === 8.下列各组数据中,是勾股数的是( )A .3,4,5B .1,2,3C .8,9,10D .5,6,9 9.一个长方体盒子长24cm ,宽10cm ,在这个盒子中水平放置一根木棒,那么这根木棒最长(不计木棒粗细)可以是( )A .10cmB .24cmC .26cmD .28cm 10.如图①,直角三角形纸片的两直角边长分别为6、8,按如图②方式折叠,使点A 与点CB 重合,折痕为DE ,则BCE 与ADE 的面积之比为( )A .2:3B .4:9C .9:25D .14:25 11.如图是由四个全等的直角三角形与一个小正方形拼成的大正方形.若小正方形边长为3,大正方形边长为15,则一个直角三角形的面积等于( )A .36B .48C .54D .108 12.一根旗杆在离地面3米处断裂,旗杆顶部落在离旗杆底部4米处,旗杆折断之前的高度是( )A .5米B .7米C .8米D .9米二、填空题13.将五个边长为2的正方形按如图所示放置,若A ,B ,C ,D 四点恰好在圆上,则这个圆的面积为________.(结果保留π)14.如图,在四边形ABCD 中,90ABC ADC ∠=∠=︒,分别以四边向外做正方形甲、乙、丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,则丁的面积为______.15.如图,在Rt ABC △中,90C ∠=︒,点D 在BC 上,且12AC DC AB ==,若2AD =,则BD =___________.16.如图,在4×4方格中,小正方形格的边长为1,则图中阴影正方形的边长是____.17.如图,在校园内有两棵树相距12米,一棵树高14米,另一棵树高9米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞______米.18.在平面直角坐标系中,若点M (2,4)与点N (x ,4)之间的距离是3,则x 的值是_____.19.已知等边三角形的边长为2,则其面积等于__________.20.有两根木棒,分别长6cm 、5cm ,要再在7cm 的木棒上取一段,用这三根木棒为边做成直角三角形,则第三根木棒要取的长度是__________.三、解答题21.如图,Rt △ABC 中,∠ACB =90°.(1)作AB 边的垂直平分线交BC 于点D (要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB =10cm ,BC =8cm ,求BD 的长.22.如图,在平面直角坐标系中,点A (4,0),点B (0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,求点C 的坐标.23.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展,现用4个全等的直角三角形拼成如图所示“弦图”.Rt △ABC 中,∠ACB =90°.AC =b ,BC =a ,AB =c ,请你利用这个图形解决下列问题:(1)试说明:a 2+b 2=c 2;(2)如果大正方形的面积是13,小正方形的面积是3,求(a +b )2的值.24.利用所学的知识计算:(1)已知a b >,且2213a b +=,6ab =,求-a b 的值;(2)已知a 、b 、c 为Rt △ABC 的三边长,若222568a b a b ++=+,求Rt △ABC 的周长.25.如图,星期天小明去钓鱼,鱼钩A 在离水面的BD 的1.3米处,在距离鱼线1.2米处D 点的水下0.8米处有一条鱼发现了鱼饵,于是以0.2米/秒的速度向鱼饵游去,那么这条鱼至少几秒后才能到达鱼饵处?26.教材呈现:下图是华师版八年级上册数学教材111页的部分内容.()1请根据教材内容,结合图①,写出完整的解题过程.()2拓展:如图②,在图①的ABC 的边AB 上取一点D ,连接CD ,将ABC 沿CD 翻折,使点B 的对称点E 落在边AC 上.①求AE 的长.②DE 的长 .【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设水池的深度BC =xm ,则AB =(0.5+x )m ,根据勾股定理列出方程,进而即可求解.【详解】解:在直角△ABC 中,AC =1.5m .AB ﹣BC =0.5m .设水池的深度BC =xm ,则AB =(0.5+x )m .根据勾股定理得出:∵AC 2+BC 2=AB 2,∴1.52+x 2=(x +0.5)2,解得:x =2.故选:A .【点睛】本题主要考查勾股定理的实际应用,根据勾股定理,列出方程,是解题的关键. 2.C解析:C【分析】根据题意画出示意图,设学校教学楼的高度为x ,可得AC AD x ==,()1AB x m =-,6BC m =,利用勾股定理可求出x .【详解】解:如图,设学校教学楼的高度为x ,则AD x =,()1AB x m =-,6BC m =,左图,根据勾股定理得,绳长的平方223x =+,右图,根据勾股定理得,绳长的平方()2216x =-+,∴()2222316x x +=-+, 解得:14x =.故选:C .【点睛】本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.3.C解析:C【分析】根据勾股定理求出三边的长度,再判断即可.【详解】 解:由勾股定理得:22345AC =+=,是有理数,不是无理数;222313BC =+=,是无理数;221526AB =+=,是无理数,即网格上的△ABC 三边中,边长为无理数的边数有2条,故选:C .【点睛】本题考查了无理数和勾股定理,能正确根据勾股定理求出三边的长度是解此题的关键. 4.B解析:B【分析】画出直角三角形,由11,24,c a b c =++=可得:222169,a ab b ++=再由勾股定理可得:222121,a b c +==从而求解24,ab =再利用三角形的面积公式可得答案.【详解】解:如图,由题意知:11,24,c a b c =++=13,a b ∴+=222169,a ab b ∴++=222121,a b c +==121+2169,ab ∴=248,ab =24,ab ∴=112.2S ab ∴== 故选:.B【点睛】本题考查的是勾股定理的应用,完全平方公式的应用,掌握以上知识是解题的关键. 5.D解析:D【分析】根据勾股定理的逆定理分别进行判断,即可得出结论.【详解】解:A 、∵222142+==,∴1,2能作为直角三角形的三边长.故此选项不符合题意;B 、∵22234255+==,∴3,4,5能作为直角三角形的三边长.故此选项不符合题意;C 、∵22251216913+==,∴5,12,13能作为直角三角形的三边长.故此选项不符合题意;D 、∵2212+=,218=(,1218≠, ∴故选:D .【点睛】本题考查了勾股定理的逆定理的应用,掌握勾股定理逆定理用法是解题的关键. 6.C解析:C【分析】先根据勾股定理求出AB ,AC ,AD ,AE 这4条线段的长度,即可得出结果.【详解】根据勾股定理计算得:5=,=10=,长度为无理数的有2条,故选:C .【点睛】本题主要考查了勾股定理及无理数.勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.7.C解析:C【分析】由勾股定理的逆定理逐一分析各选项,从而可得答案.【详解】解:22222223134,a b c +=+=≠= 故A 不符合题意;22222256618,a b c +=+=≠= 故B 不符合题意;22222251216913,a b c +=+=== 故C 符合题意;22222271219315,a c b +=+=≠= 故D 不符合题意;故选:.C【点睛】本题考查的是勾股定理的逆定理,掌握“利用勾股定理的逆定理判断三角形是不是直角三角形.”是解题的关键8.A解析:A【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A 、222345+=,能构成直角三角形,是正整数,故是勾股数;B 、222123+≠,不能构成三角形,故不是勾股数;C 、2220981,不能构成直角三角形,故不是勾股数;D 、222569+≠,不能构成直角三角形,故不是勾股数.故选:A .【点睛】本题主要考查了勾股数的定义及勾股定理的逆定理,熟悉相关性质是解题的关键. 9.C解析:C【分析】根据题意可知木棒最长是底面长方形的对角线的长,利用勾股定理求解即可.【详解】解:长方体的底面是长方形,水平放置木棒,当木棒为该正方形的对角线时木棒最长,26=,则最长木棒长为26cm ,故选:C .【点睛】本题考查立体图形、勾股定理,由题意得出木棒最长是底面长方形的对角线的长是解答的关键.10.D解析:D【分析】由折叠可得5AD BD ==,AE BE =,根据勾股定理可得CE ,AE ,DE 的长度,即可求面积比.【详解】解:6BC =,8AC =,10AB ∴=,折叠,5AD BD ∴==,AE BE =, 22BC CE BE +=2,2236(8)CE CE ∴+=-,74CE ∴=, 725844AE ∴=-=,154DE ∴=, 11::14:2522BCE ADE S S BC CE AD DE ∆∆∴=⨯⨯⨯=, 故选:D .【点睛】本题考查了折叠问题,勾股定理,关键是熟练运用勾股定理求线段的长度.11.C解析:C【分析】根据图形的特征先算出4个三角形的面积之和,再除以4,即可求解.【详解】由题意得:15×15-3×3=216,216÷4=54,故选C .【点睛】本题主要考查“赵爽弦图”的相关计算,理清图形中的面积关系,是解题的关键. 12.C解析:C【分析】如图,由题意,AC ⊥BC ,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB ,求出AB 即可解决问题.【详解】解:如图,由题意,AC ⊥BC ,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB .在Rt △ACB 中,∠C=90°,AC=3米,BC=4米, ∴2222AB AC BC 345=++=(米),∴旗杆折断之前的高度高度=AC+AB=3+5=8(米),故选:C .【点睛】本题考查勾股定理的应用,解题的关键是理解题意,正确画出图形,运用勾股定理解决问题.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】根据题意得到圆心O 的位置设MO=x 根据AO2=DO2得到方程求出x 得到圆O 的半径从而求出面积【详解】解:由题意可得:多个小正方形排成轴对称图形∴圆心O 落在对称轴MN 上设MO=x ∵AO=DO ∴ 解析:1309π 【分析】根据题意得到圆心O 的位置,设MO=x ,根据AO 2=DO 2,得到方程,求出x ,得到圆O 的半径,从而求出面积.【详解】解:由题意可得:多个小正方形排成轴对称图形,∴圆心O 落在对称轴MN 上,设MO=x ,∵AO=DO ,∴AO 2=DO 2,即()2222163x x +=-+,解得:x=113, ∴圆O 的半径为21x +=130, ∴圆O 的面积为21303π⎛⎫ ⎪ ⎪⎝⎭=1309π, 故答案为:1309π.【点睛】本题考查了勾股定理,轴对称的性质,圆的性质,解题的关键是根据半径相等得到方程. 14.29【分析】如图(见解析)先根据正方形的面积公式可得再利用勾股定理可得的值由此即可得出答案【详解】如图连接AC 由题意得:在中在中则正方形丁的面积为故答案为:29【点睛】本题考查了勾股定理的应用熟练掌 解析:29【分析】如图(见解析),先根据正方形的面积公式可得22230,16,17AB BC CD ===,再利用勾股定理可得2AD 的值,由此即可得出答案.【详解】如图,连接AC ,由题意得:22230,16,17AB BC CD ===,在ABC 中,90ABC ∠=︒, 22246AC AB BC ∴=+=,在ACD △中,90ADC ∠=︒,22229AD AC CD ∴=-=,则正方形丁的面积为229AD =,故答案为:29.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键.15.【分析】设在中利用勾股定理求出x 值即可得到AC 和CD 的长再求出AB 的长再用勾股定理求出BC 的长即可得到结果【详解】解:设∵∴即解得或(舍去)∴∵∴∴∴故答案是:【点睛】本题考查勾股定理解题的关键是掌1【分析】设AC DC x ==,在Rt ACD △中,利用勾股定理求出x 值,即可得到AC 和CD 的长,再求出AB 的长,再用勾股定理求出BC 的长,即可得到结果.【详解】解:设AC DC x ==,∵90C ∠=︒,∴222AC CD AD +=,即222x x +=,解得1x =或1-(舍去), ∴1AC DC ==, ∵12AC AB =, ∴2AB =,∴BC ===, ∴1BD BC CD =-=.1.【点睛】本题考查勾股定理,解题的关键是掌握利用勾股定理解直角三角形的方法.16.【分析】根据勾股定理即可得出结果【详解】解:正方形的边长=故答案为:【点睛】本题主要考查的是勾股定理掌握勾股定理的计算方法是解题的关键【分析】根据勾股定理即可得出结果.【详解】解:正方形的边长.【点睛】本题主要考查的是勾股定理,掌握勾股定理的计算方法是解题的关键.17.13【分析】根据两点之间线段最短可知:小鸟沿着两棵树的顶端进行直线飞行所行的路程最短运用勾股定理可将两点之间的距离求出【详解】如图所示ABCD为树且AB=14米CD=9米BD为两树距离12米过C作C解析:13【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的顶端进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【详解】如图所示,AB,CD为树,且AB=14米,CD=9米,BD为两树距离12米,过C作CE⊥AB于E,则CE=BD=12,AE=AB−CD=5,在直角三角形AEC中,AC22+=13.512+=22AE CE答:小鸟至少要飞13米.故答案为:13.【点睛】本题考查了勾股定理的应用,关键是从实际问题中构建出数学模型,转化为数学知识,然后利用直角三角形的性质解题.18.﹣1或5【分析】根据点M(24)与点N(x4)之间的距离是3可以得到|2-x|=3从而可以求得x的值【详解】解:∵点M(24)与点N(x4)之间的距离是3∴|2﹣x|=3解得x=﹣1或x=5故答案为解析:﹣1或5【分析】根据点M(2,4)与点N(x,4)之间的距离是3,可以得到|2-x|=3,从而可以求得x的值.【详解】解:∵点M(2,4)与点N(x,4)之间的距离是3,∴|2﹣x|=3,解得,x=﹣1或x=5,故答案为﹣1或5.【点睛】本题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件.19.【分析】根据等边三角形三线合一的性质可得D为BC的中点即BD=CD在直角三角形ABD中已知ABBD根据勾股定理即可求得AD的长即可求三角形ABC的面积即可解题【详解】等边三角形三线合一即D为BC的中解析:3【分析】根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.【详解】等边三角形三线合一,即D为BC的中点,∴BD=DC=1,在Rt△ABD中,AB=2,BD=1,∴AD==3,∴△ABC的面积为BC•AD=333.20.【分析】分2种情况:①是直角边;②是斜边;根据勾股定理求出第三根木棒的长即可求解【详解】解:①是直角边第三根木棒要取的长度是(舍去);②是斜边第三根木棒要取的长度是故答案为:【点睛】考查了勾股定理的11【分析】分2种情况:①6cm是直角边;②6cm是斜边;根据勾股定理求出第三根木棒的长即可求解.【详解】解:①6cm是直角边,22+>(舍去);6561cm7cm②6cm是斜边,22-.6511cm11cm.【点睛】考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.三、解答题21.(1)见解析;(2)254. 【分析】(1)利用基本作图,作AB 的垂直平分线得到D 点;(2)先利用勾股定理计算出AC =6,再根据线段的垂直平分线的性质得到DA =DB ,设BD=x ,则AD =x ,CD =8﹣x ,利用勾股定理得到2(8)x -+26=2x ,然后解方程即可. 【详解】解:(1)如图,点D 为所作;(2)在Rt △ABC 中,∵∠ACB =90°,AB =10,BC =8,∴AC 22108-6,∵点D 在AB 的垂直平分线上,∴DA =DB ,设BD =x ,则AD =x ,CD =8﹣x ,在Rt △ACD 中,2(8)x -+26=2x ,解得x =254, 即BD 的长为254. 【点睛】本题考查了线段垂直平分线的作法,线段垂直平分线的性质,勾股定理,熟练掌握基本作图,灵活运用性质,是解题的关键.22.点C 的坐标为(-1,0).【分析】根据勾股定理可求出AB 的长,由AB=AC ,根据线段的和差关系可求出OC 的长,进而可求出C 点坐标.【详解】∵点A ,B 的坐标分别为(4,0),(0,3),∴OA=4,OB=3,∴225AB AO BO =+=.∵以点A 为圆心,AB 长为半径画弧,∴5AB AC ==,∴1OC AC AO =-=.∵交x 轴的负半轴于点C ,∴点C 的坐标为(-1,0).【点睛】本题考查了勾股定理和坐标与图形性质的应用,根据勾股定理求出OC 的长是解题关键. 23.(1)证明见解析;(2)23【分析】(1)根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.(2)根据完全平方公式的变形解答即可.【详解】解:(1)∵大正方形面积为c 2,直角三角形面积为12ab ,小正方形面积为(b ﹣a )2, ∴c 2=4×12ab +(a ﹣b )2=2ab +a 2﹣2ab +b 2即c 2=a 2+b 2; (2)由图可知:(b ﹣a )2=3,4×12ab =13﹣3=10, ∴2ab =10,∴(a +b )2=(b ﹣a )2+4ab =3+2×10=23.【点睛】本题考查了对勾股定理的证明和以及非负数的性质,掌握三角形和正方形面积计算公式是解决问题的关键.24.(1)1;(2)12或7+【分析】(1)根据完全平方公式变形解答;(2)先移项,将25变形为9+16,利用完全平方公式变形为22(3)(4)0a b -+-=,求得a=3,b=4,分情况,利用勾股定理求出c ,即可得到周长.【详解】(1)∵2213a b +=,6ab =,∴222()213261a b a b ab =+-=-⨯=-,∴a-b=1或a-b=-1(舍去);(2)222568a b a b ++=+ 2225680a b a b ++--=22698160a a b b -++-+=22(3)(4)0a b -+-=∴a-3=0,b-4=0,∴a=3,b=4,当a 与b 都是直角边时,c=2222435b a +=+=,∴Rt △ABC 的周长=3+4+5=12; 当a 为直角边,b 为斜边时,c=2222437b a -=-=,∴Rt △ABC 的周长=77+.【点睛】此题考查完全平方公式的变形计算,勾股定理,正确掌握并熟练应用完全平方公式是解题的关键.25.5【分析】过点C 作CE ⊥AB 于点E ,连接AC ,根据题意直接得出AE ,EC 的长,再利用勾股定理得出AC 的长,进而求出答案.【详解】如图所示:过点C 作CE ⊥AB 于点E ,连接AC ,由题意可得:EC =BD =1.2m ,AE =AB−BE =AB−DC =1.3−0.8=0.5m ,∴AC=22221.20.5 1.3CE AE +=+=m ,∴1.3÷0.2=6.5s ,答:这条鱼至少6.5秒后才能到这鱼饵处.【点睛】本题主要考查勾股定理,添加合适的辅助线,构造直角三角形,是解题的关键. 26.(1)10cm ;(2)①4cm ;②3cm【分析】(1)设AB=xcm ,AC=(x+2)cm ,运用勾股定理可列出方程,求出方程的解可得AB 的值,从而可得结论;(2)①由折叠的性质可得EC=BC=6cm ,根据AE=AC-EC 可得结论;②设DE=xcm ,在Rt △ADE 中运用勾股定理列方程求解即可.【详解】解:(1)设AB=xcm ,则AC=(x+2)cm ,根据勾股定理得,222AC AB BC =+∴222(+2)6x x =+解得,x=8∴AB=8cm,∴AC=8+2=10cm;(2)①由翻折的性质得:EC=BC=6cm∴AE=AC-EC=10-6=4cm②由翻折的性质得:∠DEC=∠DBC=90°,DE=DB,∴∠AED=90°设DE=DB=x,则AD=AB-BD=8-x在Rt△ADE中,222=+AD AE DE∴222-=+(8)4x x解得,x=3∴DE=3cm.故答案为:3cm.【点睛】此题主要考查了勾股定理与折叠问题,运用勾股定理解直角三角形,熟练掌握运用勾股定理是解答此题的关键.。
《第1章勾股定理》同步优生提升训练2021-2022学年北师大版八年级数学上册

2021年北师大版八年级数学上册《第1章勾股定理》同步优生提升训练(附答案)一.勾股定理1.如图,在四边形ABCD中,∠B=90°,AB=3,BC=6,点E在BC上,AE⊥DE.且AE=DE,若EC=1.则CD=.2.如图是一个四边形ABCD,若已知AB=4cm,BC=3cm,CD=12cm,AD=13cm,∠ABC =90°,则这个四边形的面积是cm2.3.如图,△ABC中,∠ACB=90°,AC=6,BC=8,P为直线AB上一动点,连PC.(1)线段PC的最小值是.(2)当PC=5时,AP长是.4.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为6cm,则A、B、C、D四个正方形的面积之和为cm2.5.如图,在6×4的小正方形网格中,小正方形的边长均为1,点A,B,C,D,E均在格点上.则∠ABC﹣∠DCE=()A.30°B.42°C.45°D.50°6.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4B.8C.16D.647.如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE ⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=,则PE+PF的长是()A.B.6C.D.8.△ABC中,AB=17,AC=10,高AD=8,则△ABC的周长是()A.54B.44C.36或48D.54或339.在Rt△ABC中,∠C=90°,若BC﹣AC=2cm,AB=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm210.如图,以Rt△ABC的三边为直角边分别向外作等腰直角三角形.若AB=,则图中阴影部分的面积为()A.B.C.D.511.在平面直角坐标系中,点A,B的坐标分别为(﹣6,0),(0,8).以点A为圆心,以AB长为半径画弧交x轴于点C,则点C的坐标为()A.(6,0)B.(4,0)C.(6,0)或(﹣16,0)D.(4,0)或(﹣16,0)12.如图,△ABC中,∠ABC=90°,AC=25cm,BC=15cm.(1)直接写出AB的长度.(2)设点P在AB上,若∠P AC=∠PCA.求AP的长;(3)设点M在AC上.若△MBC为等腰三角形,直接写出AM的长.13.如图,4×4方格中每个小正方形的边长都为1.(1)图①中正方形ABCD的边长为;(2)在图②的4×4方格中画一个面积为8的正方形;(3)把图②中的数轴补充完整,然后用圆规在数轴上表示实数和﹣.14.如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为“美丽三角形”.(1)如图,在△ABC中,AB=AC=,BC=4,求证:△ABC是“美丽三角形”;(2)在Rt△ABC中,∠C=90°,AC=,若△ABC是“美丽三角形”,求BC的长.15.如图所示网格是由边长为1的小正方形组成,点A,B,C位置如图所示,在网格中确定点D,使以A,B,C,D为顶点的四边形的所有内角都相等.(1)确定点D的位置并画出以A,B,C,D为顶点的四边形;(2)直接写出(1)中所画出的四边形的周长和面积.二.勾股定理的证明16.勾股定理是人类早期发现并证明的重要数学定理之一,这是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中,不能证明勾股定理的是()A.B.C.D.三.勾股数17.已知:整式A=n(n+6)+2(n+8)(n>0),整式B>0.尝试:化简整式A;发现:A=B2,求整式B;应用:利用A=B2,填写下列表格:n(n+6)2(n+8)B\40\四.勾股定理的逆定理18.如图,在四边形ABCD中,点E为AB的中点,DE⊥AB于点E,AB=6,,BC =1,,则四边形ABCD的面积为.19.在正方形网格中,A、B、C、D均为格点,则∠BAC﹣∠DAE=.20.下列各组数据中能作为直角三角形的三边长的是()A.1,1,B.6,8,11C.3,4,5D.1,3,21.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按如图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,422.如图,四边形ABCD的三条边AB,BC,CD和BD都为5cm,动点P从点A出发沿A →B→D以2cm/s的速度运动到点D,动点Q从点D出发沿D→C→B→A以2.8cm/s的速度运动到点A.若两点同时开始运动运动5s时,P,Q相距3cm.试确定两点运动5s时,问△APQ的形状.23.已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.24.(1)在Rt△ABC中,∠C=90°,BC=2,AB=,求AC的长;(2)已知△ABC中,BC=1,AC=,AB=2,求证:△ABC是直角三角形.25.如图,已知在△ABC中,CD⊥AB于D,BD=9,BC=15,AC=20.(1)求CD的长;(2)求AB的长;(3)判断△ABC的形状.五.勾股定理的应用26.小明从A处出发沿北偏东40°的方向走了30米到达B处;小军也从A处出发,沿南偏东α°(0<α<90)的方向走了40米到达C处,若B、C两处的距离为50米,则α=.27.一个矩形的抽斗长为12cm,宽为5cm,在抽斗底部放一根铁条,那么铁条最长可以是cm.28.如图,在水塔O的东北方向15m处有一抽水站A,在水塔的东南方向8m处有一建筑工地B,在AB间建一条直水管,则水管的长为()A.7m B.12m C.17m D.22m29.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为5,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A.B.C.D.30.将一根24cm的筷子,置于底面直径为15cm,高8cm的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为hcm,则h的取值范围是()A.h≤15cm B.h≥8cm C.8cm≤h≤17cm D.7cm≤h≤16cm 31.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D 两村到E站的距离相等,则E站应建在距A站多少千米处?32.如图,一棵高10m的大树倒在了高8m的墙上,大树的顶端正好落在墙的最高处,如果随着大树的顶端沿着墙面向下滑动,请回答下列各题.(1)如果大树的顶端沿着墙面向下滑动了2m,那么大树的另一端点是否也向左滑动了2m?说明理由,(2)如果大树的顶端沿着墙面向下滑动了am,那么大树的另一端点是否也向左滑动了am?说明理由.33.如图,学校有一块空地ABCD,准备种草皮绿化已知∠ADC=90°,AD=4米,CD=3米,AB=13米,BC=12米,求这块地的面积.34.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)35.如图,甲、乙两艘轮船同时从港口O出发,甲轮船以20海里/时的速度向南偏东45°方向航行,乙轮船向南偏西45°方向航行.已知它们离开港口O两小时后,两艘轮船相距50海里,求乙轮船平均每小时航行多少海里?六.平面展开-最短路径问题36.如图,长方体盒子的长为15cm,宽为10cm,高为20cm,点B距离C点5cm,一只蚂蚁如果要沿着盒子的表面从点A到点B.(1)蚂蚁爬行的最短距离是cm;(2)若从C处想盒子里面插入一根吸管,要使吸管不落入盒子中,吸管应不少于cm.37.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为()A.12cm B.14cm C.20cm D.24cm参考答案一.勾股定理1.解:过点D作DF⊥BC,交BC延长线于点F,由题意得,BE=BC﹣EC=5,∵∠B=90°,∴∠BAE+∠AEB=90°,∵AE⊥DE,∴∠AEB+∠DEC=90°,∴∠BAE=∠DEC,∵AE=DE,∠B=∠DFE=90°,∴△ABE≌△EFD(AAS),∴EF=AB=3,DF=BE=5,∴CF=EF﹣CE=2,∵∠DFC=90°,∴DC=.故答案为:.2.解:连接AC,∵∠ABC=90°,AB=4cm,BC=3cm,∴AC=5cm,∵CD=12cm,DA=13cm,AC2+CD2=52+122=169=132=DA2,∴△ADC为直角三角形,∴S四边形ABCD=S△ACD﹣S△ABC=AC×CD﹣AB×BC=×5×12﹣×4×3=30﹣6=24(cm2).故四边形ABCD的面积为24cm2.故答案为:24.3.解:(1)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴AB===10,由垂线段最短得:当PC⊥AB时,PC的值最小,此时,△ABC的面积=•AB•PC=•AC•BC,∴AB•PC=AC•BC,∴PC===4.8,故答案为:4.8;(2)过C作CQ⊥BC于Q,如图所示:同(1)得:CQ=4.8,由勾股定理得:AQ===3.6,PQ===1.4,当P在线段BQ上时,AP=AQ+PQ=3.6+1.4=5;当P在线段AQ上时,AP=AQ﹣PQ=3.6﹣1.4=2.2;综上所述,AP的长为5或2.2,故答案为:5或2.2.4.解:如右图所示,根据勾股定理可知,S正方形2+S正方形3=S正方形1,S正方形C+S正方形D=S正方形3,S正方形A+S正方形B=S正方形2,∴S正方形C+S正方形D+S正方形A+S正方形B=S正方形2+S正方形3=S正方形1=62=36.故答案是365.解:连接AC,AD,如图,根据勾股定理可得:AD=AC=BC=,CD=,∴∠ABC=∠BAC,∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣2∠ABC,在△ACD中,,,∴AD2+AC2=CD2,∴△ACD是直角三角形,∠DAC=90°,∵AD=CD,∴△ACD是等腰直角三角形,∴∠ACD=45°,∵AB∥EC,∴∠ABC+∠BCE=180°,∴∠ABC+∠ACB+∠ACD+∠DCE=180°,∴∠ABC+(180°﹣2∠ABC)+45°+∠DCE=180°,∴∠ABC﹣∠DCE=45°,故选:C.6.解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.7.解:(1)作PM⊥AC于点M,可得矩形AEPM∴PE=AM,利用DB=DC得到∠B=∠DCB∵PM∥AB.∴∠B=∠MPC∴∠DCB=∠MPC又∵PC=PC.∠PFC=∠PMC=90°∴△PFC≌△CMP∴PF=CM∴PE+PF=AC∵AD:DB=1:3∴可设AD=x,DB=3x,那么CD=3x,AC=2x,BC=2x ∵BC=∴x=2∴PE+PF=AC=2×2=4.(2)连接PD,PD把△BCD分成两个三角形△PBD,△PCD,S△PBD=BD•PE,S△PCD=DC•PF,S△BCD=BD•AC,所以PE+PF=AC=2×2=4.故选:C.8.解:分两种情况:①如图1所示:∵AD是BC边上的高,∴∠ADB=∠ADC=90°,∴BD===15,CD===6,∴BC=BD+CD=15+6=21;此时,△ABC的周长为:AB+BC+AC=17+10+21=48.②如图2所示:同①得:BD=15,CD=6,∴BC=BD﹣CD=15﹣6=9;此时,△ABC的周长为:AB+BC+AC=17+10+9=36.综上所述:△ABC的周长为48或36.故选:C.9.解:∵∠C=90°,∴AC2+BC2=AB2=100,∵BC﹣AC=2cm,∴(BC﹣AC)2=4,即AC2+BC2﹣2AC•BC=4,∴2AC•BC=96,∴AC•BC=24,即Rt△ABC的面积是24cm2,故选:A.10.解:S阴影=AC2+BC2+AB2=(AB2+AC2+BC2),∵AB2=AC2+BC2=5,∴AB2+AC2+BC2=10,∴S阴影=×10=5.故选:D.11.解:∵点A,B的坐标分别为(﹣6,0),(0,8),∴OA=6,OB=8,∴AB===10,∴AC=10,∴C(﹣16,0)或(4,0).故选:D.12.解:(1)∵∠ABC=90°,AC=25cm,BC=15cm,∴AB===20(cm),故答案为:20cm;(2)∵∠P AC=∠PCA,∴AP=PC,设AP=PC=x,∴PB=20﹣x,∵∠B=90°,∴BP2+BC2=CP2,即(20﹣x)2+152=x2,解得:x=,∴AP=;(3)AM的长为10cm,7cm,12.5cm.如图(1),当CB=CM=15时,AM=AC﹣CM=25﹣15=10(cm);如图(2),当BM=CM时,AM=BM=CM=AC=12.5(cm);如图(3),当BC=BM时,过B作BH⊥AC于点H,则BH==12(cm),CH ==9(cm),∴CM=2CH=18(cm),∴AM=AC﹣CM=7(cm);综上所述,AM的长为10cm,7cm,12.5cm.13.解:(1)图①中正方形ABCD的边长为=;故答案为:;(2)如图所示:(3)如图所示:14.(1)证明:过点A作AD⊥BC于D,∵AB=AC,AD⊥BC,∴BD=BC=2,由勾股定理得,AD==4,∴AD=BC,即△ABC是“美丽三角形”;(2)解:当AC边上的中线BD等于AC时,如图2,BC==6,当BC边上的中线AE等于BC时,AC2=AE2﹣CE2,即BC2﹣(BC)2=(4)2,解得BC=8.综上所述,BC的长是6或8.15.解:(1)如图所示:(2)AB==,BC==2,周长为(2+)×2=6,面积为2×=10.二.勾股定理的证明16.解:A、∵ab+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×ab+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×ab+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.三.勾股数17.解:A=n(n+6)+2(n﹣8)=n2+8n+16.∵A=B2,B>0,∴B2=n2+8n+16=(n+4)2.∴B=n+4,当2(n+8)=时,解得:n=,∴n+4=,当n(n+6)=40时,解得:n1=4,n2=﹣10(舍去),∴n+4=8,故答案为:;8.四.勾股定理的逆定理18.解:连接BD,∵点E为AB的中点,DE⊥AB于点E,AB=6,,∴EB=AB=3,∴,∵,即BD2+BC2=CD2,∴△BCD是直角三角形,且∠DBC=90°,∴四边形ABCD的面积=,故答案为:.19.解:如图所示,把△ADE移到△CFG处,连接AG,此时∠DAE=∠FCG,∵CF∥BD,∴∠BAC=∠FCA,∴∠BAC﹣∠DAE=∠FCA﹣∠FCG=∠ACG,设小正方形的边长是1,由勾股定理得:CG2=12+32=10,AC2=AG2=12+22=5,∴AC2+AG2=CG2,AC=AG,∴∠CAG=90°,即△ACG是等腰直角三角形,∴∠ACG=45°,∴∠BAC﹣∠DAE=45°,故答案为:45°.20.解:A、12+12≠()2,不能构成直角三角形,故不符合题意;B、62+82≠(11)2,不能构成直角三角形,故不符合题意;C、32+42=52,能构成直角三角形,故符合题意;D、12+32≠()2,不能构成直角三角形,故不符合题意.故选:C.21.解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是=,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是=;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是=,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.22.解:5s时,动点P运动的路程为2×5=10(cm),即点P运动到D点(点P与点D重合),动点Q运动的路程为2.8×5=14(cm),因为DC=BC=BA=5cm,所以点Q在BA上,且BQ=14﹣10=4(cm).在△BPQ中,因为BP=5cm,BQ=4cm,PQ=3cm,所以BQ2+PQ2=42+32=25=BP2,所以△BPQ是直角三角形,且∠BQP=90°,所以∠AQP=180°﹣90°=90°,所以两点运动5s时,△APQ是直角三角形.23.解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC=,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.24.(1)解:∵Rt△ABC中,∠C=90°,BC=2,AB=,∴AC=3.(2)证明:∵在△ABC中,BC=1,AC=,AB=2,BC2+AC2=12+()2=4=22=AB2,∴∠C=90°,∴△ABC为直角三角形.25.解:(1)在△BCD中,因为CD⊥AB,所以BD2+CD2=BC2.所以CD2=BC2﹣BD2=152﹣92=144.所以CD=12.(2)在△ACD中,因为CD⊥AB,所以CD2+AD2=AC2.所以AD2=AC2﹣CD2=202﹣122=256.所以AD=16.所以AB=AD+BD=16+9=25.(3)因为BC2+AC2=152+202=625,AB2=252=625,所以AB2=BC2+AC2.所以△ABC是直角三角形.五.勾股定理的应用26.解:∵AB=30,AC=40,BC=50,∴AB2+AC2=BC2,∴∠BAC=90°,∴α°=90°﹣40°=50°,∴α=50,故答案为:50.27.解:在直角△ABC中,根据勾股定理可得:AC=13(cm).即铁条最长可以是13cm.故答案是:13.28.解:已知东北方向和东南方向刚好是一直角,∴∠AOB=90°,又∵OA=15m,OB=8m,∴AB=17(m).故选:C.29.解:由题意知AB=CE=3,BC=AE=8,∠BCE=∠E=90°,DC∥BG,过点C作CF⊥BG于F,如图所示:∴∠DCF=90°,设DE=x,则AD=8﹣x,根据题意得:(8﹣x+8)×3×3=3×3×5,解得:x=6,∴DE=6,∵∠E=90°,由勾股定理得:CD=3,∵∠BCE=∠DCF=90°,∴∠DCE=∠BCF=90°﹣∠BCD,∵∠DEC=∠BFC=90°,∴CF=,故选:B.30.解:如图,当筷子的底端在D点时,筷子浸没在杯子里面的长度最短,∴h=BD=8(cm);当筷子的底端在A点时,筷子浸没在杯子里面的长度最长,在Rt△ABD中,AD=15cm,BD=8cm,∴AB=17(cm),所以h的取值范围是:8cm≤h≤17cm.故选:C.31.解:设AE=xkm,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得152+x2=102+(25﹣x)2,解得,x=10.故:E点应建在距A站10千米处.32.解:(1)是,理由如下:由题意可知,△ABC是直角三角形,∵AC=8m,AB=DE=10m,由勾股定理得,BC=6(m),∵AD=2m,∴CD=AC﹣AD=8﹣2=6(m),∴CE=8(m),∴BE=CE﹣BC=8﹣6=2(m),∴大树的另一端点也向左滑动了2m;(2)不一定,理由如下:∵AD=am,∴CD=AC﹣AD=(8﹣a)m,解得:a=2或a=0(舍去),∴只有当a=2时,大树的顶端沿着墙面向下滑动了am,那么大树的另一端点也向左滑动了am.33.解:连接AC.由勾股定理可知:AC=5,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形,∴这块地的面积=△ABC的面积﹣△ACD的面积=×5×12﹣×3×4=24(米2).34.解:在Rt△ABC中,AC=30m,AB=50m;根据勾股定理可得:BC=40∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.35.解:∵甲轮船以20海里/时的速度向南偏东45°方向航行,乙轮船向南偏西45°方向航行,∴AO⊥BO,∵甲以20海里/时的速度向南偏东45°方向航行,∴OB=20×2=40(海里),∵AB=50海里,在Rt△AOB中,AO=30∴乙轮船平均每小时航行30÷2=15海里.六.平面展开-最短路径问题36.解:(1)只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm,∴BD=CD+BC=10+5=15(cm),AD=20(cm),在直角三角形ABD中,根据勾股定理得:∴AB=25(cm);∴蚂蚁爬行的最短距离是25(cm).故答案为:25;37.解:如图:将圆柱展开,EG为上底面圆周长的一半,作A关于E的对称点A',连接A'B交EG于F,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF 的长,即AF+BF=A'B=20cm,延长BG,过A'作A'D⊥BG于D,∵AE=A'E=DG=4cm,∴BD=16cm,Rt△A'DB中,由勾股定理得:A'D=12cm,∴则该圆柱底面周长为24cm.故选:D.。
八年级数学上册第一章勾股定理单元测试卷(含答案)

第一章勾股定理单元测试卷一.选择题(共12小题)1.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为()A.3B.4C.2D.4(第1题) (第4题) (第5题) 2.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠CB.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:63.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形4.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1B.+1C.﹣1D.+15.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A. B. C. D.6.以下列各组线段为边长,能构成直角三角形的是()A.1,1,B.3,4,5C.5,10,13D.2,3,47.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.40海里D.50海里(第7题) (第9题) (第10题)8.△ABC中,边AB=15,AC=13,高AD=12,则△ABC的周长是()A.42B.32C.42或32D.不能确定9.如图,在Rt△ABC中,∠ACB=90°,AB=,BC=2,则这个直角三角形的面积为()A.3B.6C.D.10.如图,有4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是17,小正方形面积是5,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4B.6C.8D.1011.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4、5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1、5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米(第11题) (第12题) 12.如图表示的是一个十字路口,O是两条公路的交点,点A、B、C、D表示的是公路上的四辆车,若OC=8cm,AC=17cm,AB=5cm,BD=10m,则C,D两辆车之间的距离为()A.5mB.4mC.3mD.2m二.填空题(共5小题)13.如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△PAB为直角三角形时,AP的长为.(第13题) (第14题) (第15题)14.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯米.15.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是.16.如图,四边形ABCD中,AD=3,CD=4,∠ABC=∠ACB=∠ADC=45°,则BD的长为.17.如果矩形的周长是14cm,相邻两边长之比为3:4,那么对角线长为cm.三.解答题(共5小题)18.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?19.在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=求:(1)求AD的长;(2)△ABC是直角三角形吗?为什么?20.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,求线段AE的长.21.如图,在Rt△ABC中,∠A=90°,边BC的垂直平分线DE交AB于点E,连接CE.求证:BE2=AC2+AE2.22.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S 2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S 2,S3表示,确定它们的关系并证明.参考答案一.选择题(共12小题)1.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD 的长为()A.3B.4C.2D.4【解答】解:在Rt△AOB中,AO2=AB2﹣BO2;Rt△DOC中可得:DO2=DC2﹣CO2;∴可得AD2=AO2+DO2=AB2﹣BO2+DC2﹣CO2=18,即可得AD==3.故选A.2.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC 为直角三角形的是()A.∠A+∠B=∠CB.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:6【解答】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2﹣b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选D.3.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形【解答】解:∵原式可化为a2+b2=c2,∴此三角形是直角三角形.故选:C.http://www、czsx、com、cn4.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1B.+1C.﹣1D.+1【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=5,在Rt△ADC中,DC===1,∴BC=+1.故选D.5.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC 于点D,则BD的长为()A. B. C. D.【解答】解:△ABC的面积=×BC×AE=2,由勾股定理得,AC==,则××BD=2,解得BD=,故选:A.6.以下列各组线段为边长,能构成直角三角形的是()A.1,1,B.3,4,5C.5,10,13D.2,3,4【解答】解:A、12+12≠()2,不能构成直角三角形,故此选项错误;B、32+42=52,能构成直角三角形,故此选项正确;C、52+102≠132,不能构成直角三角形,故此选项错误;D、22+32≠42,不能构成直角三角形,故此选项错误.故选B.7.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.40海里D.50海里【解答】解:连接BC,由题意得:AC=16×2=32(海里),AB=12×2=24(海里),CB==40(海里),故选:C.8.△ABC中,边AB=15,AC=13,高AD=12,则△ABC的周长是()A.42B.32C.42或32D.不能确定【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC 的周长为32.综上所述,△ABC的周长是42或32.故选:C.9.如图,在Rt△ABC中,∠ACB=90°,AB=,BC=2,则这个直角三角形的面积为()A.3B.6C.D.【解答】解:∵在Rt△ABC中,∠ACB=90°,AB=,BC=2,∴AC==3,∴这个直角三角形的面积=AC•BC=3,故选A.10.如图,有4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是17,小正方形面积是5,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4B.6C.8D.10【解答】解:根据勾股定理可得a2+b2=17,四个直角三角形的面积是:ab×4=17﹣5=12,即:ab=6.故选:B.11.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4、5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1、5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米【解答】解:由题意可知.BE=CD=1、5m,AE=AB﹣BE=4、5﹣1、5=3m,BD=5m由勾股定理得CE==4m故离门4米远的地方,灯刚好打开,故选A.12.如图表示的是一个十字路口,O是两条公路的交点,点A、B、C、D表示的是公路上的四辆车,若OC=8cm,AC=17cm,AB=5cm,BD=10m,则C,D两辆车之间的距离为()A.5mB.4mC.3mD.2m【解答】解:在RT△AOC中,∵OA2+OC2=AC2,∴OA===15(m),∴OB=0A+AB=20m,在RT△BOD中,∵BD2=OB2+OD2,∴OD===10(m),∴CD=OD﹣OC=2m,故选:D.二.填空题(共5小题)13.如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△PAB为直角三角形时,AP的长为2或2.【解答】解:当∠APB=90°时,分两种情况讨论,情况一:如图1,∵AO=BO,∴PO=BO,∵∠AOC=120°,∴∠AOP=60°,∴△AOP为等边三角形,∴∠OAP=60°,∴∠∠PBA=30°,∴AP=AB=2;情况二:如图2,∵AO=BO,∠APB=90°,∴PO=BO,∵∠AOC=120°,∴∠BOP=60°,∴△BOP为等边三角形,∴∠OBP=60°,∴AP=AB•sin60°=4×=2;当∠BAP=90°时,如图3,∵∠AOC=120°,∴∠AOP=60°,∴AP=OA•tan∠AOP=2×=2.故答案为:2或2.14.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯 2 米.【解答】解:在直角三角形AOB中,根据勾股定理,得:OB=6m,根据题意,得:OB′=6+2=8m.又∵梯子的长度不变,在Rt△A′OB′中,根据勾股定理,得:OA′=6m.则AA′=8﹣6=2m.15.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是11cm≤a≤12cm.=24﹣12=12cm.【解答】解:当筷子与杯底垂直时h最大,h最大当筷子与杯底及杯高构成直角三角形时a最小,如图所示:此时,AB===13cm,故a=24﹣13=11cm.所以a的取值范围是:11cm≤a≤12cm.故答案是:11cm≤a≤12cm.16.如图,四边形ABCD中,AD=3,CD=4,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′==3,∠D′DA+∠ADC=90°由勾股定理得CD′==,∴BD=CD′=,故答案为:.17.如果矩形的周长是14cm,相邻两边长之比为3:4,那么对角线长为 5 cm. 【解答】解:设矩形的相邻两边的长度分别为3acm,4acm,由题意3a+4a=7,a=1,所以矩形的相邻两边分别为3cm,4cm,所以对角线长==5cm,故答案为5.三.解答题(共5小题)18.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?【解答】解:(1)由题意得:AC=25米,BC=7米,AB==24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA′=20米,BC′==15(米),则:CC′=15﹣7=8(米),答:梯子的底端在水平方向滑动了8米.19.在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=求:(1)求AD的长;(2)△ABC是直角三角形吗?为什么?【解答】解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,BC=3,DB=,根据勾股定理得:CD==,在Rt△ACD中,AC=4,CD=,根据勾股定理得:AD==;(2)△ABC为直角三角形,理由为:∵AB=BD+AD=+=5,∴AC2+BC2=AB2,∴△ABC为直角三角形.20.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,求线段AE的长.【解答】解:∵BC⊥AB,CD⊥AC,AC⊥DE,∴∠B=∠ACD=∠ADE=90°,∵AB=BC=CD=DE=1,∴在Rt△ACB中,AC═==,∴在Rt△ACD中,AD===,在Rt△ADE中,AE===2.21.如图,在Rt△ABC中,∠A=90°,边BC的垂直平分线DE交AB于点E,连接CE.求证:BE2=AC2+AE2.【解答】证明:∵如图,边BC的垂直平分线DE交AB于点E,∴CE=BE.∵在Rt△ABC中,∠A=90°,∴由勾股定理得到:CE2=AC2+AE2∴BE2=AC2+AE2.22.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S 2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S 2,S3表示,确定它们的关系并证明.【解答】解:(1)S2+S3=S1,由三个四边形都是正方形则:∵S3=AC2,S2=BC2,S1=AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.(2)∵S3=AC2,S2=BC2,S1=AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.(3)∵S1=AB2,S2=BC2,S3=AC2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.。
八年级上册第1章《勾股定理》单元试卷含答案(中考数学试题)

中考数学试题分类汇编:北师版数学八年级上册第1章《勾股定理》考点一:勾股定理1.(•滨州)在直角三角形中,若勾为3,股为4,则弦为()A.5B.6C.7D.8【分析】直接根据勾股定理求解即可.【解答】解:∵在直角三角形中,勾为3,股为4,∴弦的平方为32+42=25,弦长为5.故选:A.2.(•模拟)如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4B.8C.16D.64【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.3.(•模拟)如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm【分析】解答此题只要把原来的图形补全,构造出直角三角形解答.【解答】解:延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15﹣3)2+(20﹣4)2=122+162=400,所以BC=20.则剪去的直角三角形的斜边长为20cm.故选:D.4.(•模拟)如图,在△ABC中,∠B=∠C,AD平分∠BAC,AB=5,BC=6,则AD=()A.3B.4C.5D.6【分析】先判定△ABC为等腰三角形,利用等腰三角形的性质可求得BD,在Rt△ABD中利用勾股定理可求得AD的长.【解答】解:∵∠B=∠C,∴AB=AC,∵AD平分∠BAC,∴AD⊥BC,BD=CD=12BC=3,在Rt△ABD中,AB=5,BD=3,∴AD=4,故选:B.考点二:勾股定理得证明1.(•泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.3【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:12ab=12×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.2.(•期中)如图是著名的赵爽弦图,它是由四个全等的直角三角形拼成,每个直角三角形的两直角边的长分别为a和b,斜边长为c,请你用它验证勾股定理.【分析】通过图中小正方形面积证明勾股定理.【解答】解:S小正方形=(b﹣a)2=b2﹣2ab+a2,另一方面S小正方形=c2﹣4×ab=c2﹣2ab,即b2﹣2ab+a2=c2﹣2ab,∴a2+b2=c2.3.(•期中)如图:在Rt△ABC和Rt△BDE中,∠C=90°,∠D=90°,AC=BD=a,BC=DE=b,AB=BE=c,试利用图形证明勾股定理.【分析】由图知,梯形的面积等于三个直角三角形的面积之和,用字母表示出来,化简后,即证明勾股定理.【解答】证明:∵∠C=90°,∠D=90°,AC=BD=a,BC=DE=b,AB=BE=c,∵Rt△ACB≌Rt△BDE,∴∠ABC=∠BED,∠BAC=∠EBD,∵∠ABC+∠DBE=90°,∴∠ABE=90°,三个Rt△其面积分别为12ab,12ab和12c2.直角梯形的面积为12(a+b)(a+b).由图形可知:12(a+b)(a+b)=12ab+12ab+12c2,整理得(a+b)2=2ab+c2,a2+b2+2ab=2ab+c2,∴a2+b2=c2.4.(•模拟)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a∵S四边形ADCB=S△ACD+S△ABC=12b2+12ab.又∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b﹣a),∴12b2+12ab=12c2+12a(b﹣a),∴a2+b2=c2.请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.【分析】首先连结BD,过点B作DE边上的高BF,则BF=b﹣a,表示出S五边形ACBED,两者相等,整理即可得证.【解答】证明:连结BD,过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=12ab+12b2+12ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=12ab+12c2+12a(b﹣a),∴12ab+12b2+12ab=12ab+12c2+12a(b﹣a),∴a2+b2=c2.考点三:勾股定理的逆定理1.(•南通)下列长度的三条线段能组成直角三角形的是()A.3,4,5B.2,3,4C.4,6,7D.5,11,12【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【解答】解:A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选:A.2.(•模拟)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD2=AC2+CD2=25,CD=5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故选:A.3.(•期中)下列各组数中,不能作为直角三角形的三边长的是()A.1.5,2,3B.6,8,10C.5,12,13D.15,20,25【分析】只要验证两小边的平方和等于最长边的平方即可判断三角形是不是直角三角形,据此进行判断.【解答】解:A、(1.5)2+22≠32,不能构成直角三角形,故本选项符合题意;B、62+82=100=102,能构成直角三角形,故本选项不符合题意;C、52+122=169=132,能构成直角三角形,故本选项不符合题意;D、152+202=252,能构成直角三角形,故本选项符合题意;故选:A.4.(•期末)满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:15【分析】根据三角形内角和定理、勾股定理的逆定理对各个选项分别进行计算即可.【解答】解:A.b2﹣c2=a2,则b2=a2+c2,△ABC是直角三角形;B.a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;C.∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;D.∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.5.(•期中)已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24B.30C.40D.48【分析】因为△ABC的三边分别是6,8,10,根据勾股定理的逆定理可求出此三角形为直角三角形,根据三角形面积公式可求出面积.【解答】解:∵62+82=102,∴△ABC是直角三角形,∴△ABC的面积=×6×8=24.故选:A.6.(•期中)已知△ABC的三边长为a、b、c,满足a+b=10,ab=18,c=8,则此三角形为三角形.【分析】对原式进行变形,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵a+b=10,ab=18,c=8,∴(a+b)2﹣2ab=100﹣36=64,c2=64,∴a2+b2=c2,∴此三角形是直角三角形.故答案为:直角.7.(•期末)观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…请你写出有以上规律的第⑤组勾股数:.【分析】勾股定理和了解数的规律变化是解题关键.【解答】解:从上边可以发现第一个数是奇数,且逐步递增2,故第5组第一个数是11,又发现第二、第三个数相差为一,故设第二个数为x,则第三个数为x+1,根据勾股定理得:112+x2=(x+1)2,解得x=60,则得第5组数是:11、60、61.故答案为:11、60、61.8.(•期中)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.【分析】根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.【解答】解:∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,CD2=AC2-AD2=225,CD=15,∴S△ABC=12BC•AD=12(BD+CD)•AD=12×21×8=84,因此△ABC的面积为84.答:△ABC的面积是84.考点四:勾股定理的应用1.(•期末)如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75B.100C.120D.125【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【解答】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.故选:B.2.(•模拟)一根高9m的旗杆在离地4m高处折断,折断处仍相连,此时在3.9m远处耍的身高为1m的小明()A.没有危险B.有危险C.可能有危险D.无法判断【分析】由勾股定理求出BC=4>3.9,即可得出结论.【解答】解:如图所示:AB=9﹣4=5,AC=4﹣1=3,由勾股定理得:BC=4>3.9,∴此时在3.9m远处耍的身高为1m的小明有危险,故选:B.3.(•模拟)如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为()A.16cm B.20cm C.24cm D.28cm【分析】首先根据平行线的性质以及折叠的性质证明∠EAC=∠DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角△ADF中利用勾股定理求解.【解答】解:∵长方形ABCD中,AB∥CD,∴∠BAC=∠DCA,又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm,又∵长方形ABCD中,DC=AB=32cm,∴DF=DC﹣FC=32﹣25=7cm,在直角△ADF中,AD=24(cm).故选:C.4.(•湘潭)《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程为.【分析】设AC=x,可知AB=10﹣x,再根据勾股定理即可得出结论.【解答】解:设AC=x,∵AC+AB=10,∴AB=10﹣x.∵在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,即x2+32=(10﹣x)2.故答案为:x2+32=(10﹣x)2.5.(•包头)如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为.【分析】根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长.【解答】解:根据勾股定理得:AC=5,由网格得:S△ABC=12×2×4=4,且S△ABC=12AC•BD=12×5BD,∴12×5BD=4,解得:BD=85.故答案为:8 56.(•黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B2=A′D2+BD2=400,A′B=20(cm).故答案为20.7.(•期中)在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方两丈,葭生其,出水两尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”这个数学问题的意思是说:“有一个水池是边长为2丈(1丈=10尺)的正方形,在水池正长有一根芦苇,芦苇露出水面2尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度分别是多少?”答:这个水池的深度和这根芦苇的长度分别是.【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理可得x2+(102)2=(x+1)2,再解答即可.【解答】解;设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+(102)2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:水池深12尺,芦苇长13尺.故答案是:12尺;13尺.8.(•期中)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,求EB′的长.【分析】根据折叠得到BE=EB′,AB′=AB=3,设BE=EB′=x,则EC=4﹣x,根据勾股定理求得AC的值,再由勾股定理可得方程x2+22=(4﹣x)2,再解方程即可算出答案.【解答】解:根据折叠可得BE=EB′,AB′=AB=3,设BE=EB′=x,则EC=4﹣x,∵∠B=90°,AB=3,BC=4,∴在Rt△ABC中,由勾股定理得,AC=5,∴B′C=5﹣3=2,在Rt△B′EC中,由勾股定理得,x2+22=(4﹣x)2,解得x=1.5.11/ 11。
(典型题)初中数学八年级数学上册第一单元《勾股定理》测试(含答案解析)

一、选择题1.如图,四个全等的直角三角形和中间的小正方形可以拼成一个大正方形,若直角三角形的较长直角边长为a ,较短直角边长为b ,大正方形面积为S 1,小正方形面积为S 2,则(a +b )2可以表示为( )A .S 1﹣S 2B .S 1+S 2C .2S 1﹣S 2D .S 1+2S 2 2.毕达哥拉斯树,也叫“勾股树”,是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的树形图形,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A ,B ,C ,D 的边长分别是2,3,1,2,则△正方形E 的边长是( )A .18B .8C .22D .32 3.下列各组数据,不能作为直角三角形的三边长的是( ) A .5、6、7 B .6、8、10C .1.5、2、2.5D .3、2、7 4.七巧板是大家熟悉的一种益智类玩具.用七巧板能拼出许多有趣的图案.小明将一个直角边长为20cm 的等腰直角三角形纸板,切割七块.正好制成一副七巧板,则图中阴影部分的面积为( )A .210cmB .225cm 2C .22cm 2D .225cm 5.已知点P 是△ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫△ABC 的费马点(Fermat point ).已经证明:在三个内角均小于120°的△ABC 中,当∠APB =∠APC=∠BPC =120°时,P 就是△ABC 的费马点.若点P 是腰长为6的等腰直角三角形DEF 的费马点,则PD +PE +PF =( )A .6B .()326+C .63D .96.如图,直线l 上有三个正方形a 、b 、c ,若a 、c 的面积分别为3和4,则b 的面积为( )A .3B .4C .5D .77.如图所示的图案是由两个直角三角形和三个正方形组成的图形,其中一直角三角形的斜边和一直角边长分别是13,12,则阴影部分的面积是( )A .25B .16C .50D .418.如图,在长方形ACD 中,3AB cm =,9AD cm =,将此长方形折叠,便点D 与点B 重合,折痕为EF ,则ABE △的面积为( )2cm .A .12B .10C .6D .15 9.下列四组数中,是勾股数的是( ) A .5,12,13 B .4,5,6 C .2,3,4 D .1,2,5 10.如图,在ABC ∆中,90C ∠=︒,4AC =,2BC =.以AB 为一条边向三角形外部作正方形,则正方形的面积是( )A .8B .12C .18D .2011.下列各组数是勾股数的是( )A .4,5,6B .5,7,9C .6,8,10D .10,11,12 12.如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为( )A .514B .8C .16D .64二、填空题13.如图,把一张宽为4(即4AB =)的矩形纸片ABCD 沿,EF GH 折叠(点,E H 在AD 边上,点,F G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A '点,D 点对称点为D '点.当PFG △为等腰三角形时,发现此时PFG △的面积为10,则矩形ABCD 的长BC =_____.14.已知等腰三角形的两边长分别为a ,b ,且a ,b 满足2235(2313)0a b a b -+++-=,则此等腰三角形的面积为____.15.如图,△ABC 中AD ⊥BC 于D ,AC =2, DC =1,BD =3, 则AB 的长为_____.16.如图,直角三角形ABC 的周长为24,且AB :BC=5:3,则AC= __________.17.小明学了在数轴上表示无理数的方法后,进行了练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB OA ⊥,使3AB =(如图);再以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,则点P 所表示的数是____________.18.一架5米长的梯子斜靠在一竖直的墙上,这时梯足距离墙脚3m ,若梯子的顶端下滑1m ,则梯足将滑动______.19.如图,ABC 中,90C ∠=︒,D 是BC 边上一点,17AB cm =,10AD cm =,8AC cm =,则BD 的长为________.20.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若BD =3,AE =10,则正方形ODCE 的边长等于____.三、解答题21.在△ABC 中,AB=8,AC=5,若BC 边上的高等于4,求BC 的长.22.某校校门口有一个底面为等边三角形的三棱柱(如图),学校计划在三棱柱的侧面上,从顶点A 绕三棱柱侧面一周到顶点A '安装灯带,已知此三棱柱的高为4m ,底面边长为1m ,求灯带最短的长度.23.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是.24.三国时代东吴数学家赵爽(字君卿,约公元3世纪)在《勾股圆方图注》一书中用割补的方法构造了“弦图”(如图1,并给出了勾股定理的证明.已知,图2中涂色部分是直角边长为,a b,斜边长为c的4个直角三角形,请根据图2利用割补的方法验证勾股定理.25.在等腰直角△ABC中,AB= AC, BAC=90°,过点B作BC的垂线l.点P为直线AB 上的一个动点(不与点A,B重合),将射线PC绕点P顺时针旋转90°交直线l于点D.(1)如图1,点P在线段AB上,依题意补全图形;①求证:∠BDP =∠PCB;②用等式表示线段BC,BD,BP之间的数量关系,并证明.(2)点P在线段AB的延长线上,直接写出线段BC,BD,BP之间的数量关系.26.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙脚的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,求小巷的宽度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据图形和勾股定理可知S1=c2=a2+b2,再由完全平方公式即可得到结果.【详解】解:如图所示:设直角三角形的斜边为c,则S1=c2=a2+b2S2=(a﹣b)2=a2+b2﹣2ab,∴2ab=S1﹣S2,∴(a+b)2=a2+2ab+b2=S1+S1﹣S2=2S1﹣S2,故选:C【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式.2.D解析:D【分析】根据勾股定理分别求出正方形E 的面积,进而即可求解.【详解】解:由勾股定理得,正方形E 的面积=正方形A 的面积+正方形B 的面积+正方形C 的面积+正方形D 的面积=22+32+12+22=18,∴正方形E 的边长故选:D .【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.3.A解析:A【分析】利用勾股定理的逆定理计算判断即可.【详解】∵2256253661+=+=≠2749=,∴5、6、7不能作为直角三角形的三边长,∴选项A 错误;∵22866436100+=+==210100=,∴6、8、10能作为直角三角形的三边长,∴选项B 正确;∵221.52 2.254 6.25+=+==22.5 6.25=,∴1.5、2、2.5能作为直角三角形的三边长,∴选项C 正确; ∵222347+=+==27=, ∴2能作为直角三角形的三边长,∴选项D 正确;故选A .【点睛】本题考查了勾股定理的逆定理,熟练掌握逆定理并进行准确计算是解题的关键. 4.B解析:B【分析】根据七巧板意义,计算出阴影等腰直角三角形的直角边的长即可.【详解】如图,根据题意,得BC=20,=EM ,∴,∴EF=FG=5, ∴212522EFG S EF ==, 故选B.【点睛】本题考查了等腰直角三角形的性质,等腰直角三角形的面积,熟练掌握七巧板制作规律和制作特点是解题的关键.5.B解析:B【分析】根据题意画出图形,根据勾股定理可得EF ,由过点D 作DM ⊥EF 于点M ,过E 、F 分别作∠MEP =∠MFP =30°就可以得到满足条件的点P ,易得EM =DM =MF =32方程求出PM 、PE 、PF ,继而求出PD 的长即可求解.【详解】解:如图:等腰Rt △DEF 中,DE =DF =6, ∴22226662EF DE DF =++=过点D 作DM ⊥EF 于点M ,过E 、F 分别作∠MEP =∠MFP =30°,则∠EPF=∠FPD=∠DPE=120°,点P 就是马费点,∴EM =DM =MF =32设PM =x ,PE =PF=2x ,在Rt △EMP 中,由勾股定理可得:222PM EM PE +=,即()22182x x +=, 解得:16x =26x =-即PM 6,∴PE =PF =26故DP =DM -PM =326,则PD +PE +PF =326463236326. 故选B .【点睛】此题主要考查了等腰直角三角形的性质、勾股定理的应用,正确画出做辅助线构造直角三角形进而求出PM 的长是解题关键.6.D解析:D【分析】根据“AAS”可得到△ABC ≌△CDE ,由勾股定理可得到b 的面积=a 的面积+c 的面积.【详解】解:如图∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°,∴∠ACB=∠DEC ,∵∠ABC=∠CDE ,AC=CE ,∴△ABC ≌△CDE ,∴BC=DE ,∵AC 2=AB 2+BC 2,∴AC 2=AB 2+DE 2,∴b 的面积=a 的面积+c 的面积=3+4=7.故答案为:D .【点睛】本题考查了全等三角形的判定与性质,勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.7.C解析:C【分析】由勾股定理解得2AB 、22CD BD +,再根据正方形边长相等的性质得到222225CD BD BC AB +===,据此解题即可.【详解】解:由勾股定理得,222131225AB =-=222BC CD BD =+222225CD BD BC AB ∴+===∴阴影部分的面积是222252550CD BD BC ++=+=,故选:C .【点睛】本题考查勾股定理,是重要考点,难度较易,掌握相关知识是解题关键.8.C解析:C【分析】设AE=x ,由折叠BE=ED=9-x ,再在Rt △ABE 中使用勾股定理即可求出x ,进而求出△ABE 的面积.【详解】解:设AE=x ,由折叠可知:BE=ED=9-x ,在Rt △ABE 中,由勾股定理有:AB²+AE²=BE²,代入数据:3²+x²=(9-x)²,解得x=4,故AE=4,此时11=43622∆⨯=⨯⨯=ABE S AE AB , 故选:C .【点睛】本题考查了折叠问题中的勾股定理,利用折叠后对应边相等,设要求的边为x ,在一个直角三角形中,其余边用x 的代数式表示,利用勾股定理建立方程求解x . 9.A解析:A【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A. ∵5,12,13是正整数,且52+122=132,∴5,12,13是勾股数;B. ∵42+52≠62,∴4,5,6不是勾股数;C. ∵22+32≠42,∴2,3,4不是勾股数;D. ∵25∴125故选A .【点睛】此题主要考查了勾股数,解答此题要用到勾股数组的定义,如果a ,b ,c 为正整数,且满足a 2+b 2=c 2,那么,a 、b 、c 叫做一组勾股数.10.D解析:D【分析】根据勾股定理解得2AB 的值,再结合正方形的面积公式解题即可.【详解】在ABC ∆中,90C ∠=︒,4AC =,2BC =,222224220AB AC BC ∴=+=+=∴以AB 为一条边向三角形外部作的正方形的面积为220AB =,故选:D .【点睛】本题考查勾股定理的应用,是重要考点,难度较易,掌握相关知识是解题关键. 11.C解析:C【分析】根据勾股数的定义:满足222+=a b c 的三个正整数a 、b 、c 叫做勾股数,逐一进行判断即可.【详解】解:A. 222456+≠,故此选项错误;B. 222579+≠,故此选项错误;C. 2226810+=,故此选项正确;D. 222101112+≠,故此选项错误.故选:C .【点睛】本题考查了勾股数的概念,熟记勾股数的概念是解题的关键.12.D解析:D【分析】设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,代入得到2225289a +=,计算求出答案即可.【详解】如图,设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,∴2225289a +=,∴字母A 所代表的正方形的面积264a =,故选:D ..【点睛】此题考查以弦图为背景的证明,熟记勾股定理的计算公式、理解三个正方形的面积关系是解题的关键.二、填空题13.【分析】根据勾股定理解答即可;【详解】由题可知∴作∵是等腰三角形∴∴由翻折可知∴∴;故答案是【点睛】本题主要考查了勾股定理的应用准确结合翻折的性质计算是解题的关键 解析:589+【分析】根据勾股定理解答即可;【详解】 由题可知△14102PFG S FG =⨯⨯=, ∴5FG =, 作PM FG ⊥,∵PFG △是等腰三角形,∴52FM GM ==, ∴25891622PF PG ⎛⎫==+= ⎪⎝⎭, 由翻折可知,BF PF PG CG ===,∴89BF CG ==∴589BC BF FG CF =++=+;故答案是589+.【点睛】 本题主要考查了勾股定理的应用,准确结合翻折的性质计算是解题的关键.14.或【分析】根据非负数的性质列出方程组求解的值然后分两种情况讨论画出图形作底边上的高利用勾股定理求出高即可求解【详解】解:由非负性可知解得①当是腰时三边分别为由2+2>3则能组成三角形设底边上的高为h 解析:374或22 【分析】根据非负数的性质列出方程组求解a ,b 的值,然后分两种情况讨论,画出图形,作底边上的高,利用勾股定理求出高,即可求解.【详解】解:由非负性可知235023130a b a b -+=⎧⎨+-=⎩, 解得23a b =⎧⎨=⎩, ①当a 是腰时,三边分别为2、2、3,由2+2>3,则能组成三角形,设底边上的高为h ,如下图所示则h=22322⎛⎫- ⎪⎝⎭=7 ∴此等腰三角形的面积为1732⨯⨯=37; ②当b 是腰时,三边分别为3、3、2,由3+2>3,则能组成三角形,设底边上的高为h ,如下图所示则22232⎛⎫- ⎪⎝⎭2 ∴此等腰三角形的面积为12222⨯⨯=22或综上:此等腰三角形的面积为4故答案为:或4【点睛】本题主要考查了等腰三角形的性质,非负数的性质,解二元一次方程组,三角形的三边关系,勾股定理,先求出a,b的值是解题的关键,要注意分情况讨论.15.【分析】根据ACDC解直角△ACD可以求得AD根据求得的AD和BD解直角△ABD可以计算AB【详解】∵AD⊥BC于D∴△ACD△ABD为直角三角形∴AC2=AD2+DC2∴AD===∵△ABD为直角解析:【分析】根据AC,DC解直角△ACD,可以求得AD,根据求得的AD和BD解直角△ABD,可以计算AB.【详解】∵AD⊥BC于D,∴△ACD、△ABD为直角三角形,∴AC2=AD2+DC2,∴AD,∵△ABD为直角三角形,∴AB2=AD2+BD2,∴AB=故答案为:【点睛】本题考查了直角三角形中勾股定理的灵活运用,根据两直角边求斜边,根据斜边和一条直角边求另一条直角边.16.8【分析】设AB=5x则BC=3x根据勾股定理可求出AC=4x由周长为24列方程求出x的值即可求出AC的长【详解】设AB=5x∵AB:BC=5:3∴BC=3x∴AC=4x∵直角三角形ABC的周长为2解析:8【分析】设AB=5x,则BC=3x,根据勾股定理可求出AC=4x,由周长为24列方程求出x的值,即可求出AC的长.【详解】设AB=5x,∵AB:BC=5:3,∴BC=3x,∴AC=4x,∵直角三角形ABC的周长为24,∴3x+4x+5x=24,解得:x=2,∴AC=4x=8.故答案为8【点睛】本题主要考查了勾股定理的运用,用含有x的式子分别表示出三边的值,代入周长公式求解是解题关键.17.【分析】根据勾股定理可计算出OB的长度即点P在数轴正半轴表示的数【详解】解:在Rt△OAB中∵OA=2OB=3;∴OB=;∴以点O为圆心OB为半径与正半轴交点P表示的数为故答案为:【点睛】本题考查勾【分析】根据勾股定理可计算出OB的长度,即点P在数轴正半轴表示的数.【详解】解:在Rt△OAB中∵OA=2,OB=3;∴==;∴以点O为圆心,OB为半径与正半轴交点P【点睛】本题考查勾股定理的应用及数轴上点的坐标的表示,根据题意先计算OB的长度,注意以点O交点即可得解.18.【分析】根据条件作出示意图根据勾股定理求解即可【详解】解:由题意可画图如下:在直角三角形ABO中根据勾股定理可得如果梯子的顶度端下滑1米则在直角三角形中根据勾股定理得到:则梯子滑动的距离就是故答案为解析:1m【分析】根据条件作出示意图,根据勾股定理求解即可.【详解】解:由题意可画图如下:在直角三角形ABO 中,根据勾股定理可得,22534OA =-=,如果梯子的顶度端下滑1米,则'413OA m =-=.在直角三角形''A B O 中,根据勾股定理得到:'4OB m =,则梯子滑动的距离就是'431OB OB m -=-=.故答案为:1m .【点睛】本题考查的知识点是勾股定理的应用,根据题目画出示意图是解此题的关键. 19.9cm 【分析】由可知为直角三角形利用勾股定理可分别计算求得BC 和CD 从而完成BD 求解【详解】∵∴同理∴故答案为:【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长 解析:9cm【分析】由90C ∠=︒可知ABC 为直角三角形,利用勾股定理,可分别计算求得BC 和CD ,从而完成BD 求解.【详解】∵90C ∠=︒ ∴222217815BC AB AC -=-=同理 22221086CD AD AC =-=-=∴1569BD BC CD =-=-=故答案为:9cm .【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长.20.2【分析】根据题意有两对全等的直角三角形设正方形的边长为x 则BC=3+xAC=10+xAB=13根据勾股定理BC2+AC2=AB2列出方程解出x 即可【详解】解:设DC=CE=x 则BC=3+xAC=1解析:2【分析】根据题意,有两对全等的直角三角形,设正方形的边长为x,则BC=3+x,AC=10+x,AB=13,根据勾股定理,BC2+AC2=AB2,列出方程,解出x即可.【详解】解:设DC=CE=x,则BC=3+x,AC=10+x∵BC2+AC2=AB2∴(3+x)2+(10+x)2=132∴x=2故答案为:2.【点睛】本题主要考查了全等三角形的性质与勾股定理,熟悉全等三角形对应边相等,勾股定理的应用是解决本题的关键.三、解答题21.BC=43+3或43-3【分析】作AD⊥BC于D,分点D在线段BC上和BC的延长线上两种情况,根据勾股定理计算即可.【详解】解:作AD⊥BC于D,分两种情况:①高BD在线段BC上,如图1所示:在Rt△ABD中,BD=2222AB AD-=-=,8443在Rt△ACD中,CD=2222AC AD-=-=3,54∴BC=BD+CD=43+3;②高AD在CB的延长线上,如图2所示:BC=BD-CD=43-3;综上所述,BC的长为43+3或43-3.【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.22.5m【分析】先画出三棱柱的侧面展开图,再根据勾股定理求解.【详解】将三棱柱展开如图,连接A’A,则A’A的长度就是彩带的最短长度,如图,在Rt△AA'B中AB=底面等边三角形的周长=3×1=3(m)∵AA'=4(m)由勾股定理得:22AA'=+=(m).435答:灯带的最短长度为5m.【点睛】本题考查学生对勾股定理的应用能力,熟练掌握勾股定理是解题的关键.23.(1)见解析;(2)30.【分析】(1)根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC;(2)利用(1)中结论,根据全等三角形的性质即可解决问题;【详解】(1)证明:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△BCE和△CAD中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△CAD (AAS );(2)解:∵△BCE ≌△CAD ,BE =5,DE =7,∴BE =DC =5,CE =AD =CD+DE =5+7=12.∴由勾股定理得:AC =13,∴△ACD 的周长为:5+12+13=30,故答案为:30.【点睛】本题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.也考查了余角的性质和勾股定理.24.见解析【分析】根据总面积=以c 为边的正方形的面积+2个直角边长为,a b 的三角形的面积=以b 为上底、(a+b)为下底、高为b 的梯形的面积+以a 为上底、(a+b)为下底、高为a 的梯形的面积,据此列式求解.【详解】 证明:总面积()()21112222S c ab a b b b a a b a =+⨯=++⋅+++⋅ 222c a b ∴=+【点睛】此题考查的是勾股定理的证明,用两种方法表示同一图形的面积是解题关键. 25.(1)见解析;①见解析;②BC -BD;见解析;(2)BD -BCBP【分析】(1)根据题意补全图形即可:①设PD 与BC 的交点为E ,根据三角形内角和定理可求解;②过点P 作PF ⊥BP 交BC 于点F .证明△BPD ≌△FPC ,即可得到结论;(2)过点P 作PH ⊥BP 交CB 的延长线于点H ,证明△HPC ≌△BPD 即可.【详解】解:(1)补全图形,如图.①证明:如图①,设PD与BC的交点为E.根据题意可知,∠CPD=90°.∵BC⊥l,∴∠DBC=90°.∴∠BDP+∠BED=90°,∠PCB+∠PEC= 90°.∵∠BED=∠PEC∴∠BDP=∠PCB.②BC-BD=2BP.证明:如图②,过点P作PF⊥BP交BC于点F.∵AB= AC, A=90°,∴∠ABC=45°.∴BP=PF,∠PFB=45°.∴∠PBD=∠PFC=135°.∴△BPD≌△FPC.∴BD=FC.∵BF2BP,∴BC -BD=2BP .(3)过点P 作PH ⊥BP 交CB 的延长线于点H ,如图③,∵∠DPC=∠CBM=90°,∠PMD=∠BMC∴∠PDM=∠BCM∵∠ABC=∠ACB=45°∴∠HBP=45°∴∠DBP=45°∵∠BPH=90°∴∠BHP=45°∴HP=BP∴2HB PB =又∠DPC=90°∴∠HPC=∠BPD ,在△HPC 和△BPD 中,HP BP BPD HPC PHC PBD =⎧⎪∠=∠⎨⎪∠=∠⎩∴△HPC ≌△BPD∴2BP BC +∴BD -BC 2BP .【点睛】此题主要考查了三角形全等的判定与性质,以及等腰直角三角形的性质运用和勾股定理的应用,熟练掌握相关定理与性质是解答此题的关键.26.2米【分析】先根据勾股定理求出AB 的长,同理可得出BD 的长,进而可得出结论.【详解】解:在Rt ACB ∆中,90ACB ∠=︒,0.7BC =米, 2.4AC =米,2220.7 2.4 6.25AB ∴=+=.在Rt △A BD '中,90A DB ∠'=︒,2A D '=米,222BD A D A B +'=',222 6.25BD ∴+=,2 2.25BD ∴=,0BD >,1.5BD ∴=米,0.7 1.5 2.2CD BC BD ∴=+=+=米,答:小巷的宽度为2.2米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.。
2022-2023学年北师大版八年级数学上册《第1章勾股定理》单元同步练习题(附答案)
2022-2023学年北师大版八年级数学上册《第1章勾股定理》单元同步练习题(附答案)一.选择题1.如图,一木杆在离地面4m的A处折断,木杆顶端落在离木杆底端3m的B处,则木杆折断之前的长度为()A.6m B.7m C.8m D.9m2.如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形.若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是()A.4B.8C.12D.163.如图,△ABC中,AB=AC=5,BC=6,AD⊥BC,AC边上中线BE交AD于点O,则△BCE的面积为()A.8B.7C.6D.54.下列各组数中为勾股数的是()A.1,2,3B.2,3,4C.,,D.3,4,55.下列条件中,不能判定△ABC是直角三角形的是()A.∠A=∠B+∠C B.a:b:c=3:4:5C.a2=(b+c)(b﹣c)D.∠A:∠B:∠C=1:1:4二.填空题6.如图,四边形ABCD中,AB⊥BC,AB=4,BC=3,AD=12,CD=13,则四边形ABCD 的面积是.7.如图是“勾股树”的部分图,其中最大的正方形的边长为7cm,则正方形A,B,C,D 的面积之和为cm2.8.如图,Rt△ABC中,∠ACB=90°,以AC、BC为直径作半圆S1和S2,且S1+S2=2π,则AB的长为.9.如图,《九章算术》中有这样一道古题:今有一竖直着的木柱,在木柱的上端系有绳索,绳索从木柱的上端顺木柱下垂后堆在地面的部分有三尺(绳索比木柱长3尺),牵着绳索退行,在距木柱底部8尺(BC=8)处时而绳索用尽,则木柱长为尺.10.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC交AC于点D,且AB=4,BD=5,则点D到BC的距离为.11.如图,BD是△ABC的角平分线,AB=15,BC=9,AC=12,则BD2的值为.12.如图,圆柱形容器高为22cm,底面周长为30cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm且与蜂蜜相对的点A处,为了吃蜂蜜,蚂蚁从外壁A处沿着最短路径爬到内壁B处,它爬行的最短距离是cm.13.相垂直的四边形叫做“垂美”四边形,如图,“垂美”四边形ABCD,对角线AC、BD 交于点O.若AD=3,BC=5,AB2+CD2=.14.如图所示,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=4,BC=9,则BD的长为.三.解答题15.疫情期间,老师出了一道题让学生交流,请你帮他们完成解答过程.如图,在△EFG中,EF=15,FG=14,EG=13,求△EFG的面积.16.在△ABC中,∠ACB=90°,AB=10,BC=6,点P从点A出发,以每秒2个单位长度的速度沿折线A﹣B﹣C运动.设点P的运动时间为t秒(t>0).(1)求斜边AB上的高;(2)①当点P在BC上时,PC=;(用含t的代数式表示)②若点P在∠BAC的角平分线上,求t的值.17.如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒2cm的速度沿折线A→C→B→A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.18.如图,AD=4,CD=3,AB=13,BC=12,求△ABC的面积.19.有一块田地的形状和尺寸如图所示,求出它的面积是多少.20.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D 两村到E站的距离相等,则:(1)E站应建在距A站多少千米处?(2)DE和EC垂直吗?说明理由.参考答案一.选择题1.解:∵一棵垂直于地面的大树在离地面4m处折断,树的顶端落在离树杆底部3m处,∴折断的部分长为:=5,∴折断前高度为5+4=9(米).故选:D.2.解:由题意可得,小正方形的边长为3﹣1=2,∴小正方形的周长为2×4=8,故选:B.3.解:∵AB=AC=5,∴△ABC是等腰三角形,∵BC=6,AD⊥BC,∴CD=BC=3,∴AD=4,∴S△ABC==12,∵AC边上中线BE交AD于点O,∴S△BCE=S△ABC=6.故选:C.4.解:A、∵12+22≠32,∴不是勾股数,不符合题意;B、∵22+32≠42,∴不是勾股数,不符合题意;C、∵不是正整数,∴不是勾股数,不符合题意;D、∵32+42=52,∴是勾股数,符合题意.故选:D.5.解:A.∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,故本选项不符合题意;B.∵a:b:c=3:4:5,32+42=52,∴a2+b2=c2,∴△ABC是直角三角形,故本选项不符合题意;C.∵a2=(b+c)(b﹣c),∴a2+c2=b2,∴△ABC是直角三角形,故本选项不符合题意;D.∵∠A:∠B:∠C=1:1:4,∠A+∠B+∠C=180°∴最大角∠C=×180°=120°,∴△ABC不是直角三角形,故本选项符合题意;故选:D.二.填空题6.解:如图,连接AC,在△ABC中,AB⊥BC,AB=4,BC=3,∴AC=5.在△ADC中,AD=12,CD=13,AC=5.∵122+52=132,即AD2+AC2=CD2,∴△ADC是直角三角形,且∠DAC=90°,∴S四边形ABCD=S△ABC+S△ADC=AB•BC+AC•AD=×4×3+×5×12=6+30=36.故答案为:36.7.解:如图,∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又∵a2+b2=x2,c2+d2=y2,∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49cm2.故答案为:49.8.解:由勾股定理得,AC2+BC2=AB2,∴=π(AC2+BC2)=2π,∴AC2+BC2=16,∴AB=4,故答案为:4.9.解:设木柱长为x尺,根据题意得:AB2+BC2=AC2,则x2+82=(x+3)2,解得:x=.答:木柱长为尺.故答案为:.10.解:过点D作DE⊥BC于E,在Rt△ABD中,AB=4,BD=5,则AD=3,∵BD平分∠ABC,∠A=90°,DE⊥BC,∴DE=AD=3,即点D到BC的距离为3,故答案为:3.11.解:∵AB=15,BC=9,AC=12,∴BC2+AC2=92+122=152=AB2,∴∠C =90°,过D 作DE ⊥AB 于E ,∵BD 是△ABC 的角平分线,∴DE =CD ,设DE =CD =x ,∵S △ABC =S △ABD +S △BCD ,∴AC •BC =AB •DE +BC •CD ,∴×12×9=×15x +×9x ,∴x =,∴CD =,∴BD 2=4405, 故答案为:4405.12.解:如图:将杯子侧面展开,作A 关于EF 的对称点A ′,则AF +BF 为蚂蚁从外壁A 处到内壁B 处的最短距离,即A ′B 的长度, ∵A ′B =25(cm ),∴蚂蚁从外壁A 处到内壁B 处的最短距离为25cm ,故答案为:25.13.解:∵BD⊥AC,∴∠COB=∠AOB=∠AOD=∠COD=90°,在Rt△COB和Rt△AOB中,根据勾股定理得,BO2+CO2=CB2,OD2+OA2=AD2,∴BO2+CO2+OD2+OA2=9+25,∵AB2=BO2+AO2,CD2=OC2+OD2,∴AB2+CD2=34.故答案为:34.14.解:∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DC=DE=4,∴BD=BC﹣CD=9﹣4=5.故答案为:5.三.解答题15.解:如图,过点E作EH⊥FG于点H,在Rt△EFH和Rt△EGH中,由勾股定理可得:EH2=EF2﹣FH2,EH2=EG2﹣GH2,∴EG2﹣GH2=EF2﹣FH2,设FH=x,则GH=14﹣x,∵EF=15,FG=14,EG=13,∴132﹣(14﹣x)2=152﹣x2,解得:x=9,∴EH=12,∴S△EFG=×FG•EH=×14×12=84,∴△EFG的面积为84.16.解:(1)在△ABC中,∠ACB=90°,AB=10,BC=6,∴AC=8,设边AB上的高为h,则,∴,∴.答:斜边AB上的高为.(2)①当点P在BC上时,点P的运动长度为AB+BP=2t,∴PC=AB+BC﹣(AB+BP)=10+6﹣2t=16﹣2t.故答案为:16﹣2t.②若点P在∠BAC的角平分线上时,过点P作PD⊥AB,如图:∵AP平分∠BAC,PC⊥AC,PD⊥AB,∴PD=PC.由①知:PC=16﹣2t,BP=2t﹣10,∴PD=16﹣2t,在Rt△ACP和Rt△ADP中,,∴Rt△ACP≌Rt△ADP(HL).∴AD=AC=8,又∵AB=10,∴BD=2.在Rt△BDP中,由勾股定理得:22+(16﹣2t)2=(2t﹣10)2,解得:.17.解:(1)连接PB,∵∠ACB=90°,AB=10cm,BC=6cm,∴AC=8(cm),∵CP2+BC2=PB2,∵P A=PB=2tcm,∴(8﹣2t)2+62=(2t)2,∴t=;(2)当点P在∠BAC的平分线上时,如图,过点P作PE⊥AB于点E,此时BP=(14﹣2t)cm,PE=PC=(2t﹣8)cm,BE=10﹣8=2(cm),在Rt△BEP中,PE2+BE2=BP2,即:(2t﹣8)2+22=(14﹣2t)2,解得:t=,当t=12时,点P与A重合,也符合条件,∴当t=或12时,点P恰好在∠BAC的平分线上.18.解:∵AD=4,CD=3,∠ADC=90°,∴AC=5,在△ABC中,AC=5,AB=13,BC=12,∵52+122=132,∴AC2+BC2=AB2,即△ABC为直角三角形,且∠ACB=90°,∴△ABC的面积=5×12÷2=30.19.解:连接AC,在Rt△ACD中,AC为斜边,已知AD=4,CD=3,则AC=5,∵AC2+BC2=AB2,∴△ABC为直角三角形,∴S四边形ABCD=S△ABC﹣S△ACD=AC•CB﹣AD•DC=24,答:该四边形面积为24.20.解:(1)∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB﹣AE=(25﹣x),∵DA=15km,CB=10km,∴x2+152=(25﹣x)2+102,解得:x=10,∴AE=10km.∴BE=15km.(2)DE和EC垂直,理由如下:在△DAE与△EBC中,,∴△DAE≌△EBC(SAS),∴∠DEA=∠ECB,∠ADE=∠CEB,∠DEA+∠D=90°,∴∠DEA+∠CEB=90°,∴∠DEC=90°,即DE⊥EC.。
北师大版八年级数学上册第一章勾股定理 1.1.2验证勾股定理及其简单应用 同步练习题(含答案,教师版)
北师大版八年级数学上册第一章勾股定理 1.1.2 验证勾股定理及其简单应用同步练习题一、选择题1.下面各图中,不能证明勾股定理正确性的是(C)A B C D2.为了迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小王搬来一架长为2.5 m的木梯,准备把梯子架到2.4 m高的墙上,则梯脚与墙角的距离为(A)A.0.7 m B.0.8 m C.0.9 m D.1.0 m3.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行(B)A.8米 B.10米 C.12米 D.14米4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为(A)A.2.2米 B.2.3米 C.2.4米 D.2.5米5.一条河的宽度处处相等,小强想从河的南岸横游到北岸去,由于水流影响,小强上岸地点偏离目标地点200 m,他在水中实际游了520 m,那么该河的宽度为(C)A.440 m B.460 m C.480 m D.500 m6.如图,在长方形纸片ABCD 中,已知AD =8,折叠纸片,使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为(D)A .3B .4C .5D .6 二、填空题7.如图,从电线杆离地面12 m 处向地面拉一条长为13 m 的钢缆,则地面钢缆固定点A 到电线杆底部B 的距离为5_m .8.甲、乙两人同时从同一地点出发,甲往北偏东45°方向走了48米,乙往南偏东45°方向走了36米,这时两人相距60米.9.已知在△ABC 中,AB =17,AC =10,BC 边上的高AH =8,则BC 的长是21或9. 10.已知:如图,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中阴影部分的面积为92.11.一辆装满货物,宽为2.4米的卡车,欲通过如图所示的隧道(上方是一个半圆),则卡车的外形高必须低于4.1米.12.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是76.三、解答题13.如图,在△ABC中,已知∠BAC=90°,AD⊥BC于点D.试说明:BC2-AC2=BD2+AD2.解:在Rt△ABC中,BC2-AC2=AB2,同理,在Rt△ABD中,BD2+AD2=AB2,所以BC2-AC2=BD2+AD2.14.如图是某宾馆的一段楼梯,楼梯高5 m,楼梯的最高点B与最低点A的距离是13 m,且楼梯宽度为2 m.若要给此段楼梯铺地毯,已知地毯单价为50元/m2,问铺完该楼梯表面至少需要多少钱?解:在Rt△ABC中,∠ACB=90°,BC=5 m,AB=13 m,所以AC2=AB2-BC2=144.所以AC=12 m.楼梯横向长度等价于AC 的长度,纵向长度等价于BC 的长度, 所以地毯的长度为12+5=17(m), 地毯的面积为17×2=34(m 2).所以购买这种地毯至少需要50×34=1 700(元).15.如图,已知等腰三角形ABC 的底边BC =20 cm ,D 是腰AB 上一点,且CD =16 cm ,BD =12 cm.(1)求证:CD⊥AB;(2)求该三角形的腰的长度.解:(1)证明:在△BCD 中,因为BD 2+CD 2=122+162=400=BC 2, 所以△BCD 是直角三角形,其中∠BDC=90°.所以CD⊥AB. (2)设AB =AC =x cm ,则AD =(x -12)cm. 因为CD⊥AB,所以在△ACD 中,AD 2+CD 2=AC 2, 即(x -12)2+162=x 2, 解得x =503.所以该三角形的腰的长度为503cm. 16.如图,在Rt △ABC 中,∠A =90°,D 为斜边BC 的中点,DE ⊥DF ,求证:EF 2=BE 2+CF 2.证明:延长ED 到点G ,使DG =DE ,连接FG ,CG. 在△EDF 和△GDF 中, ⎩⎪⎨⎪⎧DF =DF ,∠EDF =∠FDG=90°,DE =DG ,所以△EDF≌△GDF(SAS). 所以EF =FG.因为D 为斜边BC 的中点,所以BD =DC. 在△BDE 和△CDG 中,⎩⎪⎨⎪⎧BD =DC ,∠BDE =∠CDG,DE =DG ,所以△BDE≌△CDG(SAS). 所以BE =CG ,∠B =∠BCG. 所以AB∥CG.所以∠GCA=180°-∠A=180°-90°=90°. 在Rt △FCG 中,由勾股定理,得 FG 2=CF 2+CG 2=CF 2+BE 2, 所以EF 2=FG 2=BE 2+CF 2.17.如图,点C 在线段BD 上,AC ⊥BD ,CA =CD ,点E 在线段CA 上,且满足DE =AB ,连接DE 并延长交AB 于点F.(1)求证:DE⊥AB;(2)若已知BC =a ,AC =b ,AB =c ,设EF =x ,则△ABD 的面积用代数式可表示为S △ABD=12c(c +x),你能借助本题提供的图形,证明勾股定理?试一试吧.解:(1)证明:因为AC⊥BD, 所以BC 2=AB 2-AC 2,EC 2=DE 2-CD 2, ∠BAC +∠ABC=180°-90°=90°. 又因为DE =AB ,CA =CD , 所以BC 2=EC 2,即BC =EC. 所以△ABC≌△DEC(SSS). 所以∠BAC=∠EDC. 所以∠EDC+∠ABC=90°.所以∠DFB=180°-(∠EDC+∠ABC)=90°, 即DE⊥AB. (2)由题意,知S △ABD =S △BCE +S △ACD +S △ABE =12a 2+12b 2+12cx.因为S △ABD =12c(c +x),所以12a 2+12b 2 +12cx =12c(c +x).所以a 2+b 2=c 2.。
八年级数学上册《第一章 勾股定理的应用》练习题-带答案(北师大版)
八年级数学上册《第一章勾股定理的应用》练习题-带答案(北师大版)一、选择题1.一艘轮船以16海里∕时的速度从港口A出发向东北方向航行,同时另一艘轮船以12海里∕时从港口A出发向东南方向航行.离开港口1小时后,两船相距( )A.12海里B.16海里C.20海里D.28海里2.小明想知道学校旗杆(垂直地面)的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子拉直后,发现绳子下端拉开5m,且下端刚好接触地面,则旗杆的高是( )A.6mB.8mC.10mD.12m3.一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需( ).A.6秒B.5秒C.4秒D.3秒4.如图,有一个由传感器控制的灯A装在门上方离地高4.5 m的墙上,任何东西只要移至距该灯5 m及5 m以内时,灯就会自动发光,请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光?( )A.4 mB.3 mC.5 mD.7 m5.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( )A.8米B.10米C.12米D.14米6.将一根长24 cm的筷子,置于底面直径为5cm、高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是( )A.5≤h≤12B.5≤h≤24C.11≤h≤12D.12≤h≤247.如图,A,B两个村庄分别在两条公路MN和EF的边上,且MN∥EF,某施工队在A,B,C三个村之间修了三条笔直的路.若∠MAB=65°,∠CBE=25°,AB=160km,BC=120km,则A,C 两村之间的距离为( )A.250kmB.240kmC.200kmD.180km8.如图,O是Rt△ABC的角平分线的交点,OD∥AC,AC=5,BC=12,OD等于( )A.2B.3C.1D.1二、填空题9.如图,两阴影部分都是正方形,如果两正方形面积之比为1:2,那么,两正方形的面积分别为.10.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.11.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行米.12.如图所示,由四个全等的直角三角形拼成的图中,直角边长分别为2,3,则大正方形的面积为________,小正方形的面积为________.13.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯的长度至少是.14.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为秒.三、解答题15.如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米,请算出旗杆的高度.16.如图①,一架梯子AB长2.5m,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5m,梯子滑动后停在DE的位置上.如图②所示,测得BD=0.5m,求梯子顶端A下滑的距离.17.如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?18.如图所示,某公路一侧有A、B两个送奶站,C为公路上一供奶站,CA和CB为供奶路线,现已测得AC=8km,BC=15km,AB=17km,∠1=30°,若有一人从C处出发,沿公路边向右行走,速度为2.5km/h,问:多长时间后这个人距B送奶站最近?19.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?20.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.参考答案1.C.2.D.3.C4.A.5.B6.C.7.C.8.A.9.答案为:12,24.10.答案为:8.11.答案为:10.12.答案为:13,1.13.答案为:17m.14.答案为:7或25.15.解:设旗杆的高度为x米,根据勾股定理得x2+52=(x+1)2解得:x=12;答:旗杆的高度为12米.16.解:在Rt△ABC中,AB=2.5m,BC=1.5m故AC=2m在Rt△ECD中,AB=DE=2.5米,CD=(1.5+0.5)=2m 故EC=1.5m故AE=AC﹣CE=2﹣1.5=0.5m答:梯子顶端A下落了0.5m.17.解:如图,在Rt△ABC中,根据勾股定理可知BC=3000(米).3000÷20=150米/秒=540千米/小时.所以飞机每小时飞行540千米.18.解:过B作BD⊥公路于D.∵82+152=172∴AC2+BC2=AB2∴△ABC是直角三角形,且∠ACB=90°.∵∠1=30°∴∠BCD=180°﹣90°﹣30°=60°.在Rt△BCD中∵∠BCD=60°∴∠CBD=30°∴CD=0.5BC=0.5×15=7.5(km).∵7.5÷2.5=3(h)∴3小时后这人距离B送奶站最近.19.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等即BC=CA设AC为x,则OC=45﹣x由勾股定理可知OB2+OC2=BC2又∵OA=45,OB=15把它代入关系式152+(45﹣x)2=x2解方程得出x=25(cm).答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是25cm.20.解:(1)设存在点P,使得PA=PB此时PA=PB=2t,PC=4﹣2t在Rt△PCB中,PC2+CB2=PB2即:(4﹣2t)2+32=(2t)2解得:t =∴当t =时,PA =PB ;(2)当点P 在∠BAC 的平分线上时,如图1,过点P 作PE ⊥AB 于点E 此时BP =7﹣2t ,PE =PC =2t ﹣4,BE =5﹣4=1在Rt △BEP 中,PE 2+BE 2=BP 2即:(2t ﹣4)2+12=(7﹣2t)2解得:t =83∴当t =83时,P 在△ABC 的角平分线上.。
八年级数学(上)第一章《勾股定理》测试题及答案
八年级数学(上)第一章《勾股定理》测试题及答案选择题
1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()
A.4
B.8
C.10
D.12
2.小丰的妈妈买了一部29英寸(74m)的电视机,下列对29英寸的说法中正确的是()
A.小丰认为指的是屏幕的长度
B.小丰的妈妈认为指的是屏幕的宽度
C.小丰的爸爸认为指的是屏幕的周长
D.售货员认为指的是屏幕对角线的长度
3.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()
A.钝角三角形
B.锐角三角形
C.直角三角形
D. 等腰三角形
4.一直角三角形的一条直角边长是 7cm,另一条直角边与斜边长的和是 49cm,则斜边的长()
A.18cm
B.20 cm
C.24 cm
D.25cm
填空题
1. 小华和小红都从同一点0出发,小华向北走了9米到 A 点,小红向东走了12米到了B点,则AB=_____米。
2.一个三角形三边满足(a+b)2-c2=2ab,则这个三角形是_____三角形。
3.木工做一个长方形桌面,量得桌面的长为 60cm,宽为
32cm,对角线为 68cm,这个桌面______(填“合格”或“不合格”)。
4.直角三角形一直角边为12cm,斜边长为13cm,则它的面积为_______。
参考答案:
选择题:CDCD
填空题:1.15;2.直角;3.合格;4.30。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章勾股定理
1.1 探索勾股定理
第1课时认识勾股定理
1.若△ABC中,∠C=90°,
(1)若a=5,b=12,则c= ;
(2)若a=6,c=10,则b= ;
(3)若a∶b=3∶4,c=10,则a= ,b= .
2.某农舍的大门是一个木制的矩形栅栏,它的高为2 m,宽为1.5 m,现需要在相对的顶点间用一块木棒加固,木板的长为 .
3.直角三角形两直角边长分别为5 cm,12 cm,则斜边上的高为 .
4.等腰三角形的腰长为13 cm,底边长为10 cm,则面积为().
A.30 cm2
B.130 cm2
C.120 cm2
D.60 cm2
5.轮船从海中岛A出发,先向北航行9km,又往西航行9 km,由于遇到冰山,只好又向南航行4 km,再向西航行6 km,再折向北航行2 km,最后又向西航行9 km,到达目的地B,求AB两地间的距离.
6.一棵9 m高的树被风折断,树顶落在离树根3 m之处,若要查看断痕,
要从树底开始爬多高?
7.折叠长方形ABCD的一边AD,使点D落在BC边的F点处,若AB=8 cm,BC=10 cm,求EC的长.
参考答案:
1.(1)13;(2)8;(3)6,8.
C F
2.2.5m.
60cm.
3.
13
4.D.
5.25km.
6.4.
7.3 cm.
1.1 探索勾股定理
第2课时验证勾股定理
1.在两千多年前我国古算术上记载有“勾三股四弦五”.你知道它的意思吗?
它的意思是说:如果一个直角三角形的两条直角边长分别为3和4个长度单位,那么它的斜边的长一定是5个长度单位,而且3、4、5这三个数有这样的关系:32+42=52.
(1)请你动动脑筋,能否验证这个事实呢?该如何考虑呢?
(2)请你观察下列图形,直角三角形ABC的两条直角边的长分别为AC=7,BC=4,请你研究这个直角三角形的斜边AB的长的平方是否等于42+72?
2.下图甲是任意一个直角三角形ABC,它的两条直角边的边长分别为a、b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.
①图乙和图丙中(1)(2)(3)是否为正方形?为什么? ②图中(1)(2)(3)的面积分别是多少? ③图中(1)(2)的面积之和是多少?
④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么? 由此你能得到关于直角三角形三边长的关系吗?
参考答案
1.(1)边长的平方即以此边长为边的正方形的面积,故可通过面积验证.分别以这个直角三角形的三边为边向外做正方形,如右图:AC =4,BC =3,
S 正方形ABED =S 正方形FCGH -4S Rt △ABC =(3+4)2-4×
2
1
×3×4=72-24=25 即AB 2=25,又AC =4,BC =3,
AC 2+BC 2=42+32=25 ∴AB 2=AC 2+BC 2
(2)如图(图见题干中图)
S 正方形ABED =S 正方形KLCJ -4S Rt △ABC =(4+7)2-4×2
1
×4×7=121-56=65=42+72
2.①图乙、图丙中(1)(2)(3)都是正方形.易得(1)是以a 为边长的正方形,(2)是
以b 为边长的正方形,(3)的四条边长都是c ,且每个角都是直角,所以(3)是以c 为边长的正方形.
②图中(1)的面积为a 2,(2)的面积为b 2,(3)的面积为c 2. ③图中(1)(2)面积之和为a 2+b 2.
④图中(1)(2)面积之和等于(3)的面积.
因为图乙、图丙都是以a +b 为边长的正方形,它们面积相等,(1)(2)的面积之和与(3)的面积都等于(a +b )2减去四个Rt △ABC 的面积.
由此可得:任意直角三角形两直角边的平方和等于斜边的平方,即勾股定理.
1.2 一定是直角三角形吗
1.如图在∆ABC 中, BAC = 90, AD BC 于D , 则图中互余的角有 A .2对 B .3对 C .4对 D .5对
2.如果直角三角形的两边的长分别为3、4,则斜边长为
3.已知:四边形ABCD 中,BD 、AC 相交于O ,且BD 垂直AC ,求证:AB CD AD BC 2
2
2
2
+=+。
4. 已知:钝角∆BAC ,CD 垂直BA 延长线于D ,求证:
BC AB AC AB AD 2222=++⋅。
5. 已知:AB AC =,且AB AC ⊥,D 在BC 上,求证:BD CD AD 2
2
2
2+=。
D C O A B D A
B C
A
B D C
6. 已知:AB AC CD BC ==,,求证:AD AB BC 2
2
2
2=+。
7 已知:∆ABC 中,
AD 为BC 中线,求证:AB AC BD AD 2
2
2
2
2+=+()。
8.如果ΔABC 的三边分别为a 、b 、c ,且满足a 2+b 2+c 2
+50=6a+8b+10c ,判断ΔABC 的形状。
9.如图,折叠长方形(四个角都是直角,对边相等)的一边AD ,点D 落在BC 边的点F 处,已知:AB =8cm ,BC =10cm ,求EC 的长。
9.ABC 中,AB=AC =10,BC =16,点D 在BC 上,DA ⊥CA 于A 。
求:BD 的长。
ABC 中,AB=AC ,可作AE ⊥BC 于E ,构造直角三角形,由已知条件,AE ,CE ,可求。
根据勾
股定理可列方程式求解。
A
B D C
1.3 勾股定理的应用
1.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是().
A . 2m
B.3m
C.6m
D.9m
2.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2 m,坡角∠A =30°,∠B=90°,BC= 6 m.当正方形DEFH运动到什么位置,即当AE= m时,有DC2=AE2+BC2.
3.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为 cm.
4.如图,一只蚂蚁从A点沿圆柱侧面爬到顶面相对的B点处,如果圆柱的高为8 cm,圆柱
的半径为6
cm,那么最短路径AB长( ).
A.8
B.6
C.平方后为208的数
D.10
5.一个圆桶,底面直径为24 cm,高32cm,则桶内所能容下的最长木棒为( ) .A.24cm
B.32cm
C.40 cm
D.45
6.已知小龙、阿虎两人均在同一地点,若小龙向北直走160 m,再向东直走80 m后,可到神仙百货,则阿虎向西直走多少米后,他与神仙百货的距离为340 m?
A. 100
B. 180
C. 220
D. 260
7. 某园艺公司对一块直角三角形的花圃进行改造.测得两直角边长为6m,8m.现要将其扩建
成等腰三角形,且扩充部分是以8m为直角边的直角三角形
...........求扩建后的等腰三角形花圃的周长.
8.飞机在空中水平飞行
....,某一时刻刚好飞到一个站着不动的女孩头顶正上方4000 m处,过了20秒,飞机距离这个女孩头顶5000 m,则飞机速度是多少?
参考答案1.C
14
2.
3
3. 15
4.D
5.C
6.C
7. 周长=8+8+
8.150 m/s.。