热电偶测温方法热电偶测温

合集下载

飞机发动机常用测温方法研究

飞机发动机常用测温方法研究

飞机发动机常用测温方法研究
飞机发动机的温度测量是非常重要的,因为发动机的温度直接影响着其性能、安全性和寿命。

以下是飞机发动机常用的几种测温方法:
1. 热电偶测温法,热电偶是一种利用热电效应来测量温度的传感器。

在飞机发动机中,热电偶被安装在关键部位,如涡轮叶片、燃烧室等,以测量温度。

热电偶的优点是响应速度快、精度高,但受到环境干扰的影响较大。

2. 红外线测温法,红外线测温利用物体发出的红外辐射来测量其表面温度。

这种方法在飞机发动机中应用广泛,特别是用于远程测温。

它可以在不接触目标表面的情况下进行测量,适用于高温、难以接近的部位。

3. 热电阻测温法,热电阻是一种随温度变化而改变电阻值的传感器。

在飞机发动机中,热电阻被用于测量冷却剂的温度,以及一些需要高精度温度测量的部位。

热电阻的优点是精度高,但对环境干扰较为敏感。

4. 光纤测温法,光纤测温利用光纤传感器的光学特性来测量温度。

在飞机发动机中,光纤传感器可以被安装在高温、高压的部位,以实现高精度的温度测量。

光纤测温法具有抗干扰能力强、适应环
境恶劣等优点。

总的来说,飞机发动机常用的测温方法包括热电偶测温法、红
外线测温法、热电阻测温法和光纤测温法。

不同的测温方法适用于
不同的场景,可以相互补充,以确保对飞机发动机温度的准确监测。

工业测温方法

工业测温方法

工业测温方法
工业测温是工业过程中不可或缺的一项技术。

它可以用于监测各种物质的温度,以确保生产过程中的质量和安全。

以下是常见的几种工业测温方法:
1. 热电偶测温法:热电偶是由两种不同金属制成的导线,当两种金属连接在一起时,当温度变化时会产生电势差。

利用这个原理可以进行温度测量,热电偶测温法具有响应速度快、测量范围广等优点,适用于高温、低温和快速变化的温度测量。

2. 热电阻测温法:热电阻是一种由金属或合金制成的电阻器,当温度变化时会改变电阻值。

利用这个原理可以进行温度测量,热电阻测温法具有精度高、稳定性好等优点,适用于中低温度测量,通常用于精度要求较高的场合。

3. 红外线测温法:红外线测温是一种无接触式的测温方法,利用物体发射的红外线辐射能量来确定物体的表面温度。

红外线测温法具有响应速度快、测量范围广、无需接触等优点,适用于高温、低温和不易接触的物体温度测量。

4. 光纤测温法:光纤测温是一种利用光纤传输信号的温度测量方法,光纤中的光信号会随着温度的变化而发生相应的变化。

光纤测温法具有响应速度快、测量范围广、可靠性高等优点,适用于高温、低温和不易接触的物体温度测量。

综上所述,不同的工业场合需要选择适合的测温方法,以确保生产过程中的质量和安全。

简述热电偶及其测温原理

简述热电偶及其测温原理

简述热电偶及其测温原理一、引言热电偶是一种常用的温度传感器,广泛应用于各种领域。

本文将详细介绍热电偶及其测温原理。

二、热电偶的构成热电偶由两种不同金属导线组成,通常为铜和常见的合金铬-镍或铬-镍-铁。

这两根导线在一端焊接在一起,称为“热端”,另一端分别连接到测量仪器中,称为“冷端”。

三、热电偶的工作原理当两种不同金属导线组成的热电偶的两端温度不同时,就会产生一个电动势(EMF),这个现象被称为“塞贝克效应”。

这个电动势与温差之间的关系是线性的。

四、测量温度通过测量热电偶产生的EMF可以计算出温度。

但是需要注意到,在实际应用中,我们并不能直接测量出热端和冷端之间的温差,而只能测量出它们之间产生的EMF。

因此,需要使用标准表格或者计算公式来将EMF转换成相应的温度值。

五、特点热电偶具有响应速度快、测量范围广、精度高、可靠性好等特点,同时价格较为实惠。

由于其在不同的温度范围内表现出不同的特性,因此可以根据需要选择不同种类的热电偶。

六、应用热电偶被广泛应用于各种领域,如工业自动化控制、航空航天、医疗设备等。

在工业生产中,常用于测量高温或低温环境下的温度,如冶金行业中的炉温测量,汽车行业中的发动机温度测量等。

七、注意事项在使用热电偶时需要注意以下几点:1. 确保连接牢固:由于热电偶是通过两根金属导线连接而成,因此需要确保连接处牢固可靠。

2. 避免弯曲:弯曲会导致导线内部产生微小裂纹或者变形,从而影响测量精度。

3. 防止氧化:铜和合金铬-镍或铬-镍-铁易受氧化影响,因此需要定期清洗和维护。

4. 避免磁场干扰:热电偶对磁场敏感,因此需要避免磁场干扰。

八、结论通过本文的介绍,我们了解到了热电偶的构成、工作原理、测量温度方法、特点和应用等方面的内容。

在实际应用中,我们需要注意以上几点,以确保热电偶的测量精度和可靠性。

热电偶的测温

热电偶的测温

热电偶的测温1 设计目的利用热电偶进行温度测量。

2 设计要求①测温范围:0~200℃;②热电偶路数:2路切换;③A/D 输出,有具体电路参数。

3 原理分析3.1热电偶测温原理(1)定义:由两种导体组合而成,将温度转化为热电动势的传感器叫做热电偶。

(2)测温原理:热电偶的测温原理是基于热电效应。

将两种不同材料的导体A 和B 串接成一个闭合回路,当两个接点1和2的温度不同时,如果T >0T (如下图热电效应),在回路中就会产生热电动势,进而在回路中产生一定大小的电流,此种现象称为热电效应。

热电动势记为AB E ,导体A 、B 称为热电极。

测量时将接点1置于测温场所感受被测温度,故称为测量端(或工作端,热端)。

接点2要求温度恒定,称为参考端(或冷端)。

ABTT 012图1 热电偶原理(3)热电效应:导体A 和B 组成的热电偶闭合电路在两个接点处分别有)(T E AB 与)(0T E AB 两个接触电势,又因为T >0T ,在导体A 和B 中还各有一个温差电势。

所以闭合回路总热电动势),(0T T E AB 应为接触电动势和温差电势的代数和,即:闭合回路总热电动势。

对于已选定的热电偶,当参考温度恒定时,总热电动势就变成测量端温度T 的单值函数,即)(),(0T f T T E AB 。

这就是热电偶测量温度的基本原理。

在实际测温时,必须在热电偶闭合回路中引入连接导线和仪表。

由一种均质导体组成的闭合回路,不论导体的横截面积,长度以及温度分布如何均不产生热电动势。

如果热电偶的两根热电极由两种均质导体组成,那么,热电偶的热电动势仅与两接点的温度有关,与热电偶的温度分布无关;如果热电极为非均质电极,并处于具有温度梯度的温场时,将产生附加电势,如果仅从热电偶的热电动势大小来判断温度的高低就会引起误差。

3.2热电偶冷端处理及补偿热电偶的热电势大小与材料和两电极接点的温度有关,因此只有在热电极材料一定和冷端温度0T 保持恒定的条件下,其热电势才是其热端温度T 的单值函数。

热电偶测温方法实验报告

热电偶测温方法实验报告

热电偶测温方法实验报告
热电偶测温方法是一种工业温度测量技术,它使用一对低电压铂热电偶,通过检测两
个测量端口之间的电压变化来测量温度。

热电偶采用两种不同性质的金属组成,其中一个
金属被称为“探针”或“被测量”,它就是要测量温度的物体的表面。

热电偶的另一个金
属称之为“侵入器”,它与热探针加热,产生电压信号。

安装热电偶的正确方法是首先在被测量物体的表面上错位插入热电偶探针并拧紧螺钉,然后将侵入器直接插入该表面并固定到固定物上,以避免温度因探针和侵入器之间的热耦
合引起的误差。

热电偶安装完成后,一对热电偶安装在一起,并连接到一个热电偶温度采
样器或一台机器上,以收集温度数据。

热电偶测温的技术优势在于可以以场中方式从许多设备中同时采集温度数据,并可以
以可视或计算机控制的形式使用这些数据,这极大地提高了系统的可靠性和可控性。

它还
可以满足复杂的环境中的极端温度测量需求。

使用热电偶测温方法,操作者一般都需要设定一个安全门限,作为报警水平,以防止
设备发生温度过高或过低的危险情况。

此外,该系统还可以用于进行连续温度监控,以检
测和预防可能的振动损坏,以保护设备的可靠性和安全性。

热电偶测温方法虽然可行,但由于有无法预见的隐患,操作者仍然需要做好安全及应
急准备,并仔细研究相关物品的操作指南,确保在使用热电偶测温方法时尽量减少出现意
外的可能性。

热电偶温度测量方法

热电偶温度测量方法

热电偶温度测量方法1、补偿导线在一定温度范围内,与配用热电偶的热电特性相同的一对带有绝缘层的导线称为补偿导线。

若与所配用的热电偶正确连接,其作用是将热电偶的参比端延伸到远离热源或环境温度较恒定的地方。

使用补偿导线的优点:①改善热电偶测温线路的机械与物理性能,采用多股或小直径补偿导线可提高线路的挠性,接线方便,也可以调节线路的电阻或屏蔽外界干扰;②降低测量线路的成本。

当热电偶与仪表的距离很远时,可用贱金属补偿型补偿导线代替贵金属热电偶。

在现场测温中,补偿导线除了可以延长热电偶参比端,节省贵金属材料外,若采用多股补偿导线,还便于安装与铺设;用直径粗、电导系数大的补偿导线,还可减少测量回路电阻。

采用补偿导线虽有许多优点,但必须掌握它的特点,否则,不仅不能补偿参比端温度的影响,反而会增加测温误差。

补偿导线的特点是:在一定温度范围内,其热电性能与热电偶基本一致。

它的作用只是把热电偶的参比端移至离热源较远或环境温度恒定的地方,但不能消除参比端不为0℃的影响,所以,仍须将参比端的温度修正到0℃。

补偿导线使用时的注意事项如下:①各种补偿导线只能与相应型号的热电偶匹配使用;连接时,切勿将补偿导线极性接反;②补偿导线与热电偶连接点的温度,不得超过规定的使用温度范围,通常接点温度在100 ℃以下,耐热用补偿导线可达200℃;③由于补偿导线与电极材料通常并不完全相同,因此两连接点温度必须相同,否则会产生附加电势、引入误差;④在需高精度测温场合,处理测量结果时应加上补偿导线的修正值,以保证测量精度。

2、参比端处理我们经常使用的热电偶分度表,都是以热电偶参比端为0℃条件下制作的。

在实验室条件下可采取诸如在保温瓶内盛满冰水混合物(最好用蒸馏水及用蒸馏水制成的冰),并且,保温瓶内要有足够数量的冰块,保证参比端为0℃(值得注意的是,冰水混合物并不一定就是0℃,只有在冰水两相界面处才是0℃)。

或利用半导体制冷的原理制成的电子式恒温槽使参比端温度保持在0℃。

热电偶红外测温

热电偶红外测温

热电偶红外测温1.引言1.1 概述热电偶红外测温作为一种常用的温度测量技术,已经在各个领域得到广泛应用。

它结合了热电偶和红外技术的优势,能够在不接触被测物体的情况下,快速、准确地获取其表面温度信息。

热电偶是一种基于热电效应原理的温度传感器。

它由两种不同金属导线组成,接触处形成一个电势差。

当被测物体的温度发生改变时,导致热电偶两端的温度差产生变化,从而引起电势差的变化,进而通过测量电压来计算被测物体的温度。

热电偶测温技术具有响应速度快、适应范围广、测量精度高等优点。

与热电偶相比,红外测温技术则是一种非接触式的温度测量方法。

它利用物体表面发射的红外辐射来反映其温度。

根据物体的辐射能谱特征,红外测温仪器可以检测物体所发射的红外辐射,并转换成相应的温度数值。

红外测温技术具有测量范围广、测量速度快、操作简便等优点。

热电偶红外测温技术综合了热电偶和红外技术的优点,使得在温度测量领域具有更大的适应性和应用前景。

无论是在工业生产过程中的温度监测,还是在医学、环境监测等领域的应用,热电偶红外测温都能够提供高精度、高效率的温度测量方案。

在本文中,将详细介绍热电偶测温原理和红外测温原理,并展望热电偶红外测温技术在各个领域的应用前景。

1.2 文章结构文章结构部分的内容如下:本文分为引言、正文和结论三个部分。

下面将对每个部分进行简要介绍。

引言引言部分主要对文章的主题进行概述,介绍热电偶红外测温的背景和意义。

首先,简要介绍热电偶和红外测温的原理及其在温度测量领域的应用。

然后,总结文章的结构和内容。

引言的目的是引入读者对热电偶红外测温领域的基本概念和相关知识。

正文正文部分将详细介绍热电偶测温原理和红外测温原理。

首先,对热电偶测温原理进行阐述,包括热电偶的组成结构、工作原理和温度测量的基本原理。

其次,详细介绍红外测温原理,包括红外辐射原理、红外传感器的工作原理和温度测量方法。

在介绍原理的过程中,将分析其优缺点和适用范围。

正文部分的目的是为读者提供对热电偶红外测温原理的深入理解。

热电偶如何测温

热电偶如何测温

热电偶的测温原理
热电偶温度计由热电偶、连接导线及显示仪表三部分组成。

下图是最简单的热电偶温度计示意图。

热电偶温度计示意图
按上图组成的热电偶温度计,如果将热电偶的热端加热,使得冷、热两端的温度不同,则在该热电偶回路中就会产生热电势,这种物理现象就称为热电现象(即热电效应)。

在热电偶回路中产生的电势由温差电势和相接触电势两部分组成接触电势:它是两种电子密度不同的导体相互接触时产生的一种热电势。

当两种不同的导体A和B相接触时,假设导体A和B的电子密度分别为Na和Nb并且Na>Nb,则在两导体的接触面上,电子在两个方向的扩散率就不相同,由导体A扩散利导体B的电子数比从B扩散到A的电子数要多。

导体A失去电子而显正电,导体B 获很电子而显负电。

因此,在A、B两导体的接触面上便形成一个由A到B的静电场,这个电场将阻碍扩散运动的继续进行,同时加速电子向相反方向运动,使从B到A的电子数增多,最后达到动态平衡状态。

此时A、B之间也形成一电位差,这个电位差称为接触电势。

此电势只与两种导体的性质相接触点的温度有关,当两种导体的材料一定,接触电势仅与其接点温度有关。

温度越高,导体中的电子就越活跃,由A导体扩散到B导体的电子就越多,致使接触面处所产生的电场强度越高,因而接触电势也就越大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5、变差:在仪表全部测量范围内,被测量值上行和下行所得到的两条特性曲线之间的最 大偏差,指的是仪表正向特征与反向特征不一致的成度。仪表变差不应超过允 需误差值,在校验仪表时,一般应进行上、下行程的校验。
6、时滞:用仪表对参数进行测量时,由于仪表有惯性,其指示值总要经过一段时间之后才 能正确的显示出被测参数,即指示值的变化总要落后于被测参数的变化。从测量 开始到仪表正确显示出被测量的这一段时间称为仪表的时滞或反应时间。
根据仪表是否与被测对象接触,测量可分为:接触测量法和非接触测量法。
二、热工测量仪表的组成及分类
1、热工测量仪表的组成:炼铁厂中的热工参数,多数不能直接测量,一般是借助一些物质 的物理、化学性质的关联性把被测参数转变为其他便于直接测量的相关量,以间接得出被测参 数的数值。从仪表的各部分的功能和作用分为:感受部件、传输变换部件及显示部件。
如果测量仪表的感受部件或变送器与显示部件相距较远,并各自成为一完整仪表,则习惯 称为感受仪表(一次仪表)及显示仪表(二次仪表)
2020/3/25
热工仪表及其维护
2
承钢自动化分公司炼铁作业区
AUTOMATION
2020/3/25
热工仪表及其维护
3
承钢自动化分公司炼铁作业区
2、热工测量仪表的分类: ⑴按被测参数不同;等以下略
⑶组合测量:组合测量是在测量出几组具有一定函数关系的量值基础上,通 过解联立方程组求取被测量的方法。例如,在一定温度范围内求解铂电阻与温度的 关系。
பைடு நூலகம்
2020/3/25
热工仪表及其维护
1
承钢自动化分公司炼铁作业区
AUTOMATION
根据检测装置动作原理不同,测量可以分为 ⑴直读法:被测量作用于仪表比较装置,使比较装置的某种参数按已知关系随被测量 发生变化,由于这种变化关系已在仪表上直接刻度,故直接可由仪表刻度尺读出测量结果。 ⑵零值法(平衡法):将被测量与一个已知量进行比较,当两者达到平衡时,仪表平 衡指示器指零,这时已知量就是被测量值。 ⑶微差法:当被测量尚未完全与已知量相平衡时,读取它们之间的差值,由已知量和 差值可求出被测量值。如用不平衡电桥测量电阻。
感受部件:测量仪表中直接与被测对象发生关系的部件,它感受到被测量(被测信号)的 大小,并产生一个相应的其他量(输出信号)输送至传输转换部件。
传输变换部件:传输变换部件接受感受部件送入的信号,并输送到显示部件。
显示部件:显示部件接受传输变换部件送入的信号并转变为测量人员可以辨识的信号,它 是与人直接联系的部件。
AUTOMATION
三、测量误差
绝对误差:
δ =L-A0
δ------绝对误差;L------测量值; A0---------真实值;A0常用标准仪表的侧量值A(实际值
)来代替。
相对误差:
γ = δ/A×100%=(L-A)/A ×100%
折合误差:
γ = δ/量程×100%
误差的分类:
1、系统误差:保持不变或以可预知方式变化的误差分量
随机性;可通过多次测量来减小。
3、粗大误差:由于操作人员操作错误和粗心大意造成。
四、仪表的质量指标
1、准确度:表征仪表示值与被测量实际值接近程度的质量指标,用基本误差来表示。
基本误差=最大绝对误差(绝对值)/仪表量程 ×100%
国家根据各类仪表的设计和制造质量不同,对每种仪表都规定了基本误差的最大允许值, 即允许误差,允许误差去掉百分号的数值就是仪表的精确度等级。我国目前规定的准确度等级 有0.005、0.01、0.02、0.04、0.05、0.1、0.2、0.5、1.0、1.5、2.5、4.0、5.0等级别,数 值越小,准确度越高。
承钢自动化分公司炼铁作业区
AUTOMATION
热工测量基本知识
一、测量的定义及方法
1、测量的定义:测量就是采用测量工具(或仪表),通过实验方法将被测量与 同性质的标准量(即测量单位)进行比较,以确定出被测量是标准量多少倍数的过 程。其所得倍数就是被测量值,即L≈x/b
式中x----被测量; b----标准量(测量单位); L----所得被测量值
来源: ①仪器固有缺陷; ②实验理论近似或方法不完善; ③实验环境、测量条件不合要 求; ④操作者生理或心理因素。
恒定性;可用特定方法来消除或减小。
2020/3/25
热工仪表及其维护
4
承钢自动化分公司炼铁作业区
AUTOMATION
2、随机误差:当设法消除了系统误差之后,在同一条件下反复测量同一量时,每次测量 值仍会出现或大或小、或正或负的微小误差。
2、稳定性:仪表示值不随时间和使用条件变化的性能。
3、灵敏度:仪表输出信号的变化与产生该变化的被测信号变化之比,
2020/3/25
热工仪表及其维护
5
承钢自动化分公司炼铁作业区
AUTOMATION
4、不灵敏区:不能引起输出变化的被测信号的最大变化范围。能引起仪表响应的输入信号 的最小变化称为仪表的灵敏度限或分辨率。一般灵敏度限数值应不大于仪 表允许误差的一半。
温度是表征物体冷热程度的物理量。
2020/3/25
热工仪表及其维护
7
承钢自动化分公司炼铁作业区
1、温标
AUTOMATION
➢为了保证温度量值的准确和利于传递,需 要建立一个衡量温度的统一标准尺度,即 温标。
2、测量的方法: 根据获得测量结果的程序不同,测量可以分为 ⑴直接测量:即用被测量直接与标准量比较而得到测量值的测量方法。如用
尺测量长度,用玻璃管水位计测量水位,用压力表测量容器中气体的压力等。此法 简单迅速。
⑵间接测量:已知被测量与某一个或若干个其他量具有一定函数关系,通过 直接测量这些量值,用函数关系式计算出被测量值的测量方法。例如,通过测量长 度和宽度求面积,通过测量导线电阻、长度及直径求电阻率。
7、重复性:指同一条件下对被测量物多次重复测量其示值不一致的程度
本讲完
2020/3/25
热工仪表及其维护
6
承钢自动化分公司炼铁作业区
AUTOMATION
温度测量仪表及其维护
一、温度测量的基本概念
温度是国际单位制给出的基本物理量之一,它 是工农业生产、科学试验中需要经常测量和控制的主 要参数;从热平衡的观点看,温度可以作为物体内部 分子无规则热运动剧烈程度的标志;温度与人们日常 生活紧密相关。
相关文档
最新文档