《件的相互独立性》课件
合集下载
高一下学期数学人教A版必修第二册10.2事件的相互独立性课件

1 2
,
3 4
,
3 4
,将它们中某两个元件并联后再和第三个
元件串联接入电路,它们是否正常工作相互独立.在如图所示的电路中,电路不发生故障的概率
是_______.
解:记 A “T1 正常工作”, B “T2 正常工作”, C “ T3 正常工作”,
则 P(A) 1 , P(B) P(C) 3 ,
23 60
5 12
9 10
.
6. 甲、乙、丙 3 位大学生同时应聘某个用人单位的职位,3 人能被选中的概率分别为 2 , 3 , 1 , 543
且各自能否被选中互不影响. (1)求 3 人同时被选中的概率;
(2)求 3 人中至少有 1 人被选中的概率.
解:(2)方法二:“3 人中至少有 1 人被选中”的对立事件是“3 人都没有被选中”, 所以 3 人中至少有 1 人被选中的概率为
1 3
1 10
6. 甲、乙、丙 3 位大学生同时应聘某个用人单位的职位,3 人能被选中的概率分别为 2 , 3 , 1 , 543
且各自能否被选中互不影响. (1)求 3 人同时被选中的概率; (2)求 3 人中至少有 1 人被选中的概率.
解:(2)方法一:3 人中有 2 人被选中的概率为
P2 P(ABC ABC ABC) P(ABC) P(ABC) P(ABC) 2 3 (1 1) 2 (1 3) 1 (1 2) 3 1 23 5 4 3 5 4 3 5 4 3 60
(1)两人都中靶; (2)恰好有一人中靶; (3)两人都脱靶. (4)至少有一人中靶.
解:(3)事件“两人都脱靶” AB ,所以 P( AB) P( A)P(B) 0.2 0.1 0.02
(4)方法 1:事件“至少有一人中靶” AB AB AB ,且 AB, AB 与 AB 两两互斥,
事件的相互独立性 课件

A,B互斥
P(A)+P(B)
0 1-[P(A)+P(B)]
P(A)+P(B)
1
A,B相互独立
1-P(-A )P(-B )
P(A)P(B)
P(-A )P(-B ) P(A)P(-B )+P(-A )P(B)
1-P(A)·P(B)
又A B 与 A B互斥,
所以P[(A
B
)∪(
ABBiblioteka ]=P(AB)+P(
A
B)=P(A)P(
B
)+P(
A
)P(B)=
1 3
×1-14+1-13×14=152. (4)“至多一人能破译”为事件(A B )∪( A B)∪( A B ),而A B 、 A B、 A
B 互斥,故P[(A B )∪( A B)∪( A B )]=P(A B )+P( A B)+P( A B )=P(A)P( B )
事件的相互独立性与互斥性
[探究问题] 1.甲、乙二人各进行一次射击比赛,记A=“甲击中目标”,B=“乙 击中目标”,试问事件A与B是相互独立事件,还是互斥事件?事件 A B与 A B 呢?
[提示] 事件A与B, A 与B,A与 B 均是相互独立事件,而 A B与A B 是 互斥事件.
2.在探究1中,若甲、乙二人击中目标的概率均是0.6,如何求甲、乙 二人恰有一人击中目标的概率?
[思路探究] (1)利用独立性概念的直观解释进行判断.(2)计算“从8个 球中任取一球是白球”发生与否,事件“从剩下的7个球中任意取出一球还 是白球”的概率是否相同进行判断.(3)利用事件的独立性定义判断.
[解] (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中
选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.
事件的相互独立性一课件

详细描述
首先明确事件A和事件B的定义,然后 分析事件A的发生是否与事件B的发生 与否有直接关联。如果事件A的发生 概率不因事件B的发生与否而改变, 则认为事件A与事件B相互独立。
利用性质进行判断
总结词
根据概率论中的性质,如果两个事件相互独立,则它们的联合概率等于各自概率的乘积。
详细描述
如果已知事件A和事件B的联合概率和各自的概率,可以通过计算联合概率是否等于各自概率的乘积来 判断它们是否相互独立。如果相等,则说明事件A与事件B相互独立。
抛硬币与掷骰子
总结词:互不影响
详细描述:抛硬币和掷骰子是两个独立的事件,一个事件的结果不会影响到另一个事件的结果。例如,抛硬币的结果不会影 响到掷骰子的结果,反之亦然。
学生成绩与家庭背景
总结词:可能相关
详细描述:学生成绩和家庭背景之间可能存在一定的相关性,但它们不是完全独立的事件。家庭背景 可能会影响学生的学习环境和资源,从而影响其成绩,但同时,学生的成绩也可能受到其他多种因素 的影响,如个人努力、教学质量等。
利用经验进行判断
总结词
根据实际经验和常识,有时可以通过观 察和推理来判断两个事件是否相互独立 。
VS
详细描述
在某些情况下,根据日常生活中的经验和 常识,可以直观地判断两个事件是否相互 独立。例如,掷骰子两次,如果每次掷骰 子的结果与另一次掷骰子无关,则可以认 为这两个事件是相互独立的。
06 事件独立性的实际例子
概率表示
若在给定C下,P(A∩B|C)=P(A|C)P(B|C),则称在条件C下事件A与事件B条件独立。
实例
在投掷一枚骰子,出现3点的情况下,事件A为出现偶数点,事件B为出现4点,因为给定 出现3点的情况下,出现偶数点和出现4点没有关联,所以事件A与事件B在给定出现3点的 情况下条件独立。
首先明确事件A和事件B的定义,然后 分析事件A的发生是否与事件B的发生 与否有直接关联。如果事件A的发生 概率不因事件B的发生与否而改变, 则认为事件A与事件B相互独立。
利用性质进行判断
总结词
根据概率论中的性质,如果两个事件相互独立,则它们的联合概率等于各自概率的乘积。
详细描述
如果已知事件A和事件B的联合概率和各自的概率,可以通过计算联合概率是否等于各自概率的乘积来 判断它们是否相互独立。如果相等,则说明事件A与事件B相互独立。
抛硬币与掷骰子
总结词:互不影响
详细描述:抛硬币和掷骰子是两个独立的事件,一个事件的结果不会影响到另一个事件的结果。例如,抛硬币的结果不会影 响到掷骰子的结果,反之亦然。
学生成绩与家庭背景
总结词:可能相关
详细描述:学生成绩和家庭背景之间可能存在一定的相关性,但它们不是完全独立的事件。家庭背景 可能会影响学生的学习环境和资源,从而影响其成绩,但同时,学生的成绩也可能受到其他多种因素 的影响,如个人努力、教学质量等。
利用经验进行判断
总结词
根据实际经验和常识,有时可以通过观 察和推理来判断两个事件是否相互独立 。
VS
详细描述
在某些情况下,根据日常生活中的经验和 常识,可以直观地判断两个事件是否相互 独立。例如,掷骰子两次,如果每次掷骰 子的结果与另一次掷骰子无关,则可以认 为这两个事件是相互独立的。
06 事件独立性的实际例子
概率表示
若在给定C下,P(A∩B|C)=P(A|C)P(B|C),则称在条件C下事件A与事件B条件独立。
实例
在投掷一枚骰子,出现3点的情况下,事件A为出现偶数点,事件B为出现4点,因为给定 出现3点的情况下,出现偶数点和出现4点没有关联,所以事件A与事件B在给定出现3点的 情况下条件独立。
高一数学(人教A版)-事件的相互独立性课件

(1,1)
根据独立性假定,得
P( A1)
3 4
1 4
+
1 4
3 4
3 8
分析:设 A2 表示甲两轮猜对2个成语的事件,
甲
根据独立性假定,得
(0,0)
(0,1)
P( A2 )
3 4
3 4
9 16
(1,0)
(1,1)
33 44
设 B1,B2分别表示乙两轮猜对1个,2个成语的事件,
P( B1 )
2 3
因为A C ,且 A C ,所以
事件 A 与事件 C互为
.
2.如果事件 A 与事件 B 互斥,和事件 A B的概率与事件 A , B 的概率之间的关系是
P( A B) P( A) P(B).
3.设 A ,B 是一个随机实验的两个事件,和事件 A B 的概 率与事件 A ,B 的概率之间的关系是
事件的相互独立性
高一年级 数学
1.一个袋子中有大小和质地相同的4个球,其中2个红色球 (标号为1和2 ),1个绿色球(标号为3 ),1个黄色球 (标号为4 ),从袋中随机摸出1个球.设事件A “摸到
红球”,B “摸到绿球”,C “摸到绿球或黄球”.
样本空间为 {1,2,3,4}
A {1,2} B {3} C {3,4} 因为A B ,所以事件 A 与事件 B ;
AB={(1,2),(2,1)} ,n( AB) 2 .
所以
P( A)
n( A)
n( )
1 2
,P(B)
n(B)
n( )
1 2
,
P( AB)
n( AB)
n( )
1 6
.
此时 P( AB) P( A) P(B) ,
根据独立性假定,得
P( A1)
3 4
1 4
+
1 4
3 4
3 8
分析:设 A2 表示甲两轮猜对2个成语的事件,
甲
根据独立性假定,得
(0,0)
(0,1)
P( A2 )
3 4
3 4
9 16
(1,0)
(1,1)
33 44
设 B1,B2分别表示乙两轮猜对1个,2个成语的事件,
P( B1 )
2 3
因为A C ,且 A C ,所以
事件 A 与事件 C互为
.
2.如果事件 A 与事件 B 互斥,和事件 A B的概率与事件 A , B 的概率之间的关系是
P( A B) P( A) P(B).
3.设 A ,B 是一个随机实验的两个事件,和事件 A B 的概 率与事件 A ,B 的概率之间的关系是
事件的相互独立性
高一年级 数学
1.一个袋子中有大小和质地相同的4个球,其中2个红色球 (标号为1和2 ),1个绿色球(标号为3 ),1个黄色球 (标号为4 ),从袋中随机摸出1个球.设事件A “摸到
红球”,B “摸到绿球”,C “摸到绿球或黄球”.
样本空间为 {1,2,3,4}
A {1,2} B {3} C {3,4} 因为A B ,所以事件 A 与事件 B ;
AB={(1,2),(2,1)} ,n( AB) 2 .
所以
P( A)
n( A)
n( )
1 2
,P(B)
n(B)
n( )
1 2
,
P( AB)
n( AB)
n( )
1 6
.
此时 P( AB) P( A) P(B) ,
10.2事件的相互独立性课件(人教版)

所以AB={(1,1),(1,2),(2,1),(2,2)}.
所以 P( A) P(B)= 1 , P( AB) 1 .
2
4
于是 P(AB)=P(A)P(B).
积事件AB的概率P(AB)恰好等于P(A)与P(B)的乘积.
从上述两个实验的共性中得到启示,我们引入这种事件关系的一般 定义:
对任意两个事件A与B , 如果 P(AB)=P(A)P(B) 成立,则称事件A与 事件B相互独立,简称为独立.
例2 甲、乙两名射击运动员进行射击比赛,甲的中靶概率为0.8,乙 的中靶概率为0.9,求下列事件的概率:
(1)两人都中靶; (2)恰好有一人中靶; (3)两人都脱靶; (4)至少有一人中靶.
分析:设A=“甲中靶”,B=“乙中靶”.解题的关键是利用 A, B, A, B 来 表示相关事件.可以借助树状图来分析.如图所示:
B=“第二次摸出球的标号小于3”
B={(2,1),(3,1),(4,1),(1,2),(3,2),(4,2)},共6个样本点.
所以AB={(1,2),(2,1)}.所以 P( A) P(B) 6 1 , P( AB) 2 1 .
12 2
12 6
此时P(AB)≠P(A)P(B),因此事件A与事件B不独立.
1 P( AB) 1 0.02 0.98.
例2 甲、乙两名射击运动员进行射击比赛,甲的中靶概率为0.8,乙 的中靶概率为0.9,求下列事件的概率:
(1)两人都中靶; (2)恰好有一人中靶; (3)两人都脱靶; (4)至少有一人中靶.
(4)方法3:事件“至少有一人中靶”可以看成“甲中靶”和“乙中靶”这两个 事件的并事件,根据性质6,可得事件“至少有一人中靶”的概率为
解:设A=“甲中靶”,B=“乙中靶”, A “甲脱靶”, B “乙脱靶”
事件的相互独立性课件

【思路启迪】 如果A、B是,所以利用独立事件的概率公 式来解题即可.
【解】 设“甲能破译”为事件A,“乙能破译”为事件 B,则A、B相互独立,从而A与 B 、 A 与B、 A 与 B 均相互独 立.
(1)“两个都能破译”为事件AB,则 P(AB)=P(A)·P(B)=13×14=112.
要点二 求相互独立事件的概率
1.求相互独立事件同时发生的概率的步骤是 (1)首先确定各事件之间是相互独立的; (2)确定这些事件可以同时发生; (3)求出每个事件的概率,再求积. 2.使用相互独立事件同时发生的概率计算公式时,要掌 握公式的适用条件,即各个事件是相互独立的,而且它们同 时发生.
一个袋子中有3个白球,2个红球,每次从中 任取2个球,取出后再放回,求:
(1)一个家庭中有若干个小孩,假定生男孩和 生女孩是等可能的,令A={一个家庭中既有男孩又有女孩}, B={一个家庭中最多有一个女孩}.已知家庭中有三个小孩, 判断A与B的独立性;
(2)判断下列各对事件是否是相互独立事件: 甲组3名男生,2名女生;乙组2名男生,3名女生,现从 甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1 名男生”与“从乙组中选出1名女生”.
2.熟记部分符号语言含义:如A,B至少有一个发生的 事件记为A∪B;都发生记为AB;恰有一个发生的事件记为 (A B )∪( A B);至多有一个发生的事件记为(A B )∪( A B)∪( A B ).
甲、乙两人破译一密码,他们能破译的概率 分别为13和14.
求(1)两人都能破译的概率; (2)两人都不能破译的概率; (3)恰有一人能破译的概率; (4)至多有一人能破译的概率.
(1)P(AB)=P(A)P(B)=CC2325·CC2225=130·110=1300. 故第1次取出的2个球都是白球,第2次取出的2个球都是 红球的概率是1300.
10.2 事件的相互独立性课件ppt
=0.8×0.3×0.1+0.2×0.7×0.1+0.2×0.3×0.9
=0.092.
变式训练3某机械厂制造一种汽车零件,已知甲机床的正品率是0.96,乙机
床的次品率是0.05,现从它们制造的产品中各任意抽取一件,试求:
(1)两件产品都是正品的概率;
(2)恰有一件是正品的概率;
(3)至少有一件是正品的概率.
(2)求甲、乙、丙三人的租车费用和为10元的概率.
解 (1)由题意可得,甲、乙、丙 30 分钟以上且不超过 40 分钟还车的概率分
1 1 1
别为 , , ,
4 2 4
1 1 1 1 1 1 1
甲、乙、丙三人的租车费用完全相同的概率为 P=2 × 4 × 4 + 4 × 4 × 2 + 4 ×
1 1
生,不会受任何事件是否发生的影响,不可能事件⌀总不会发生,也不受任何
事件是否发生的影响.当然,它们也不影响其他事件是否发生.(3)对于n个事
件A1,A2,…,An,如果其中任意一个事件发生的概率不受其他事件是否发生
的影响,则称n个事件A1,A2,…,An相互独立.
微思考
分别抛掷两枚质地均匀的硬币,事件A=“第一枚硬币正面朝上”,事件B=“第
单的相关概率计算问题.(数学运算)
4.培养学生分析问题、解决问题的能力,提高学生数学转化与
化归的能力.(逻辑推理)
思维脉络
课前篇 自主预习
激趣诱思
常言道:“三个臭皮匠顶个诸葛亮.”怎样从数学上来解释呢?将问题具体化:
假如对某事件诸葛亮想出计谋的概率为0.88,三个臭皮匠甲、乙、丙想出
计谋的概率各为0.6,0.5,0.5.问这三个臭皮匠能胜过诸葛亮吗?
事件的相互独立性 课件
【解】 (1)设 A 表示事件“观众甲选中 3 号歌手”,B 表示事 件“观众乙选中 3 号歌手”, 则 P(A)=CC1223=23, P(B)=CC2435=35. 因为事件 A 与 B 相互独立, 所以观众甲选中 3 号歌手且观众乙未选中 3 号歌手的概率为 P(A B )=P(A)·P( B )=P(A)·[1-P(B)] =23×25=145.
探究点 1 相互独立事件的判断 判断下列各对事件,哪些是互斥事件,哪些是相互独
立事件? (1)掷一枚骰子一次,事件 M:“出现的点数为奇数”,事件 N: “出现的点数为偶数”; (2)掷一枚骰子一次,事件 A:“出现偶数点”;事件 B:“出 现 3 点或 6 点”; (3)袋中有 3 白、2 黑共 5 个大小相同的小球,依次有放回地摸 两球,事件 M:“第一次摸到白球”,事件 N:“第二次摸到 白球”.
P(X=2)=P(A B C)+P(-A BC)+P(A-B C)
=23×35×25+13×35×35+23×25×35=3735,
P(X=3)=P(ABC)=23×35×35=1785,
所以 X 的分布列为
X012 3
P
4 20 33 75 75 75
18 75
判断两个事件是否独立的两种方法 (1)根据问题的实质,直观上看一事件的发生是否影响另一事件 发生的概率来判断,若没有影响,则两个事件就是相互独立事 件; (2)定义法:通过式子 P(AB)=P(A)P(B)来判断两个事件是否独 立,若上式成立,则事件 A,B 相互独立,这是定量判断.
探究点 2 相互独立事件同时发生的概率 甲、乙 2 个人独立地破译一个密码,他们能译出密码
(3)“至多 1 个人译出密码”的对立事件为“2 个人都译出密 码”, 所以至多 1 个人译出密码的概率为: 1-P(AB)=1-P(A)P(B)=1-13×14=1112.
事件的相互独立性-PPT课件
8
例2 甲、乙二人各进行1次射击比赛,如果2人
击中目标的概率都是0.6,计算:
(1)两人都击中目标的概率;
解(2:)(1其) 中记恰“由甲1射人击击1中次目,击标中的目概标率”为事件A.“乙射 击(31)次至,击少中有目一标人”击为中事目件标B的.且概A率与B相互独立, 又A与B各射击1次,都击中目标,就是事件A,B同
A
B
C
.在100件产品中有4件次品.
C42
①从中抽2件, 则2件都是次品概率为__C_1002
C41·C31 C1001·C991
②从中抽两次,每次1件则两次都抽出次品的概率是___
(不放回抽取)
③从中抽两次,每次1件则两次都抽出次品的概率是___
(放回抽取)
C41·C41 C1001·C102011
(A1·A2……An)=P(A1)·P(A2)……P(An) 6
试一试 判断事件A, B 是否为互斥, 互独事件?
1.篮球比赛 “罚球二次” . 事件A表示“ 第1球罚中”,
事件1罚球” . 事件A表示 “ 第1球罚中”,
事件B表示 “第2球罚中”.
P( A • B) P( A) • P(B)
96 • 97 582 100 100 625
答:抽到合格品的概率是 582
13
625
例3 在一段线路中并联着3个自动控制的常开开关,只
要其中有1个开关能够闭合,线路就能正常工作.假定在 某段时间内每个开关闭合的概率都是0.7,计算在这段时 间内线路正常工作的概率.
(1 0.7)(1 0.7)(1 0.7)
0.027
所以这段事件内线路正常工作的概率是
1 P(A • B • C) 1 0.027 0.973
例2 甲、乙二人各进行1次射击比赛,如果2人
击中目标的概率都是0.6,计算:
(1)两人都击中目标的概率;
解(2:)(1其) 中记恰“由甲1射人击击1中次目,击标中的目概标率”为事件A.“乙射 击(31)次至,击少中有目一标人”击为中事目件标B的.且概A率与B相互独立, 又A与B各射击1次,都击中目标,就是事件A,B同
A
B
C
.在100件产品中有4件次品.
C42
①从中抽2件, 则2件都是次品概率为__C_1002
C41·C31 C1001·C991
②从中抽两次,每次1件则两次都抽出次品的概率是___
(不放回抽取)
③从中抽两次,每次1件则两次都抽出次品的概率是___
(放回抽取)
C41·C41 C1001·C102011
(A1·A2……An)=P(A1)·P(A2)……P(An) 6
试一试 判断事件A, B 是否为互斥, 互独事件?
1.篮球比赛 “罚球二次” . 事件A表示“ 第1球罚中”,
事件1罚球” . 事件A表示 “ 第1球罚中”,
事件B表示 “第2球罚中”.
P( A • B) P( A) • P(B)
96 • 97 582 100 100 625
答:抽到合格品的概率是 582
13
625
例3 在一段线路中并联着3个自动控制的常开开关,只
要其中有1个开关能够闭合,线路就能正常工作.假定在 某段时间内每个开关闭合的概率都是0.7,计算在这段时 间内线路正常工作的概率.
(1 0.7)(1 0.7)(1 0.7)
0.027
所以这段事件内线路正常工作的概率是
1 P(A • B • C) 1 0.027 0.973
课件7:2.2.2 事件的相互独立性
方法归纳 解决此类问题应注意什么? (1)恰当用事件的“并”“交”表示所求事件. (2)“串联”时系统无故障易求概率,“并联”时系统有故障 易求概率,求解时注意对立事件概率之间的转化.
学以致用 3.在一段线路中并联着 3 个自动控制的常开开关,只要 其中 1 个开关能够闭合,线路就能正常工作.假定在某 段时间内每个开关能够闭合的概率都是 0.7,计算在这段 时间内线路正常工作的概率.
() A.0.56 C.0.75
B.0.48 D.0.6
【解析】都击中目标的概率为 P=0.8×0.7=0.56. 【答案】A
3.一件产品要经过 2 道独立的加工程序,第一道工序的
次品率为 a,第二道工序的次品率为 b,则产品的正品率
为( )
A.1-a-b
B.1-ab
C.(1-a)(1-b)
D.1-(1-a)(1-b)
解:如图所示,记这段时间内开关 KA、KB、KC 能够闭合 分别为事件 A、B、C.
由题意知,这段时间内 3 个开关是否能够闭合相互之间也 没有影响,根据相互独立事件的概率公式得,这段时间内 3 个开关都不能闭合的概率是 P( A B C )=P( A )P( B )P( C ) =[1-P(A)][1-P(B)][1-P(C)] =(1-0.7)(1-0.7)(1-0.7)=0.027.
探究二 相互独立事件同时发生的概率 典例 2 甲、乙两人独立破译密码的概率分别为13、14,求: (1)两个人都译出密码的概率; (2)两个人都译不出密码的概率; (3)恰有一人译出密码的概率; (4)至多一人译出密码的概率; (5)至少一人译出密码的概率.
解:记 A 为“甲独立地译出密码”,B 为“乙独立地译出密码”. 则 A 与 B, A 与 B 均相互独立. (1)两个人都译出密码的概率为 P(AB)=P(A)P(B)=13×14=112. (2)两个人都译不出密码的概率为 P( A B )=P( A )P( B )=[1-P(A)][1-P(B)]=1-131-14=12.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中目标的概率都是0.6,计算: (3)至少有一人击中目标的概率. 解法1:两人各射击一次至少有一人击中目标的概率是
P P( A B) [ P( A B) P( A B)] 0.36 0.48 0.84
解法2:两人都未击中的概率是 P( A B) P( A) P( B) (1 0.6) (1 0.6) 0.16,
P( A B) P( A B) P( A) P( B) P( A) P( B) 0.6 (1 0.6) (1 0.6) 0.6 0.24 的概率为0.48.
例2 甲、乙二人各进行1次射击比赛,如果2人击
我们知道,当事件A的发生对事件B的发生有影 响时,条件概率P(B|A)和概率P(B)一般是不相等的, 但有时事件A的发生,看上去对事件B的发生没有影 响,比如依次抛掷两枚硬币的结果(事件A)对抛掷第二枚
硬币的结果(事件B)没有影响,这时P(B|A)与P(B)相等吗?
下面看一例
在大小均匀的5个鸡蛋中有3个红皮蛋,2个白皮 蛋,每次取一个,有放回地取两次,求在已知第一 次取到红皮蛋的条件下,第二次取到红皮蛋的概率。
高二数学 选修2-3
8.2.3事件的相互独 立性(一)
复习回顾
①什么叫做互斥事件?什么叫做对立事件?
不可能同时发生的两个事件叫做互斥事件;如果两个互斥 事件有一个发生时另一个必不发生,这样的两个互斥事件 叫对立事件.
②两个互斥事件A、B有一个发生的概率公式是 什么? P(A+B)=P(A)+(B) ③若A与A为对立事件,则P(A)与P(A)关 系如何?
因此,至少有一人击中 目标的概率 P 1 P( A B) 1 0.16 0.84 答:至少有一人击中的概率是0.84.
巩固练习
生产一种零件,甲车间的合格率是96%,乙车间的合格率 是97%,从它们生产的零件中各抽取1件,都抽到合格品 的概率是多少? 解:设从甲车间生产的零件中抽取1件得到合格品为 事件A,从乙车间抽取一件得到合格品为事件B。那么, 2件都是合格品就是事件A•B发生,又事件A与B相互独 立,所以抽到合格品的概率为
这就是说,两个相互独立事件同时发生的概率, 等于每个事件的概率的积。 一般地,如果事件A1,A2……,An相互独立,那么这n个 事件同时发生的概率等于每个事件发生的概率的积,即
P(A1· A2……An)=P(A1)· P(A2)……P(An)
试一试
判断事件A, B 是否为互斥, 互独事件?
1.篮球比赛 “罚球二次” . 事件A表示“ 第1球罚中”, 事件B表示“第2球罚中”. A与B为互独事件 2.篮球比赛 “1+1罚球” . 事件A表示 “ 第1球罚中”, 事件B表示 “第2球罚中”. A与B不是互独事件 3.袋中有4个白球, 3个黑球, 从袋中依此取2球. 事件A:“取出的是白球”.事件B:“取出的是黑球” ( 不放回抽取) A与B为非互独也非互斥事件 4.袋中有4个白球, 3个黑球, 从袋中依此取2球. 事件A为“取出的是白球”.事件B为“取出的是白 球”. A与B为互独事件 ( 放回抽取)
②如果事件A与B相互独立,那么A与B,A与B,A与B是不是 相互独立的 相互独立
2、相互独立事件同时发生的概率公式:
“第一、第二次都取到红皮蛋”是一个事件, 它的发生就是事件A,B同时发生,将它记作A•B 两个相互独立事件A,B同时发生,即事件A•B发生的概 率为:
P( A B) P( A) P( B)
P ( A B ) P ( A) P ( B ) 96 97 582 100 100 625
P(A)+P(Ā)=1
复习回顾
(4).条件概率
设事件A和事件B,且P(A)>0,在已知事件A发 生的条件下事件B发生的概率,叫做条件概率。 记作P(B |A).
(5).条件概率计算公式:
n( AB) P( AB) P( B | A) n( A) P( A)
注意条件:必须 P(A)>0
问题探究:
例2 甲、乙二人各进行1次射击比赛,如果2人
击中目标的概率都是0.6,计算:
(1)两人都击中目标的概率;
(2)其中恰由1人击中目标的概率 (3)至少有一人击中目标的概率
又A与B各射击1次,都击中目标,就是事件A,B同 且A与B相互独立, 时发生, 解:(1) 记“甲射击1次,击中目标”为事件A.“乙 射 击1次,击中目标”为事件B. 根据相互独立事件的概率的乘法公式,得到
相互独立事件及其同时发生的概率
1、事件的相互独立性 设A,B为两个事件,如果 P(AB)=P(A)P(B),则称事 件A与事件B相互独立。 即事件A(或B)是否发生,对事件B(或A)发生的 概率没有影响,这样两个事件叫做相互独立事件。
注:
①区别:互斥事件和相互独立事件是两个不同概念:
两个事件互斥是指这两个事件不可能同时发生; 两个事件相互独立是指一个事件的发生与否对另一个事件 发生的概率没有影响。
例1 某商场推出二次开奖活动,凡购买一定价值的商
品可以获得一张奖券。奖券上有一个兑奖号码,可以 分别参加两次抽奖方式相同的兑奖活动。如果两次兑 奖活动的中奖概率都是0.05 ,求两次抽奖中以下事件的 概率: (1)都抽到某一指定号码;
(2)恰有一次抽到某一指定号码;
(3)至少有一次抽到某一指定号码。
P(A•B)=P(A) •P(B)=0.6×0.6=0.36 答:两人都击中目标的概率是0.36
例2 甲、乙二人各进行1次射击比赛,如果2人击
中目标的概率都是0.6,计算: (2) 其中恰有1人击中目标的概率? 解:“二人各射击1次,恰有1人击中目标”包括两种 情况:一种是甲击中, 乙未击中(事件 另一种是 A B ) 甲未击中,乙击中(事件Ā•B发生)。 根据题意,这两 种情况在各射击1次时不可能同时发生,即事件Ā•B与 根据互斥事件的概率加法公式和相互独立 A• B互斥, 事件的概率乘法公式,所求的概率是
P P( A B) [ P( A B) P( A B)] 0.36 0.48 0.84
解法2:两人都未击中的概率是 P( A B) P( A) P( B) (1 0.6) (1 0.6) 0.16,
P( A B) P( A B) P( A) P( B) P( A) P( B) 0.6 (1 0.6) (1 0.6) 0.6 0.24 的概率为0.48.
例2 甲、乙二人各进行1次射击比赛,如果2人击
我们知道,当事件A的发生对事件B的发生有影 响时,条件概率P(B|A)和概率P(B)一般是不相等的, 但有时事件A的发生,看上去对事件B的发生没有影 响,比如依次抛掷两枚硬币的结果(事件A)对抛掷第二枚
硬币的结果(事件B)没有影响,这时P(B|A)与P(B)相等吗?
下面看一例
在大小均匀的5个鸡蛋中有3个红皮蛋,2个白皮 蛋,每次取一个,有放回地取两次,求在已知第一 次取到红皮蛋的条件下,第二次取到红皮蛋的概率。
高二数学 选修2-3
8.2.3事件的相互独 立性(一)
复习回顾
①什么叫做互斥事件?什么叫做对立事件?
不可能同时发生的两个事件叫做互斥事件;如果两个互斥 事件有一个发生时另一个必不发生,这样的两个互斥事件 叫对立事件.
②两个互斥事件A、B有一个发生的概率公式是 什么? P(A+B)=P(A)+(B) ③若A与A为对立事件,则P(A)与P(A)关 系如何?
因此,至少有一人击中 目标的概率 P 1 P( A B) 1 0.16 0.84 答:至少有一人击中的概率是0.84.
巩固练习
生产一种零件,甲车间的合格率是96%,乙车间的合格率 是97%,从它们生产的零件中各抽取1件,都抽到合格品 的概率是多少? 解:设从甲车间生产的零件中抽取1件得到合格品为 事件A,从乙车间抽取一件得到合格品为事件B。那么, 2件都是合格品就是事件A•B发生,又事件A与B相互独 立,所以抽到合格品的概率为
这就是说,两个相互独立事件同时发生的概率, 等于每个事件的概率的积。 一般地,如果事件A1,A2……,An相互独立,那么这n个 事件同时发生的概率等于每个事件发生的概率的积,即
P(A1· A2……An)=P(A1)· P(A2)……P(An)
试一试
判断事件A, B 是否为互斥, 互独事件?
1.篮球比赛 “罚球二次” . 事件A表示“ 第1球罚中”, 事件B表示“第2球罚中”. A与B为互独事件 2.篮球比赛 “1+1罚球” . 事件A表示 “ 第1球罚中”, 事件B表示 “第2球罚中”. A与B不是互独事件 3.袋中有4个白球, 3个黑球, 从袋中依此取2球. 事件A:“取出的是白球”.事件B:“取出的是黑球” ( 不放回抽取) A与B为非互独也非互斥事件 4.袋中有4个白球, 3个黑球, 从袋中依此取2球. 事件A为“取出的是白球”.事件B为“取出的是白 球”. A与B为互独事件 ( 放回抽取)
②如果事件A与B相互独立,那么A与B,A与B,A与B是不是 相互独立的 相互独立
2、相互独立事件同时发生的概率公式:
“第一、第二次都取到红皮蛋”是一个事件, 它的发生就是事件A,B同时发生,将它记作A•B 两个相互独立事件A,B同时发生,即事件A•B发生的概 率为:
P( A B) P( A) P( B)
P ( A B ) P ( A) P ( B ) 96 97 582 100 100 625
P(A)+P(Ā)=1
复习回顾
(4).条件概率
设事件A和事件B,且P(A)>0,在已知事件A发 生的条件下事件B发生的概率,叫做条件概率。 记作P(B |A).
(5).条件概率计算公式:
n( AB) P( AB) P( B | A) n( A) P( A)
注意条件:必须 P(A)>0
问题探究:
例2 甲、乙二人各进行1次射击比赛,如果2人
击中目标的概率都是0.6,计算:
(1)两人都击中目标的概率;
(2)其中恰由1人击中目标的概率 (3)至少有一人击中目标的概率
又A与B各射击1次,都击中目标,就是事件A,B同 且A与B相互独立, 时发生, 解:(1) 记“甲射击1次,击中目标”为事件A.“乙 射 击1次,击中目标”为事件B. 根据相互独立事件的概率的乘法公式,得到
相互独立事件及其同时发生的概率
1、事件的相互独立性 设A,B为两个事件,如果 P(AB)=P(A)P(B),则称事 件A与事件B相互独立。 即事件A(或B)是否发生,对事件B(或A)发生的 概率没有影响,这样两个事件叫做相互独立事件。
注:
①区别:互斥事件和相互独立事件是两个不同概念:
两个事件互斥是指这两个事件不可能同时发生; 两个事件相互独立是指一个事件的发生与否对另一个事件 发生的概率没有影响。
例1 某商场推出二次开奖活动,凡购买一定价值的商
品可以获得一张奖券。奖券上有一个兑奖号码,可以 分别参加两次抽奖方式相同的兑奖活动。如果两次兑 奖活动的中奖概率都是0.05 ,求两次抽奖中以下事件的 概率: (1)都抽到某一指定号码;
(2)恰有一次抽到某一指定号码;
(3)至少有一次抽到某一指定号码。
P(A•B)=P(A) •P(B)=0.6×0.6=0.36 答:两人都击中目标的概率是0.36
例2 甲、乙二人各进行1次射击比赛,如果2人击
中目标的概率都是0.6,计算: (2) 其中恰有1人击中目标的概率? 解:“二人各射击1次,恰有1人击中目标”包括两种 情况:一种是甲击中, 乙未击中(事件 另一种是 A B ) 甲未击中,乙击中(事件Ā•B发生)。 根据题意,这两 种情况在各射击1次时不可能同时发生,即事件Ā•B与 根据互斥事件的概率加法公式和相互独立 A• B互斥, 事件的概率乘法公式,所求的概率是