实际问题与二元一次方程组题型总结 (初中数学七年级)
初一数学下册:二元一次方程8大题型解题方法整理

初一数学下册:二元一次方程8大题型解题方法整理#初一数学二元一次方程——实际问题与二元一次方程组的思路1.列方程组解应用题的基本思想:列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系。
一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数要相等。
2.列二元一次方程组解应用题的一般步骤设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;答:写出答案。
3.要点诠释:(1)“设”、“答”两步,都要写清单位名称;(2)一般来说,设几个未知数就应该列出几个方程并组成方程组。
1和差倍数问题知识梳理:和差问题是已知两个数的和或这两个数的差,以及这两个数之间的倍数关系,求这两个数各是多少。
典型例题:思路点拨:由甲乙两人2分钟共打了240个字可以得到第一个等量关系式2(x+y)=240,再由甲每分钟比乙多打10个字可以得到第二个等量关系式x-y=10,组成方程组求解即可。
变式拓展:思路点拨:由甲组学生人数是乙组的3倍可以得到第一个等量关系式x=3y,由乙组的学生人数比甲组的3倍少40人可以得到第二个等量关系式3x-y=40,组成方程组求解即可。
2产品配套问题典型例题:思路点拨:本题的第一个等量关系比较容易得出:生产螺钉和螺母的工人共有22名;第二个等量关系的得出要弄清螺钉与螺母是如何配套的,即螺母的数量是螺钉的数量的2倍(注意:别把2倍的关系写反)。
变式拓展:思路点拨:根据共有170名学生可得出第一个等量关系x+y=170,根据每个树坑对应一棵树可得第二个等量关系3x=7y,组成方程组求解即可。
3工作量问题知识梳理我们在解决工程问题时通常把工作总量看成1;工作量=工作效率×工作时间;总工作量=每个个体工作量之和;工作效率=工作量÷工作时间(即单位时间的工作量);工作效率=1÷完成工作的总时间。
七年级初一下学期数学 专题12 二元一次方程组应用题(知识点串讲)(解析版)

专题12二元一次方程组应用题知识网络重难突破知识点一二元一次方程组解决实际问题1、一般步骤:(1)弄清题意和题目中的数量关系,用字母(如x,y)表示题目中的两个未知数;(2)找出能够表达实际问题全部含义的两个相等关系;(3)根据这些相等关系列出方程组;(4)解这个方程组,求出未知数的值;(5)检验求出的解是否符合实际意义;(6)写出答案.2、行程问题常用等量关系:(1)s vt=;(2)stv =;(3)svt =.3、工程问题常用等量关系:工作时间×工作效率=工作总量=工作总量工作时间工作效率=工作总量工作效率工作时间4、利润问题常用等量关系:(1)利润=售价-进价(成本);(2)100%=⨯利润利润率进价; (3)售价=进价×(1+利润率);(4)售价=标价×打折率.典例1(2019春•常州期末)《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x 钱,共同购买该物品的有y 人,则根据题意,列出的方程组是( )A .8374y x y x -=⎧⎨-=⎩B .8374y x y x -=⎧⎨-=-⎩C .8374y x y x -=-⎧⎨-=-⎩D .8374y x y y -=⎧⎨-=⎩ 【解答】解:设该物品的价格是x 钱,共同购买该物品的有y 人,依题意,得:8374y x y x -=⎧⎨-=-⎩.故选:B .典例2(2019春•淮安区期末)甲、乙两人一起去检修300长的自来水管道,已知甲比乙每小时少修10m ,两人从管道的两端同时开始检修,3小时后完成任务.问:甲、乙每小时各检修多少m ?【解答】解:设甲每小时检修x 米,乙每小时检修y 米,根据题意得:3()30010x y x y +=⎧⎨=-⎩, 解得:4555x y =⎧⎨=⎩. 答:甲每小时检修45米,乙每小时检修55米.典例3(2019春•铜山区期末)某铁路桥长1000m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共40s .求火车的速度和长度.【解答】解:设火车的速度为x 米/秒,火车的长度为y 米,由题意,得601000401000x y x y =+⎧⎨=-⎩, 解得:20200x y =⎧⎨=⎩. 答:火车的速度为20米/秒,火车的长度为200米.典例4(2019春•秦淮区期末)某商店销售甲、乙两种商品.现有如下信息:(1)请设计一张表格,并把上述信息中的已知数量填进去;(2)根据情境中的信息,提出一个问题,并用二元一次方程组解决这个问题.【解答】解:(1)可设计如下表格.(2)答案不唯一.例如,甲、乙两种商品零售单价分别是多少元?设甲商品零售单价为x 元/件,乙商品零售单价为y 元/件,根据题意,得53212x y x y +=⎧⎨+=⎩ 解得23x y =⎧⎨=⎩ 答:甲商品零售单价为2元/件,乙商品零售单价为3元/件.典例5(2018•广陵区二模)如图,三个全等的小矩形沿“横-竖-横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于 .【解答】解:设小矩形的长为xm ,宽为ym ,由题意得:2 5.72 4.5x y x y +=⎧⎨+=⎩, 解得: 3.4x y +=.一个小矩形的周长为:3.42 6.8⨯=,故答案为:6.8.知识点二 方案选择问题优化方案问题首先要列举出所有可能的方案,然后按照题目要求分别求出每种方案的具体结果,进行比较,最后选择最优方案。
(完整版)七年级二元一次方程组应用题型总结

课题二元一次方程应用教学目标二元一次方程的应用中等量关系的建立导案学案教学流程一、进门考(建议不超过10分钟,教师进行作业检查)1.(教材变式题)设甲数为x,乙数为y,根据下列语句,列出二元一次方程:(1)甲数的一半与乙数的的和为100;(2)甲数与乙数的2倍的和为﹣5;(3)甲数的2倍与乙数的的差为﹣1;(4)甲数的2倍与乙数的的差等于48的;(5)某学校招收八年级学生292人,其中男生人数比女生人数多35人.2.某快递公司有甲、乙两个仓库,各存有快件若干件,甲仓库发走80件后余下的快件数比乙仓库原有快件数的2倍少700件;乙仓库发走560件后剩余的快件数是甲仓库余下的快件数的还多210件,求甲、乙两个仓库原有快件各多少件?3.列方程或方程组解应用题:已知有23人在甲处劳动,17人在乙处劳动.现共调20人去支援,要使在甲处劳动的人数是在乙处劳动的人数的2倍,问应调往甲、乙两处各多少人?二、基础知识网络预习用方程思想解决实际问题的一般步骤:1、审:审题,分析题中已知什么,求什么,明确各数量之间的关系。
2、设:设未知数(可分直接设法,间接设法)。
3、列:根据题意列方程。
4、解:解出所列方程。
5、检:检验所求的解是否符合题意。
三、新知识点例题启发与方法总结题型一数字问题例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数。
例2.在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都相等,又填在图中的数字如图,则x,y的值是()2x 3 2y ﹣34yA.x=1,y=﹣1 B.x=﹣1,y=1 C.x=2,y=﹣1 D.x=﹣2,y=1练习1.一个三位数,个位,百位上的数字的和等于十位上的数字,百位上的数字的7倍比个位,十位上的数字的和大2,个位,十位,百位上的数字的和是14,求这个三位数.2.如图,是一个正方体的展开图,标注字母“a”的面是正方体的正面.如果正方体相对两个面上的代数式的值相等,试求代数式的值.3.为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A,B,C.双方约定:A=2a﹣b,B=2b,C=b+c,例如发出1,2,3,则收到0,4,5(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?题型二利润问题例1.某专卖店有A,B两种商品,已知在打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元,A,B两种商品打相同折以后,某人买500件A商品和450件B商品一共比不打折少花1960元,计算打了多少折?练习1.我市在一项市政工程招标时,接到甲、乙工程队的投标书:每施工一天,需付甲工程队工程款为1.5万元,付乙工程队1.1万元.工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案1:甲队单独施工完成此项工程刚好如期完工;方案2:乙队单独施工完成此项工程要比规定工期多用5天;方案3:若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工.(1)你认为哪一种施工方案最节省工程款?请说明理由.(2)如果工程领导小组希望能够提前4天完成此项工程,请问该如何设计施工方案,需要工程款多少万元?(要求用二元一次方程组解答,天数必须为整数)题型七形积问题例1.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm例2.如图是由同一种长方形的墙砖粘贴的部分墙面,其中3块横放的墙砖比1块竖放的墙砖高10cm,2块横放的墙砖比2块竖放的墙砖低40cm,则每块墙砖的面积是()A.425cm2B.525cm2C.600cm2D.800cm2练习1.矩形ABCD中放置了6个形状、大小都相同的小矩形,所标尺寸如图所示,则图中阴影部分的面积是cm2.2.如图,长方形ABCD中放置9个形状、大小都相同的小长方形,相关数据图中所示,则图中阴影部分的面积为(平方单位).题型八方案选择/梯度问题例1.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品一律按商品价格的9.5折优惠.已知小敏不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,她购买商品的价格为多少元时,两个方案所付金额相同?(3)购买商品的价格时,采用方案一更合算.例2.假如娄底市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?(2)小张乘出租车从市政府到娄底南站(高铁站)走了5.5千米,应付车费多少元?练习1.某公园的门票价格如下表:购票人数1﹣50人51﹣100人100人以上每人门票数13元11元9元实验学校初二(1)、二(2)两个班的学生共104人去公园游玩,其中二(1)班的人数不到50人,二(2)班的人数有50多人,经估算,如果两个班都以班为单位分别购票,则一共应付1240元,如果两班联合起来,作为一个团体购票,则可节省不少钱,你能否求出两个班共有多少名学生联合起来购票能省多少钱?2.小张去书店购买图书,看好书店有A,B,C三种不同价格的图书,分别是A种图书每本1元,B种图书每本2元,C种图书每本5元.(1)若小张同时购买A,C两种不同图书的6本,用去18元,求购买两种图书的本数;(2)若小张同时购买两种不同的图书10本,用去18元,请你设计他的购书方案;(3)若小张同时购进A,B,C三种不同图书10本,用去18元,请你设计他的购买方案.3.团体购买某“素质拓展训练营”的门票,票价如表(a为正整数):团体购票人数1~50 51~100 100以上每人门票价 a元(a﹣3)元(a﹣6)元(1)某中学高一(1)、高一(2)班同学准备参加“素质拓展训练营”活动,其中高一(1)班人数不超过50,高一(2)的人数超过50但不超过80.当a=48时,若两班分别购票,两班总计应付门票费4914元;若合在一起作为一个团体购票,总计支付门票费4452元.问这两个班级各有多少人?(2)某校学生会现有资金4429元用于购票,打算组织本校初三年级团员参加该项活动.为了让更多的人能参加活动,学生会统一组织购票,购票资金恰好全部用完,且参加人数超过了100人,问共有多少人参加了这一活动并求出此时a的值.4.某城市规定:出租车起步价允许行驶的最远路程为3千米,超过3千米的部分按每千米另行收费,甲说:“我乘这种出租车走了11千米,付了20元”;乙说:“我乘这种出租车走了23千米,付了38元”:.请你算一算这种出租车的起步价是多少元?以及超过3千米后,每千米的车费是多少元?四、课后强化巩固练习与方法总结1.(2017•自贡)我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x,y人,则可以列方程组.2.(2017•济宁)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.。
专题06 二元一次方程组实际应用的五种考法(学生版)-2023年初中数学7年级下册同步压轴题

专题06 二元一次方程组实际应用的五种考法类型一、利润问题例.某商场用相同的价格分两次购进A型和B型两种型号的电脑,前两次购进情况如下表.(1)求该商场购进A型和B型电脑的单价各为多少元?(2)已知商场A型电脑的标价为每台4000元,B型电脑的标价为每台6000元,两种电脑销售一半后,为了促销,剩余的A型电脑打九折,B型电脑打八折全部销售完,问两种电脑商场获利多少元?【变式训练1】某商场第1次用39万元购进A,B两种商品,销售完后获得利润6万元,它们的进价和售价如表(总利润=单价利润×销售量):(1)该商场第1次购进A,B两种商品各多少件?(2)商场第2次以原进价购进A,B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原售价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于5.4万元,则B种商品是按几折销售的?、两种品牌篮球共80个,已知购买A品牌篮球的总价比购买B品牌【变式训练2】某商场从厂家购进了A B篮球总价的2倍还多200元,A品牌篮球每个进价100元,B品牌篮球每个进价80元.(1)求购进A B、两种品牌篮球各多少个?(2)在销售过程中,A品牌篮球每个售价150元,售出30个后出现滞销;商场决定打折出售剩余的A品牌篮球,B品牌篮球每个按进价加价20%销售,很快全部售出,两种品牌篮球全部售出后共获利2080元,求A品牌篮球打几折出售?【变式训练3】平价商场经销甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元.(1)甲种商品每件进价为______元,每件乙种商品所赚利润______元;(2)若该商场进货时同时购进甲、乙两种商品共62件,恰好总进价为2600元,求购进甲、乙商品各多少件?如果这些商品全部出售,商场共获利多少元?(3)在“五一”期间,该商场只对甲、乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在商场购买乙种商品多少件?【变式训练4】饮品店的老板为了吸引顾客,推出两种新产品,冰淇淋红茶和热可可,以下是这两种新饮品在一周内的销售情况:老板将这两种新饮品每天销售的总成本记录如下:(1)根据以上信息,将上面的表格补充完整;(2)在试推广阶段,老板将冰淇淋红茶和热可可的售价均定为20元,平均每天卖出160杯冰淇淋红茶和200杯热可可.随着天气越来越炎热,人们对饮品的需求量逐渐增多,老板对饮品的价格进行了调整.如果将a,销售量仍会上涨25%,如果将热可可的售价下降10%,销售量依然会下降10%.经冰淇淋红茶的售价上涨%过计算,这样调整价格后的总利润比原来平均每天的总利润多了440元,求a的值.类型二、方案问题例.某汽车制造厂开发一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘()010n n <<名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?【变式训练1】一方有难,八方支援.郑州暴雨牵动数万人的心,众多企业也伸出援助之手.某公司购买了一批救灾物资并安排两种货车运往郑州.调查得知,2辆小货车与3辆大货车一次可以满载运输1800件;3辆小货车与4辆大货车一次可以满载运输2500件.(1)求1辆大货车和1辆小货车一次可以分别满载运输多少件物资?(2)现有3100件物资需要再次运往郑州,准备同时租用这两种货车,每辆均全部装满货物,问有哪几种租车方案?(3)在(2)的条件下,若1辆小货车需租金400元/次,1辆大货车需租金500元/次.请选出费用最少的租车方案,并求出最少的租车费用.【变式训练2】某企业有A ,B 两条加工相同原材料的生产线,在一天内,A 生产线共加工a 吨原材料,加工时间为()41a +小时;在一天内,B 生产线共加工b 吨原材料,加工时间为()23b +小时. (1)当1a b ==时,两条生产线的加工时间分别时多少小时?(2)第一天,该企业把5吨原材料分配到A .B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到两条生产线的的吨数是多少?(3)第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A 生产线分配了m 吨原材料,给B 生产线分配了n 吨原材料,若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则m 和n 有怎样的数量关系?若此时m 与n 的和为6吨,则m 和n 的值分别为多少吨?【变式训练3】一工厂有60名工人,要完成1200套产品的生产任务,每套产品由4个A 型零件和3个B 型零件配套组成,每个工人每天能加工6个A 型零件或者3个B 型零件.现将工人分成两组,每组分别加工一种零件,并要求每天加工的零件正好配套.(1)工厂每天应安排多少名工人生产A 型零件?每天能生产多少套产品?(2)现工厂要在20天内完成1200套产品的生产,决定补充一些新工人,这些新工人只能独立进行A 型零件的加工,且每人每天只能加工4个A 型零件.①设每天安排x 名熟练工人和m 名新工人生产A 型零件,求x 的值(用含m 的代数式表示) ②请问至少需要补充多少名新工人才能在规定期限完成生产任务?【变式训练4】今年疫情期间某物流公司计划用两种车型运输救灾物资,已知:用2辆A 型车和1辆B 型车装满物资一次可运10吨;用1辆A型车和2辆B型车一次可运11吨,某物流公司现有31吨货物资,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满.(1)1辆A型车和1辆B型车都装满物资一次可分别运多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金每次100元,B型车租金每次120元,请选出最省钱的租车方案,并求出最少租车费.类型三、几何图形问题例.如图,某校劳动小组计划利用已有的一堵长为6m的墙,用篱笆围成一个面积为212m的矩形劳动基地ABCD,边AD的长不超过墙的长度,在BC边上开设宽为1m的门EF(门不需要消耗篱笆).设AB的长为x(m),BC的长为y(m).(1)若围成矩形劳动基地ABCD三边的篱笆总长为10m,求AB和BC的长度.(2)若AB和BC的长都是整数(单位:m),且围成矩形劳动基地ABCD三边的篱笆总长小于10m,请直接写出所有满足条件的围建方案.【变式训练1】现要在长方形草坪中规划出3块大小,形状一样的小长方形(图中阴影部分)区域种植鲜花.(1)如图1,大长方形的相邻两边长分别为60m和45m,求小长方形的相邻两边长.(2)如图2,设大长方形的相邻两边长分别为a和b,小长方形的相邻两边长分别为x和y.①1个小长方形的周长与大长方形的周长的比值是否为定值?若是,请求出这个值;若不是,请说明理由.②若种植鲜花的面积是整块草坪面积的1,求x和y满足的关系式(不含a,b).2【变式训练2】某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图所示,(单位:cm)(1)列出方程(组),求出图甲中a与b的值______.(2)在试生产阶段,若将m张标准板材用裁法一裁剪,n张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图乙横式无盖礼品盒.①两种裁法共产生A型板材______张,B型板材______张(用m、n的代数式表示);②当3040≤≤时,所裁得的A型板材和B型板材恰好用完,做成的横式无盖礼品盒可能是______个.(在m横线上直接写出所有可能答案,无需书写过程)【变式训练3】某工厂将一批纸板按甲,乙两种方式进行加工,再用加工出来的长方形A板块和正方形B板块制作成如图所示的底面为正方形的长方体有盖礼盒..... 设x块纸板按甲方式进行加工,y块纸板按乙方式进行加工.(1)补全表格.(2)若现共有纸板14块,要使礼盒制作完毕后的A,B板块恰好用完....,能做多少个礼盒?(3)若现有B板块4块,纸板a块,要使礼盒制作完毕后的A,B板块恰好用完....,则a的最小值为___________. (请直接写出答案)【变式训练4】(1)如图1,已知A、B两个边长不相等的正方形纸片并排放置,若m=7,n=3,试求A、B两个正方形纸片的面积之和.(2)如图1,用m、n表示A、B两个正方形纸片的面积之和为.(请直接写出答案)(3)如图2,若A、B两个正方形纸片的面积之和为5,且图2中阴影部分的面积为2,试求m、n的值.(4)现将正方形纸片A、B并排放置后构造新的正方形得图3,将正方形纸片B放在正方形纸片A的内部得图4,若图3和图4中阴影部分的面积分别为12和1,则A、B两个正方形纸片的面积之和为.类型四、行程问题例.如图,A,B两地由公路和铁路相连,在这条路上有一家食品厂,它到B地的距离是到A地距离的2倍,现该食品厂从A地购买原料,全部制成食品制作过程中有损耗)卖到B地,两次运输(第一次:A地→食品厂,第二次:食品厂B→地)共支出公路运费15600元,铁路运费20600元.已知公路运费为1.5元/(千米⋅吨),铁路运费为1元/(千米⋅吨).(1)求该食品厂到A地,B地的距离分别是多少千米?(2)求该食品厂买进原料及卖出食品各多少吨?(3)若该食品厂此次买进的原料每吨花费5000元,要想该批食品销售完后工厂共获利863800元,求卖出的食品每吨售价是多少元?(利润=总售价-总成本-总运费)【变式训练1】小华从家里出发到学校去上学,前15路段小华步行,其余路段小华骑自行车.已知小华步行的平均速度为60m/min,骑自行车的平均速度为200m/min,小华从家里到学校一共用了22min.(1)小红同学提出问题:小华家里离学校有多少m?前15路段小华步行所用时间是多少min?请你就小红同学提出的问题直接设出未知数列方程组进行解答.(2)请你再根据题目的信息,就小华走的“路程”或“时间”,提出一个能用二元一次方程组解答但与第(1)问不完全相同的问题,并设出未知数、列出方程组.【变式训练2】货车从A地出发将一批防疫物资运往B地.A、B两地相距164千米,货车匀速行驶一段路程后,出现了故障,司机师傅立刻抢修,排除了故障后,继续运送物资赶往B地.已知货车离开A地行驶的路程y(km)与离开A的时间x(h)之间的函数关系如图所示.(1)填表:(分别写出①、②、③处的数据)(2)填空:①货车行驶km时出现的故障;②修车所用的时间为h;③货车如果没出现故障,一直匀速行驶,会比实际早到多长时间?【变式训练3】马拉松长跑是国际上非常普及的长跑比赛项目,全程距离约为42千米.如下是关于某市今年全程马拉松比赛的部分信息.①在起点,沿途每隔5千米处及终点提供水,运动饮料,水果等补给,最后两个补给站之间为2千米;②在起点,终点和沿途等距离设置若干个固定医疗站若每个补给站安排1个值班员,每个固定医疗站或两站重合的都安排2个值班员,则需要64个值班员;若每个补给站安排2个值班员,每个固定医疗站或两站重合的都安排3个值班员,则需要99个值班员.(1)本次马拉松比赛共设置______个补给站;(2)沿途中,每两个固定医疗站之间距离是多少?(3)沿途中,补给站和固定医疗站重合处距离起点多少千米?【变式训练4】“滴滴打车”深受大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/千米计算,耗时费按q元/分钟计算,小明、小亮两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如表:(1)求p,q的值;(2)“滴滴”推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费.某天,小丽两次使用“滴滴打车”共花费52元,总里程20千米,已知两次“滴滴打车”行驶的平均速度为40千米/小时,求小丽第一次“滴滴打车”的里程数?类型五、工程问题例.目前,近几年来,新能源汽车在中国已然成为汽车工业发展的主流趋势,某汽车制造厂开发了一款新式电动汽车,计划一年生产安装288辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装. 生产开始后,调研部门发现:2名熟练工和1名新工人每月可安装10辆电动汽车;3名熟练工和2名新工人每月可安装16辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂抽调n (0<n <5)名熟练工,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?【变式训练1】一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店应各付多少元;(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用少?(3)若装修完后,商店每天可盈利200元,现有如下三种方式装修:①甲单独做;②乙单独做;③甲乙合做,你认为如何安排施工更有利于商店?(可用(1)、(2)问的条件及结论)【变式训练2】杭州某公司准备安装完成5700辆如图所示款共享单车投入市场.由于抽调不出足够熟练工人,公司准备招聘一批新工人.生产开始后发现:1名熟练工人和2名新工人每天共安装28辆共享单车;2名熟练工人每天装的共享单车数与3名新工人每天安装的共享单车数一样多.(1)求每名熟练工人和新工人每天分别可以安装多少辆共享单车?(2)若公司原有熟练工m 人,现招聘n 名新工人(6)m n >>,使得最后能刚好一个月(30天)完成安装任务,已知工人们安装的共享单车中不能正常投入运营的占5%,求m 的值.【变式训练3】青山化工厂与A 、B 两地有公路、铁路相连这家工厂从A 地购买一批每吨1000元的原料经铁路120km 和公路10km 运回工厂,制成每吨8000元的产品经铁路110km 和公路20km 销售到B 地,已知铁路的运价为1.2元/(吨·千米),公路的运价为1.5元/(吨·千米),且这两次运输共支出铁路运124800元,公路运费19500元.(1)设原料重x吨,产品重y吨,根据题中数量关系填写下表(表格内填化简的结果).根据上表列方程组求原料和产品的重量.(2)这批产品的销售款比原料费与运输费的和多多少元?【变式训练4】一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?(3)装修完毕第二天即可正常营业,且每天仍可盈利200元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)。
人教版初中数学七年级 专题8.3 实际问题与二元一次方程组--七年级数学人教版(下册)

第八章二元一次方程组8.3 实际问题与二元一次方程组1.列二元一次方程组解应用题的一般步骤①审:审题,分析题中已知什么,求什么,明确各数量之间的关系;②设:设未知数(一般求什么,就设什么);③找:找出应用题中的相等关系;④列:根据相等关系列出两个方程,组成方程组;⑤解:解所列的方程组,求出未知数的值;⑥答:检验所求未知数的值是否符合题意,写出答案(包括单位名称).【温馨提示】①列方程组解应用题的关键是准确地找出题中的几个相等关系,正确地列出方程组.②设未知数时可直接设未知数,也可间接设未知数.③一般来说,设几个未知数,就应列出几个方程并组成方程组.④“审”和“找”两步可在草稿纸上进行,书面上主要写“设”“列”“解”和“答”四个步骤.⑤要根据应用题的实际意义检查求得的结果是否合理,不符合题意的解应该舍去.⑥“设”“答”两步都要写清单位名称.⑦在列方程组时,要注意等号左、右两边单位的统一.2.列二元一次方程组应用题的常见类型的基本关系式(1)和差倍分问题较大量=较小量+多余量,总量=倍数×一份的量.(2)产品配套问题加工总量成比例.(3)速度问题路程=速度×时间(4)航速问题①顺流(风)速度=静水(无风)中的速度+水(风)速;②逆流(风)速度=静水(无风)中的速度-水(风)速.(5)工程问题工作量=工作效率×工作时间.(6)增长率问题原量×(1+增长率)=增长后的量,原量×(1-减少率)=减少后的量.(7)浓度问题溶液质量×浓度=溶质质量.(8)银行利率问题免税利息=本金×利率×期数,税后利息=本金×利率×期数-本金×利率×期数×税率.(9)利润问题利润=售价-进价,利润率=售价-进价进价×100%.(10)盈亏问题解这类问题关键是从盈(过剩)、亏(不足)两个角度来把握事物的总量.(11)数字问题解这类问题,要正确掌握自然数、奇数、偶数等有关的概念、特征及表示.(12)几何问题解这类问题要准确掌握有关几何图形的性质和周长、面积等计算公式.(13)年龄问题解这类问题的关键是抓住两人年龄的增长数相等这一特征.K—重点根据题意找出等量关系,并能根据题意列二元一次方程组K—难点正确找出问题中的等量关系K—易错找错等量关系一、行程问题1.相遇问题:甲走的路程+乙走的路程=两地距离.2.追及问题:同地不同时出发:前者走的路程=追者走的路程;同时不同地出发:前者走的路程+两地距离=追者走的路程.【例1】某地地震后,全国各地都有不少人士参与抗震救灾,家住成都的王伟也参加了,他要在规定时间内由成都赶到雅安.如果他以50千米/小时的速度行驶,就会迟到24分钟;如果以75千米/小时的高速行驶,则可提前24分钟到达.若设成都至雅安的路程为S,由成都到雅安的规定时间是t,则可得到方程组是A.24 50()6024 75()60s ts t⎧=-⎪⎪⎨⎪=+⎪⎩B.2450(+)602475()60s ts t⎧=⎪⎪⎨⎪=+⎪⎩C.2450()602475()60s ts t⎧=+⎪⎪⎨⎪=-⎪⎩D.2450()602475()60s ts t⎧=-⎪⎪⎨⎪=-⎪⎩【答案】C二、配套问题产品配套问题是指某件产品是由几个部件配套加工而成的,而部件的数量并不完全相同,在生产过程中,为了使每个部件生产的数量恰好符合组装所需,而不产生积压.各部件的数量不一定相等,但存在一定数量关系:=甲部件的总量乙部件的总量每件产品含甲的个数每件产品含乙的个数【例2】用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒,则下列方程组中符合题意的是A.362x yy x+==⎧⎨⎩B.3625240x yx y+==⨯⎧⎨⎩C.3640 252x yyx+==⎧⎪⎨⎪⎩D.3622540x yx y+==⎧⎪⎨⎪⎩【答案】D【解析】设用x张制作盒身,y张制作盒底,根据题意得:3640252x yyx+==⎧⎪⎨⎪⎩,故选C.三、几何图形问题对于图形问题的求解,要会通过对图形的观察比较、分析,发现隐含在图形中的数量关系,这是解决有关图形问题的关键.图形中隐含的数量关系有边长之间的关系、面积之间的关系,等等.【例3】如图,用10块相同的矩形墙砖并成一个矩形,设矩形墙砖的长和宽分别为x厘米和y厘米,依题意列方程组正确的是A.2753x yy x+=⎧⎨=⎩B.2753x yy x+=⎧⎨=⎩C.2753x yx y-=⎧⎨=⎩D.2753x yx y+=⎧⎨=⎩【答案】B【解析】根据图示可得2753x yx y+=⎧⎨=⎩,故选B.四、方案问题优化方案问题先要列举出所有可能的方案,再按题目要求分别求出每种方案的具体结果,进行比较,从中选择最优.【例4】已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.学-科网根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案(即A、B两种型号的车各租几辆,有几种租车方案).【解析】(1)设1辆A型车和1辆B型车都装满货物一次可分别运货x吨,y吨,根据题意得:210211x yx y+=⎧⎨+=⎩,解得:34xy=⎧⎨=⎩.答:1辆A型车和1辆B型车都装满货物一次可分别运货3吨,4吨.(2)由题意可得:3a+4b=31,∴b=3134a-.∵a,b均为整数,∴有17ab=⎧⎨=⎩、54ab=⎧⎨=⎩和91ab=⎧⎨=⎩三种情况.故共有三种租车方案,分别为:①A型车1辆,B型车7辆;②A型车5辆,B型车4辆;③A型车9辆,B型车1辆.1.一副三角尺按如图所示的方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.50180x yx y=-⎧⎨+=⎩B.50180x yx y=+⎧⎨+=⎩C.5090x yx y=-⎧⎨+=⎩D.5090x yx y=+⎧⎨+=⎩2.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得-2分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则A.x-y=20 B.x+y=20C.5x-2y=60 D.5x+2y=603.已知12x b+5y3a和-3x2a y2-4b是同类项,那么a,b的值是A.12ab=-⎧⎨=⎩B.7ab=⎧⎨=⎩C.35ab=⎧⎪⎨=-⎪⎩D.21ab=⎧⎨=-⎩4.现有190张铁皮做盒子,每张铁皮可做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子,设用x张铁皮做盒身,y张铁皮做盒底,则可列方程组为A.1902822x yx y+=⎧⎨⨯=⎩B.1902228x yy x+=⎧⎨⨯=⎩C.2190822y xx y+=⎧⎨=⎩D.21902822x yx y+=⎧⎨⨯=⎩5.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x,乙数为y,由题意得方程组A.4243x yx y+=⎧⎨=⎩B.4234x yx y+=⎧⎨=⎩C.421134x yx y-=⎧⎪⎨=⎪⎩D.4243y xx y+=⎧⎨=⎩6.甲、乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;如果乙先跑2秒,甲跑4秒就可以追上乙.设甲的速度为x米/秒,乙的速度为y米/秒,根据题意,下列选项中所列方程组正确的是A.5510424x yx y y-=⎧⎨=+⎩B.5510424x yx y-=⎧⎨-=⎩C.5510424x yx x y-=⎧⎨-=⎩D.5105424x yx y+=⎧⎨-=⎩7.某公司向银行申请了甲、乙两种贷款共计68万元,每年需付出8.42万元利息,已知甲种贷款每年的利率为12%,乙种贷款每年的利率为13%,则该公司甲、乙两种贷款的数额分别为A.26万元,42万元B.40万元,28万元C.28万元,40万元D.42万元,26万元8.某校体操队和篮球队的人数之比是5:6,篮球队的人数与体操队的人数的3倍的和等于42人,若设体操队的人数是x人,篮球队的人数为y人,则可列方程组为A.56342x yx y=⎧⎨+=⎩B.653()42x yx y=⎧⎨+=⎩C.5642x yx y=⎧⎨+=⎩D.65342x yx y=⎧⎨+=⎩9.一种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角,若设小瓶单价为x角,大瓶为y角,可列方程为A.39832x yy x+=⎧⎨-=⎩B.39832x yy x+=⎧⎨+=⎩C.29834x yy x+=⎧⎨-=⎩D.39824x yx y-=⎧⎨+=⎩10.甲、乙两人从同一地点出发,同向而行,甲乘车,乙步行.如果乙先走20千米,那么甲用1小时能追上乙;如果乙先走1小时,那么甲只用15分钟就能追上乙,则甲的速度为__________千米/时.11.如果长方形的周长是20 cm,长比宽多2 cm.若设长方形的长为x cm,宽为y cm,则所列方程组为__________.12.一个宾馆有二人间、三人间、四人间三种客房供游客租住.某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,那么租房方案有几种?把每种方案都写出来.13.已知甲、乙两种商品的原价和为200元。
七年级数学下册第八章二元一次方程组题型总结及解题方法(带答案)

七年级数学下册第八章二元一次方程组题型总结及解题方法单选题1、若关于x 、y 的二元一次方程组{ax +3y =74x +y =9 与{−x +5y =35x +by =8的解相同,则√a −b 的值为( ) A .1B .±1C .2D .±2答案:C分析:先解方程组{−x +5y =34x +y =9,再把方程组的解代入ax +3y =7和5x +by =8,求出a 、b 的值,代入计算即可.解:∵关于x 、y 的二元一次方程组{ax +3y =74x +y =9 与{−x +5y =35x +by =8的解相同, ∴方程组{−x +5y =34x +y =9的解满足四个方程, 解方程组{−x +5y =34x +y =9得,{x =2y =1 , 把{x =2y =1分别代入ax +3y =7和5x +by =8得, 2a +3=7,10+b =8,解得,a =2,b =−2;∴√a −b =√2+2=2,故C 正确.故选:C .小提示:本题考查了解二元一次方程组、二元一次方程的解和算术平方根,解题关键是明确同解方程的意义,熟练掌握解二元一次方程组的步骤.2、如图所示的是由截面为同一种长方形的墙砖粘贴的部分墙面,其中三块横放的墙砖比两块竖放的墙砖低30cm ,两块竖放的墙砖比两块横放的墙砖高50cm ,则每块墙砖的截面面积是( )A .600cm 2B .900cm 2C .1200cm 2D .1500cm 2答案:B分析:设每块墙砖的长为x cm ,宽为y cm ,观察图形,根据长方形墙砖长宽之间的关系,即可得出关于x ,y 的二元一次方程组,解之即可求出x ,y 的值,再利用长方形的面积计算公式,即可求出每块墙砖的截面面积. 解:设每块墙砖的长为x cm ,宽为y cm ,由题意得:{2x −3y =302x −2y =50, 解得:{x =45y =20, ∴xy =45×20=900,∴每块墙砖的截面面积是900cm 2. 故选:B小提示:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3、已知{x =2y =1是二元一次方程组{mx +ny =8nx − my =1的解,则2m −n 的算术平方根为( ) A .±2B .√2C .2D .4答案:C分析:把x 与y 的值代入方程组求出m 与n 的值,即可求出所求.∵{x =2y =1是二元一次方程组{mx +ny =8nx − my =1的解, ∴{2m +n =82n −m =1, 解得{m =3n =2∴√2m −n =√2×3−2=√4=2即2m −n 的算术平方根为2故选C .小提示:此题考查了解二元一次方程组,以及算术平方根,熟练掌握运算法则是解本题的关键.4、方程x −y =−2与下面方程中的一个组成的二元一次方程组的解为{x =2y =4,那么这个方程可以是( ) A .3x −4y =16B .4x −y =−2C .14x +y =0D .2(x +y )=6x 答案:D分析:根据方程组的解的定义及二元一次方程组的定义求解.解:把方程组的解代入A ,左边=6−16=−10≠16,故不是A 的解;B 是分式方程,不是二元一次方程,故排除B ;把方程组的解代入C ,左边=12+4≠0,故不是C 的解;把方程组的解代入D ,左边=2(2+4)=12,右边=12,故是D 的解;故选:D .小提示:本题考查了二元一次方程组的解,代入验证是解题的关键.5、如图,AB ⊥BC ,∠ABC 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x °,y °,那么下面可以求出这两个角的度数的方程组是( ).A .{x +y =90x =y −15B .{x +y =90x =2y +15C .{x +y =90x =15−2yD .{x +y =90x =2y −15答案:A分析:此题中的等量关系有:∠ABD +∠DBC =90°,∠ABC =2∠DBC −15° ,根据等量关系列出方程即可.设∠ABD 和∠DBC 的度数分别为x °,y °,则有{x +y =90x +y =2y −15整理得:{x +y =90x =y −15, 故选:A .小提示:本题考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.6、解方程组{2x +3y =5①x −2y =−1②时,经过下列步骤,能消去末知数y 的是( ) A .①×2−②×3B .①×3−②×2C .①×3+②×2D .①×2+②×3答案:D分析:由消去未知数y ,可得方程组中y 的未知数系数化为绝对值相等,符号相反,①×2+②×3可消去y . 解:∵消去未知数y ,解方程组{2x +3y =5①x −2y =−1②中y 的未知数系数化为绝对值相等,符号相反, ∴①×2+②×3可消去y .故选:D小提示:本题考查二元一次方程组加减消元法,关键是化某一未知数系数化为绝对值相等,系数相同用减法,系数相反用加法.7、五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为( )A .30B .26C .24D .22答案:B分析:设1艘大船与1艘小船分别可载x 人,y 人,根据“1艘大船与2艘小船一次共可以满载游客32人”和“2艘大船与1艘小船一次共可以满载游客46人”这两个等量关系列方程组,解出(x +y )即可.设1艘大船与1艘小船分别可载x 人,y 人,依题意:{x +2y =32①2x +y =46②(①+②)÷3得:x+y=26故选:B.小提示:本题考查二元一次方程组的实际应用;注意本题解出(x+y)的结果即可.8、利用两块长方体测量一张桌子的高度,首先按图①方式放置,再交换木块的位置,按图②方式放置,测量的数据如图,则桌子的高度是()A.73cmB.74cmC.75cmD.76cm答案:D设桌子的高度为hcm,第一个长方体的长为xcm,第二个长方体的宽为ycm,由第一个图形可知桌子的高度为:h-y+x=79,由第二个图形可知桌子的高度为:h-x+y=73,两个方程相加得:(h-y+x)+(h-x+y)=152,解得:h=76cm.故选D.9、方程组{2x+y=33x−z=7x−y+3z=0的解为()A.{x=2y=1z=−1B.{x=2y=−1z=1C.{x=2y=−1z=−1D.{x=2y=1z=1答案:C分析:根据代入消元法解三元一次方程组即可求解.解:{2x+y=3①3x−z=7②x−y+3z=0③,由①得y=3−2x④,由②得z=3x−7⑤,将④⑤代入③得,x−(3−2x)+3(3x−7)=0,解得x=2,将x=2代入④得y=−1,将x=2代入⑤得z=−1,∴原方程组的解为{x=2y=−1z=−1.故选C.小提示:本题考查了解三元一次方程组,掌握代入消元是解题的关键.10、一个三角形三条边长的比是2:4:5,最长的边比最短的边长6cm,这个三角形的周长为().A.20cm B.21cm C.22cm D.20cm或22cm答案:C分析:设三角形三边分别为2xcm、4xcm、5xcm,由最长边比最短边长6cm,列方程即可求解.解:设三角形三边分别为2xcm、4xcm、5xcm.则:5x-2x=6,解得:x=2,∴三角形三边分别为4cm、8cm、10cm,∴这个三角形的周长为22cm.故选:C.小提示:本题考查了一元一次方程的应用及三角形的知识,解题的关键是根据三角形的三边的比设出三边的长,难度不大.填空题11、有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.答案:100或85.分析:设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x =85;②所购商品的标价大于90元,x ﹣20+x ﹣30=150,解得x =100.故所购商品的标价是100或85元.故答案为100或85.小提示:本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键.12、已知x ,y 满足方程组{x +5y =63x −y =2,则x +y 的值为______. 答案:2分析:利用整体思想①+②的得出结果,之后等式两边都除以4,即可得出x +y 的值.解:{x +5y =6①3x −y =2②, ①+②得4x +4y =8,∴x +y =2;所以答案是:2.小提示:本题主要考查了二元一次方程组的解,掌握用整体思想解决问题是解题的关键.13、一个三位数,十位数字比个位数字大1,百位数字是个位数字的2倍,把百位数字与个位数字对调,得到的三位数比原来的三位数小297,则原三位数为______.答案:643分析:设原三位数的个位数字为x ,十位数字为y ,则百位数字为2x ,由题意:十位数字比个位数字大1,把百位数字与个位数字对调,得到的三位数比原来的三位数小297,列出二元一次方程组,解方程组即可. 解:设原三位数的个位数字为x ,十位数字为y ,则百位数字为2x ,由题意得:{y =x +1100×2x +10y +x −(100x +10y +2x)=297, 解得:{x =3y =4, ∴2x =6,即原三位数为643,所以答案是:643.小提示:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14、某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元,则有______种购买方案.答案:3##三分析:设购买甲种奖品x 件,乙种奖品y 件,列出关系式,并求出x =12−3y 4,由于x ≥1,y ≥1且x ,y 都是正整数,所以y 是4的整数倍,由此计算即可.解:设:购买甲种奖品x 件,乙种奖品y 件,4x +3y =48,解得x =12−3y 4,∵x ≥1,y ≥1且x ,y 都是正整数,∴y 是4的整数倍,∴y =4时,x =12−3×44=9, y =8时,x =12−3×84=6,y =12时,x =12−3×124=3,y =16时,x =12−3×164=0,不符合题意, 故有3种购买方案,所以答案是:3.小提示:本题考查列关系式,根据题意判断出y 是4的整数倍是解答本题的关键.15、已知x 、y 满足方程组{3x +y =2021x +3y =2022,则x −y =______. 答案:−12##﹣0.5分析:方程组两方程相减得2x -2y =﹣1,两边同除以2得出x ﹣y 即可.解:{3x +y =2021①x +3y =2022② ①-②得,2x -2y =﹣1,两边同除以2得,x -y =−12, 所以答案是:−12小提示:此题考查了二元一次方程组,整体法的应用是求解此题的关键.解答题16、某工厂计划生产甲、乙两种产品,已知生产每件甲产品需要4吨A 种原料和2吨B 种原料,生产每件乙产品需要3吨A 种原料和1吨B 种原料.该厂现有A 种原料120吨,B 种原料50吨.(1)甲、乙两种产品各生产多少件,恰好使两种原料全部用完?(2)在(1)的条件下,计划每件甲产品的售价为3万元,每件乙产品的售价为5万元,可全部售出.根据市场变化情况,每件甲产品实际售价比计划上涨a %,每件乙产品实际售价比计划下降10%,结果全部出售的总销售额比原计划增加了3.5万元,求a 的值.答案:(1)甲生产15件,乙生产20件,恰好使两种原材料全部用完(2)a =30分析:(1)设甲生产x 件,乙生产y 件,根据题意得,{4x +3y =120①2x +y =50② ,进行计算即可得; (2)用市场变化后的总销售额减去原计划的总销售额即可得.(1)解:设甲生产x 件,乙生产y 件,根据题意得,{4x +3y =120①2x +y =50②由②得,y =50−2x ③将③代入①得:4x +3×(50−2x)=1202x =30x =15,将x =15代入③得:y =50−2×15=20,解得{x =15y =20则甲生产15件,乙生产20件,恰好使两种原材料全部用完.(2)解:根据题意得,3×(1+a%)×15+(1−10%)×5×20−(3×15+5×20)=3.5解得a =30.小提示:本题考查了二元一次方程的应用,一元一次方程的应用,解题的关键是理解题意,找出等量关系.17、学校举办“艺术周”创意设计展览,如图,现有一个大正方形和四个一样的小正方形,小明、小聪、小方分别用这些正方形设计出了图1,图2,图3三种图案:(1)根据图1,图2中所标数据,求出大正方形和小正方形的边长分别是多少厘米?(2)图3中四个小正方形的重叠部分也是三个一样的小正方形,求阴影部分的面积.答案:(1)大正方形边长12cm ,小正方形边长4 cm(2)8513分析:(1)设大正方形和小正方形的边长分别是x cm 和y cm ,根据题意列方程组即可得到结论;(2)设四个小正方形的重叠部分形成小正方形的边长为a cm ,根据题意列方程得到a =43,根据正方形的面积公式即可得到结论.(1)设大正方形边长x cm ,小正方形边长y cm ,依题意得{x +2y =20x −2y =4, 解得{x =12y =4, 答:大正方形和小正方形的边长分别是12cm 和4cm ;(2)设有重叠的小正方形边长a cm ,依题意得3(4−a )+4=12,解得a =43,∴阴影面积=122−4×42+3×(43)2=8513. 小提示:本题考查了二元一次方程组的应用,正方形的面积的计算,正确的识别图形是解题的关键.18、解下列二元一次方程组:(1){y =2x 3x +y -10=0(2){2x +3y =53x +2y =-5答案:(1){x =2y =4; (2){x =−5y =5. 分析:(1)根据代入消元法,将①代入②即可求得y ,再将y 代入①,即可求解;(2)根据加减消元法,①×2−②×3即可求得x ,再将x 代入②,即可求解.(1)解:{y =2x ①3x +y -10=0②, 将②代入①,可得:3x +2x -10=0,解得:x =2,将x =2代入①,可得:y =4,∴方程组的解为{x =2y =4; (2)解:{2x +3y =5①3x +2y =-5②, 由①×2-②×3,得:4x −9x =10+15,解得:x =−5,将x =−5代入①,可得:−10+3y =5,解得:y=5,∴方程组的解为{x=−5.y=5小提示:本题考查解二元一次方程组,解题的关键是熟练掌握二元一次方程组的解法-加减消元法和代入消元法.。
初一数学七下二元一次方程所有知识点总结和常考题型练习题
初一数学七下二元一次方程所有知识点总结和常考题型练习题二元一次方程组知识点二元一次方程的解是指能够使二元一次方程的左右两边相等的两个未知数的值。
二元一次方程组是指含有两个未知数(x和y),并且含有未知数的项的次数都是1的方程组。
二元一次方程组的解是指二元一次方程组中的几个方程的公共解。
二元一次方程组的解有三种情况:无解、只有一组解和有无数组解。
例如,x+y=6和x+y=1就没有解;x+y=1和2x+y=2只有一组解;x+y=1和2x+2y=2有无数组解。
解二元一次方程组的方法有代入消元法和加减消元法。
代入消元法是指将一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
加减消元法是指两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
三元一次方程组是指方程组中一共含有三个未知数,含未知数的项的次数都是1,并且方程组中一共有两个或两个以上的方程。
解三元一次方程组的关键也是“消元”:三元→二元→一元。
列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步:(1)审题,把实际问题抽象成数学问题,分析已知数和未知数;(2)设法找出能够表示题意两个相等关系;并用字母表示其中的两个未知数;(3)根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解这个方程组,求出两个未知数的值;(5)在对求出的方程的解做出是否合理判断的基础上,写出答案。
二元一次方程组练一、选择题1、下列各式是二元一次方程的是()。
2、若x=3,y=2是关于x、y的二元一次方程3x-ay=的一个(组)解,则a的值为()。
3、对于二元一次方程x-2y=1有无数个解,下列四组值不是该方程的解的一组是()。
4、二元一次方程x+2y=7在正整数范围内的解有()。
二、填空题1、二元一次方程组x+y=5,2x+3y=11的解为(,)。
初中数学教学课例《实际问题与二元一次方程组(一)》教学设计及总结反思
饲料 20kg 和 5kg.饲养员李大叔对母牛的食量估计正 确,对小牛的食量估计不正确
设问 2:以上问题还能列出不同的方程组吗?结果 是否一致?
个别学生可能会列出如下方程组 但结果一致. 三、课堂练习 《一千零一夜》中有这样一段文字:有一群鸽子, 其中一部分在树上欢歌,另一部分在地上觅食.树上的 一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一 只,则树下的鸽子就是整个鸽群的 13;若从树上飞下 去一只,则树上、树下的鸽子就一样多了.”你知道树 上、树下各有多少只鸽子吗? 四、课堂小结 提问:通过这节课的学习,你知道用方程组解决实 际问题有哪些步骤? 学生思考后回答、整理: ①设未知数.②找相等关系.③列方程组.④检验 并作答. 五、布置作业 必做题:习题 8.3 第 3,5 题 选做题:习题 8.3 第 8 题
用能力,提高学生分析问题,解决问题的能力,通过应
用知识达到体验数学源于生活,用于生活,体会数学的
应用价值,感受数学文化。为后续学习打基础。
知识与技能:
能够找出实际问题中的已知数和未知数,分析它们
之间的数量关系,列出方程组.
过程与方法:
经历用方程组解决实际问题的过程,体会方程组是 教学目标
刻画现实世界中含有多个未知数的问题的有效数学模
师要能够设计出有价值的学习任务――为什么?怎么
办?思路性、关系性的任务是好的任务。三是要有好的
学习活动。思考、研讨、探究,概括、分析、解释,预
测、设计、评价,建构模型等,凡是有利于学生主动、
深度参与课堂的活动都是好的学习活动。四是要有好的
教师行为。
初中数学教学课例《实际问题与二元一次方程组(一)》教 学设计及总结反思
学科
初中数学
教学课例名
人教版七年级下册 8.3 二元一次方程组应用题常见类型及解法
干货丨方程组应用的七大常考题型一、实际问题与二元一次方程组的思路1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系。
一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:① 方程两边表示的是同类量;② 同类量的单位要统一;③ 方程两边的数要相等。
2.列二元一次方程组解应用题的一般步骤 设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组); 解:解方程组,求出未知数的值; 答:写出答案。
3.要点诠释(1)“设”、“答”两步,都要写清单位名称;(2)一般来说,设几个未知数就应该列出几个方程并组成方程组。
二、典型题型分析 类型1 和差倍分问题知识梳理:和差问题是已知两个量的和或这两个量的差,以及这两个量之间的倍数关系,求这两个量各是多少.例1:被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342 km ,隧道累计长度的2倍比桥梁累计长度多36 km .求隧道累计长度与桥梁累计长度.分析:设隧道累计长度为x km ,桥梁累计长度为y km.由“隧道累计长度与桥梁累计长度之和为342 km ”可以得到第一个等量关系式x+y=342,再由“隧道累计长度的2倍比桥梁累计长度多36 km ”可以得到第二个等量关系2x=y+36. 解:设隧道累计长度为x km ,桥梁累计长度为y km .根据题意,得⎩⎪⎨⎪⎧x +y =342,2x =y +36.解得⎩⎪⎨⎪⎧x =126,y =216. 答:隧道累计长度为126 km ,桥梁累计长度为216 km .针对训练 1.学校的篮球比排球的2倍少3个,篮球数与排球数的比是3∶2,求两种球各有多少个.若设篮球有x 个,排球有y 个,根据题意列方程组为(D )A .⎩⎪⎨⎪⎧x =2y -33x =2yB .⎩⎪⎨⎪⎧x =2y +33x =2yC .⎩⎪⎨⎪⎧x =2y +32x =3yD .⎩⎪⎨⎪⎧x =2y -32x =3y类型2 配套问题例2:现有190张铁皮做盒子,每张铁皮可做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子。
(完整版)实际问题与二元一次方程组题型总结(初中数学七年级)
实际问题与二元一次方程组题型总结题型1 鸡兔同笼问题1. 我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼, 上有三十五头, 下有九十四足. 问鸡兔各几何?”你能用二元一次方程组解决上面的问题吗?2. 篮球联赛中, 每场比赛都要分出胜负, 每队胜场得1分, 负场得两分. 某队在10场比赛中得到16分, 那么这个队胜负场数分别是多少?3. 有大小两种货车. 2辆大货车与3辆小货车一次可以运货15.5t, 5辆大货车与6辆小货车一次可以运货35t. 那么3辆大货车与5辆小货车一次可以运货多少吨?题型2 配套问题4. 某工厂内一名工人制造同一型号的螺栓与螺母,每天能制造螺栓30个或者螺母40个.现在把一个螺母和一个螺栓配套组装成一个新型零件. 若14名工人同时生产这种螺栓或螺母天, 那么应该如何分配工人, 才能使生产的螺栓与螺母全部恰好配套?5. 用白铁皮做罐头盒, 每张铁皮可制盒身25个, 或制作盒底40个, 一个盒身与两个盒底配成一个罐头盒. 现有36张白铁皮, 用多少张制盒身, 多少张制盒底可是盒身与盒底正好配套?题型3 行程问题(一) 航行问题6. 甲乙两地相距96km. 一只邮轮从甲地开往乙地, 用时8小时;从乙地返回甲地, 用时12小时. 求邮轮在静水中的平均速度和水流速度.7. A地至B地的航线长9750km. 一架飞机从A地顺风飞往B地需要12.5h, 它逆风飞行同样的航线需13h. 求飞机无风时的平均速度与风速.(二) 追击问题与相遇问题8. 小方、小程两人相距6km, 两人同时出发同向而行, 1h相遇;同时出发同向而行, 小方3小时可追上小程. 两人的平均速度各是多少?4h相遇, 9. 甲乙两地相距160km, 一辆汽车和一辆摩托车同时由甲乙两地相向而行,3相遇后, 摩托车继续前进, 汽车在相遇处停留1h后调转车头按照原速返回, 在汽车再次1h后追上摩托车. 此时, 汽车、摩托车各行驶了多少千米?出发2(三) 上下坡问题10. 从小华家到姥姥家,有一段上坡路和一段下坡路. 星期天,小华骑自行车去姥姥家,如果保持上坡每小时行3km,下坡每小时行5km,他到姥姥家需要行66分钟,从姥姥家回来时需要行78分钟才能到家. 那么,从小华家到姥姥家上坡路和下坡路各有多少千米,姥姥家离小华家有多远?题型4 浓度问题11. 用含药30%和75%的两种防腐药水, 配制含药50%的防腐药水18kg. 两种药水各需要多少千克?12. 甲、乙两个容器中盛有含盐比例不同的盐水. 若从甲、乙中各取出重量相等的盐水,将它们混合后就成为含盐15%的盐水;若从甲和乙中按重量之比为2:3来取,混合后就成为含盐16%的盐水. 求甲、乙两个容器中盐水含盐的百分数.题型5 增长率问题13. 周六妈妈从新世纪购物回来,5斤蘑菇和1斤牛肉共40元,妈妈唠叨:“上周也是买同样多才花了35元,价格上涨太厉害了.”在看书的爸爸:“刚才听老张说蘑菇单价上涨40%,牛肉单价上涨10%”,在学习的小强想应该怎样通过列方程(组)求解今天蘑菇、牛肉的单价呢?请聪明的你帮小强解决这个问题.题型6 销售问题14. 某商店为了处理积压商品, 实行亏本销售, 购进的甲乙两种商品的进价之和为880元. 甲种商品按进价打八折, 乙种商品按进价打七五折, 结果两种商品共亏本196元. 则两种商品的进价分别为多少元?15. 某商场购进甲乙两种商品后, 甲商品加价50%, 乙商品加价40%作为标价. 适逢节日, 商场举办促销活动, 甲商品打八折销售, 乙商品打八五折销售. 某顾客购买了甲乙两种商品各1件, 共付款538元, 已知商场共盈利88元, 求甲乙两种商品的进价各是多少元?16. 某服装店用6000元购进A, B两种服装, 按标价售出后可获毛利润3800元(毛利润=售价-进价), 这两种服装的进价、售价如下表:(1)求这两种服装各自的进价.(2)如果A种服装按标价的8折出售, B中服装按照标价的7折出售, 那么这批服装全部售完后, 服装店按标价售出少收入多少元?题型7 图表信息题17. 一名34岁的男子带着他的两个孩子一同参加了马拉松比赛, 下面是两个孩子与记者的对话:妹妹:我和哥哥年龄之和恰好是爸爸的年龄的一半.哥哥:五年后, 妹妹年龄的2倍与我的年龄之和恰好等于爸爸的年龄.根据对话内容, 请你用方程的知识求出哥哥和妹妹的年龄.题型8 方案设计问题18. 某家电商场计划用9万元从生产厂家购进50台电视机. 已知该厂家生产三种不同型号的电视机, 出厂价分别为A种母台1500元, B种每台2100元, C种每台2500元(1)若该家电商场同时购进两种不同型号的电视机共50台, 用去9万元,请你研究一下商场的进货方案.(2)若该家电商场销售一台A 种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中, 为了使销售时获利最多, 应选择哪种方案?19. 某商场计划用40000元从厂家购进若干部新型手机. 已知该厂家生产三种型号的手机, 出厂价分别是甲型号手机每部1200元, 乙型号手机每部400元, 丙型号手机每部800元.(1) 若全部资金只用来购进其中两种型号的手机, 共40部, 则商场共有哪几种进货方案?(2) 已知甲型号手机的售价是1320元, 乙型号手机售价是480元, 丙型号手机售价是920元. 在(1)的条件下, 为了使销售时获利最大, 商场应该选择哪种进货方案?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题与二元一次方程组题型总结
题型1 鸡兔同笼问题
1. 我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼, 上有三十五头, 下有九十四足. 问鸡兔各几何?”你能用二元一次方程组解决上面的问题吗?
2. 篮球联赛中, 每场比赛都要分出胜负, 每队胜场得1分, 负场得两分. 某队在10场比赛中得到16分, 那么这个队胜负场数分别是多少?
3. 有大小两种货车. 2辆大货车与3辆小货车一次可以运货15.5t, 5辆大货车与6辆小货车一次可以运货35t. 那么3辆大货车与5辆小货车一次可以运货多少吨?
题型2 配套问题
4. 某工厂内一名工人制造同一型号的螺栓与螺母,每天能制造螺栓30个或者螺母40个.现在把一个螺母和一个螺栓配套组装成一个新型零件. 若14名工人同时生产这种螺栓或螺母天, 那么应该如何分配工人, 才能使生产的螺栓与螺母全部恰好配套?
5. 用白铁皮做罐头盒, 每张铁皮可制盒身25个, 或制作盒底40个, 一个盒身与两个盒底配成一个罐头盒. 现有36张白铁皮, 用多少张制盒身, 多少张制盒底可是盒身与盒底正好配套?
题型3 行程问题
(一) 航行问题
6. 甲乙两地相距96km. 一只邮轮从甲地开往乙地, 用时8小时;从乙地返回甲地, 用时12小时. 求邮轮在静水中的平均速度和水流速度.
7. A地至B地的航线长9750km. 一架飞机从A地顺风飞往B地需要12.5h, 它逆风飞行同样的航线需13h. 求飞机无风时的平均速度与风速.
(二) 追击问题与相遇问题
8. 小方、小程两人相距6km, 两人同时出发同向而行, 1h相遇;同时出发同向而行, 小方3小时可追上小程. 两人的平均速度各是多少?
4h相遇, 9. 甲乙两地相距160km, 一辆汽车和一辆摩托车同时由甲乙两地相向而行,
3
相遇后, 摩托车继续前进, 汽车在相遇处停留1h后调转车头按照原速返回, 在汽车再次
1h后追上摩托车. 此时, 汽车、摩托车各行驶了多少千米?
出发
2
(三) 上下坡问题
10. 从小华家到姥姥家,有一段上坡路和一段下坡路. 星期天,小华骑自行车去姥姥家,
如果保持上坡每小时行3km,下坡每小时行5km,他到姥姥家需要行66分钟,从姥姥家回来时需要行78分钟才能到家. 那么,从小华家到姥姥家上坡路和下坡路各有多少千米,姥姥家离小华家有多远?
题型4 浓度问题
11. 用含药30%和75%的两种防腐药水, 配制含药50%的防腐药水18kg. 两种药水各需要多少千克?
12. 甲、乙两个容器中盛有含盐比例不同的盐水. 若从甲、乙中各取出重量相等的盐水,将它们混合后就成为含盐15%的盐水;若从甲和乙中按重量之比为2:3来取,混合后就成为含盐16%的盐水. 求甲、乙两个容器中盐水含盐的百分数.
题型5 增长率问题
13. 周六妈妈从新世纪购物回来,5斤蘑菇和1斤牛肉共40元,妈妈唠叨:“上周也是买同样多才花了35元,价格上涨太厉害了.”在看书的爸爸:“刚才听老张说蘑菇单价上涨40%,牛肉单价上涨10%”,在学习的小强想应该怎样通过列方程(组)求解今天蘑菇、牛肉的单价呢?请聪明的你帮小强解决这个问题.
题型6 销售问题
14. 某商店为了处理积压商品, 实行亏本销售, 购进的甲乙两种商品的进价之和为880元. 甲种商品按进价打八折, 乙种商品按进价打七五折, 结果两种商品共亏本196元. 则两种商品的进价分别为多少元?
15. 某商场购进甲乙两种商品后, 甲商品加价50%, 乙商品加价40%作为标价. 适逢节日, 商场举办促销活动, 甲商品打八折销售, 乙商品打八五折销售. 某顾客购买了甲乙两种商品各1件, 共付款538元, 已知商场共盈利88元, 求甲乙两种商品的进价各是多少元?
16. 某服装店用6000元购进A, B两种服装, 按标价售出后可获毛利润3800元(毛利润=售价-进价), 这两种服装的进价、售价如下表:
(1)求这两种服装各自的进价.
(2)如果A种服装按标价的8折出售, B中服装按照标价的7折出售, 那么这批服装全部售完后, 服装店按标价售出少收入多少元?
题型7 图表信息题
17. 一名34岁的男子带着他的两个孩子一同参加了马拉松比赛, 下面是两个孩子与记者的对话:
妹妹:我和哥哥年龄之和恰好是爸爸的年龄的一半.
哥哥:五年后, 妹妹年龄的2倍与我的年龄之和恰好等于爸爸的年龄.
根据对话内容, 请你用方程的知识求出哥哥和妹妹的年龄.
题型8 方案设计问题
18. 某家电商场计划用9万元从生产厂家购进50台电视机. 已知该厂家生产三种不同型号的电视机, 出厂价分别为A种母台1500元, B种每台2100元, C种每台2500元(1)若该家电商场同时购进两种不同型号的电视机共50台, 用去9万元,请你研究一下商场的进货方案.
(2)若该家电商场销售一台A 种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中, 为了使销售时获利最多, 应选择哪种方案?
19. 某商场计划用40000元从厂家购进若干部新型手机. 已知该厂家生产三种型号的手机, 出厂价分别是甲型号手机每部1200元, 乙型号手机每部400元, 丙型号手机每部800元.
(1) 若全部资金只用来购进其中两种型号的手机, 共40部, 则商场共有哪几种进货方案?
(2) 已知甲型号手机的售价是1320元, 乙型号手机售价是480元, 丙型号手机售价是920元. 在(1)的条件下, 为了使销售时获利最大, 商场应该选择哪种进货方案?。