2-Substitiuted Thio- and Amino-5,8-dimethoxy-1,4-naphthoquinones as a Novel ClassofAcyl-CoA
碧云天生物技术 DEPC水(DNase、RNase free) 说明书

碧云天生物技术/Beyotime Biotechnology 订货热线:400-1683301或800-8283301 订货e-mail :******************技术咨询:*****************网址:碧云天网站 微信公众号DEPC 水(DNase 、RNase free)产品编号 产品名称包装 R0022DEPC 水(DNase 、RNase free)500ml产品简介:碧云天生产的DEPC 水,即DEPC-treated Water ,是用DEPC(diethypyrocarbonate ,焦碳酸二乙酯)处理过并经高温高压消毒的Milli-Q 纯水。
经检测不含RNase 、DNase 和proteinase 。
DEPC 水可以用于RNA 沉淀的溶解,含有RNA 的各种反应体系如反转录、siRNA 的退火等,以及其它各种要求无RNase 、DNase 和proteinase 的反应体系。
DEPC 水不同于DEPC 。
DEPC 水是使用DEPC 处理过的水,基本上不含DEPC ,99.99%以上是水。
如需购买用于去除RNA 酶的DEPC ,可以选购碧云天的DEPC(ST036)。
包装清单:产品编号 产品名称包装 R0022 DEPC 水(DNase 、RNase free)500ml —说明书1份保存条件:室温保存,一年有效。
注意事项:如果每次的使用量很小,可以适当分装后再使用。
手上通常有RNase ,必须戴一次性手套操作,以防RNase 污染。
本产品仅限于专业人员的科学研究用,不得用于临床诊断或治疗,不得用于食品或药品,不得存放于普通住宅内。
为了您的安全和健康,请穿实验服并戴一次性手套操作。
相关产品:产品编号 产品名称包装 R0021 DEPC 水(DNase 、RNase free) 100ml R0022 DEPC 水(DNase 、RNase free)500ml ST036DEPC10g使用本产品的文献:1. Xu F, Yang T, Chen Y . Quantification of microRNA by DNA–Peptide Probe and Liquid Chromatography–Tandem Mass Spectrometry-Based Quasi-TargetedProteomics. Anal Chem. 2016 Jan 5;88(1):754-63. 2. Zheng Y , Liang W, Yuan Y , Xiong C, Xie S, Wang H, Chai Y , Yuan R. Wavelength-resolved simultaneous photoelectrochemical bifunctional sensor on singleinterface: A newly invitro approach for multiplexed DNA monitoring in cancer cells. Biosens Bioelectron. 2016 Jul 15;81:423-30.3. Zheng X, Pang X, Yang P, Wan X, Wei Y , Guo Q, Zhang Q, Jiang X. A hybrid siRNA delivery complex for enhanced brain penetration and precise amyloidplaque targeting inAlzheimer's disease mice. Acta Biomater. 2017 Feb;49:388-401.4. Liu L, Xu Q, Hao S, Chen Y .A Quasi-direct LC-MS/MS-based Targeted Proteomics Approach for miRNA Quantification via a Covalently ImmobilizedDNA-peptide Probe.Sci Rep-Uk . 2017 Jul 18;7(1):5669. 5. Xu F, Zhou W, Cao J, Xu Q, Jiang D, Chen Y .A Combination of DNA-peptide Probes and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS):A Quasi-Targeted Proteomics Approach for Multiplexed MicroRNA Quantification.Theranostics . 2017 Jul 8;7(11):2849-2862. 6. Zheng X, Pang X, Yang P, Wan X, Wei Y , Guo Q, Zhang Q, Jiang X.A hybrid siRNA delivery complex for enhanced brain penetration and precise amyloidplaquetargeting in Alzheimer's disease mice.Acta Biomater . 2017 Feb;49:388-401. 7. Guo S, Meng XW, Yang XS, Liu XF, Ou-Yang CH, Liu C.Curcumin administration suppresses collagen synthesis inthe hearts of rats withexperimentaldiabetes.Acta Pharmacol Sin . 2018 Feb;39(2):195-204. 8. Han B,Zhang Y ,Zhang Y ,Bai Y ,Chen X,Huang R,Wu F,Leng S,Chao J,Zhang JH,Hu G,Yao H.Novel insight into circular RNA HECTD1 in astrocyteactivation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke.Autophagy . 2018;14(7):1164-1184. 9. Xu L,Yu QW,Fang SQ,Zheng YK,Qi JC.MiR-650 inhibits the progression of glioma by targeting FAM83F.Eur Rev Med Pharmaco . 2018 Dec;22(23):8391-8398. 10. Yu C,Zhang X,Sun X,Long C,Sun F,Liu J,Li X,Lee RJ,Liu N,Li Y ,Teng LKetoprofen and MicroRNA-124 Co-loaded poly (lactic-co-glycolic acid)microspheres inhibit progression of Adjuvant-induced arthritis in rats.Int J Pharmacol . 2018 Dec 1;552(1-2):148-153. 11. Guo S,Meng XW,Yang XS,Liu XF,Ou-Yang CH,Liu CCurcumin administration suppresses collagen synthesis in the hearts of rats with experimentaldiabetes.Acta Pharmacol Sin . 2018 Feb;39(2):195-204.12.Xie Y,Hu JZ,Shi ZYMiR-181d promotes steroid-induced osteonecrosis of the femoral head by targeting SMAD3 to inhibit osteogenic differentiation ofhBMSCs.Eur Rev Med Pharmaco . 2018 Jul;22(13):4053-4062.13.Kang Q,Zou H,Zhou L,Liu LX,Cai JB,Xie N,Li WH,Zhang C,Shi WH,Wang LM,Zhang WH,Zhu H,Wang SF,Zhang XWRole of the overexpression ofTRAF4 in predicting the prognosis of intrahepatic cholangiocarcinoma.Int J Oncol . 2018 Jul;53(1):286-296.14.Wang P,Chen Y,Wang L,Wu Y,Wang L,Wu Y,Gong Z.The intervention mechanism of folic acid for benzo(a)pyrene toxic effects in vitro and in vivo.Eur JCancer Prev . 2018 Jul 16.15.Cai Y,Dong ZY,Wang JY.MiR-520b inhibited metastasis and proliferation of non-small cell lung cancer by targeting CHAF1A.Eur Rev Med Pharmaco . 2018Nov;22(22):7742-7749.16.Pan SC,Cui HH,Qiu CGHOTAIR promotes myocardial fibrosis through regulating URI1 expression via Wnt pathway.Eur Rev Med Pharmaco . 2018Oct;22(20):6983-6990.17.Protective effect of cyclosporine on inflammatory injury of renal tubular epithelial cells.Eur Rev Med Pharmaco. 2018 Oct;22(19):6551-6559.Version 2020.03.232 / 2 R0022DEPC水(DNase、RNase free) 400-1683301/800-8283301 碧云天/Beyotime。
硕士论文--大蒜辣素生物合成、稳定性研究及相关物质分析

新疆医科大学 硕士学位论文 大蒜辣素生物合成、稳定性研究及相关物质分析 姓名:林守峰 申请学位级别:硕士 专业:药物化学 指导教师:李新霞;陈坚 2010-04摘 要 大蒜辣素生物合成、稳定性研究及相关物质分析研究生:林守峰 导师:李新霞 陈坚 教授摘要目的 : 本研究以大蒜中提取的蒜氨酸和蒜酶为原料,生物合成制备大蒜辣素。
在前期建立的蒜酶活力测定方法和蒜氨酸、大蒜辣素测定方法基础上,研究蒜酶催 化裂解蒜氨酸的配比,从而为蒜氨酸/蒜酶二元制剂的研究建立基础;考察大蒜辣素 溶液的稳定性,研究和探讨影响稳定性因素。
由于生物合成大蒜辣素所使用的蒜氨 酸和蒜酶原料为中试生产得到,原料中的杂质可能会对制备得到的大蒜辣素溶液的 纯度造成影响,通过液质联用方法,对于大蒜辣素溶液中的杂质和相关物质及降解 产物进行结构解析,分析杂质来源,从而提出改进和优化生物合成大蒜辣素的工艺 条件。
方法:1.综合考虑所使用蒜氨酸原料的含量和经济性,通过 HPLC 对反应产物 进行测定,确定蒜酶催化蒜氨酸生物合成大蒜辣素工艺中的原料配比、反应温度、 投料方式等。
2.参考欧洲药典中潜在大蒜辣素含量测定方法,HPLC 测定考察三个温 度条件下的大蒜辣素溶液的稳定性,计算半衰期作为评价稳定性的标准。
3.通过液质 联用测定大蒜辣素溶液和蒜氨酸原料,建立 HPLC-MS 分析方法,进行相应物质的结 构解析和确证。
结果: 1.确定大蒜辣素生物合成工艺中的蒜氨酸和蒜酶配比为 1mg 蒜氨酸需要 1.3U 蒜酶,综合蒜酶活性和大蒜辣素稳定性确定 25℃为反应温度,由于 蒜酶为自杀式酶,生成的大蒜辣素抑制蒜酶活力,故经考察分次将蒜酶溶液滴加到 蒜氨酸中用最少的蒜酶量制备大蒜辣素,结合膜分离技术滤除蒜酶等大分子物质。
2.影响大蒜辣素稳定性的因素除了温度原因之外, 还有空气中的氧气对于亚砜基氧化 作用等,采用隔绝空气等方法提高稳定性。
3.HPLC-MS 确定了大蒜辣素溶液中的杂 质为甲基丙烯基硫代亚硫酸脂;并且不同含量的蒜氨酸原料合成的大蒜辣素溶液含 有不等量的蒜氨酸和大蒜辣素的同分异构体;确定了大蒜辣素的部分降解产物。
二硫代二丙酸_氨基酸__理论说明

二硫代二丙酸氨基酸理论说明1. 引言1.1 概述在化学领域中,二硫代二丙酸和氨基酸是两个重要的研究方向。
二硫代二丙酸是一种含有硫元素的有机化合物,具有特殊的结构和性质,在许多生物和工业过程中发挥着关键作用。
而氨基酸则是构成蛋白质的基本组成单元,对生命体的正常运作至关重要。
本篇长文将详细探讨二硫代二丙酸和氨基酸的理论说明,包括它们的定义、性质、合成方法以及应用领域等方面内容。
其中,将特别着重介绍二硫代二丙酸在氨基酸合成中的作用及其反应机理,并分析实验室合成案例,并展望其在工业应用方面的前景。
1.2 文章结构本文将分为五个部分进行叙述。
首先,在引言部分(第一部分),将介绍文章整体结构以及研究目的;其次,在第二部分中,我们会对二硫代二丙酸进行理论说明,包括对其定义、性质和合成方法进行详细介绍,并展示其在不同领域的应用。
接下来,第三部分将着重概述氨基酸的结构和分类、生物合成途径以及生物功能和作用机制等方面内容。
随后,我们会探究二硫代二丙酸在氨基酸合成中的具体作用,并讨论反应机理、催化剂选择,以及实验室合成案例和工业应用前景(第四部分)。
最后,在结论部分(第五部分),我们将总结关键要点,对研究方向和进展进行展望,并强调研究意义和两者的应用价值。
1.3 目的本文旨在全面了解并阐述二硫代二丙酸与氨基酸这两个重要化学领域的理论知识。
通过对二硫代二丙酸及其合成方法、性质以及应用领域进行详细说明,以及对氨基酸结构分类、生物合成途径和功能机制等方面的概述,我们可以更好地认识到这两个研究领域的重要性,并深入探讨了二硫代二丙酸在氨基酸合成中所起到的作用与影响。
通过本篇文章的阅读和学习,我们将能够更加深入地了解这些重要化合物,并为未来的研究和应用提供有益的参考。
2. 二硫代二丙酸的理论说明2.1 定义和性质二硫代二丙酸是一种有机化合物,化学式为C3H6O2S2。
其结构中含有两个硫原子和一个羧基。
它是无色至浅黄色的液体,具有刺激性气味。
腺苷脱氨酶缺陷症

的胸腺细胞凋亡,干扰脱氧核苷酸转移酶活性, 因此限制了抗原受体多样性。
分布
The highest level of ADA is expressed in the thymus, followed by peripheral
lymphoid tissues and the gastrointestinal tract.
治疗
Three management options exist for ADASCID: allogeneic hematopoietic stem cell transplantation (HSCT), enzyme replacement therapy (ERT) and somatic gene therapy (GT).PEG-ADA is administered weekly or twice weekly by intramuscular injother forms of SCID, the systemic nature of ADA expression results in nonimmunological abnormalities in a significant proportion of children, who may have neurodevelopmental deficits [神经发育缺陷], sensori-neural deafness [神经性耳聋] or skeletal abnormalities [骨骼异常]. A single gene defect is responsible for the condition and the ADA gene has been mapped to chromosome 20q13.11 leading to an autosomal recessive pattern of disease inheritance.
20种氨基酸缩写及记忆口诀

20 种氨基酸缩写及记忆口诀氨基酸,口诀,记忆,缩写20 种氨基酸缩写体内 20 种氨基酸按理化性质可分为 4 组:①非极性、疏水性氨基酸:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸和脯氨酸。
②极性、中性氨基酸:色氨酸、丝氨酸、酪氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺和苏氨酸。
③酸性的氨基酸:天冬氨酸和谷氨酸。
④碱性氨基酸:赖氨酸、精氨酸和组氨酸。
中文名称英文名称三字母缩写单字母符号甘氨酸 Glycine Gly G丙氨酸Alanine Ala A缬氨酸 Valine Val V亮氨酸 Leucine Leu L异亮氨酸Isoleucine Ile I脯氨酸 Proline Pro P苯丙氨酸Phenylalanine Phe F酪氨酸 Tyrosine Tyr Y色氨酸 Tryptophan Trp W丝氨酸Serine Ser S苏氨酸Threonine Thr T半胱氨酸Cystine Cys C蛋氨酸Methionine Met M天冬酰胺 Asparagine Asn N谷氨酰胺Glutarnine Gln Q天冬氨酸Asparticacid Asp D谷氨酸 Glutamicacid Glu E赖氨酸 Lysine Lys K精氨酸 Arginine Arg R组氨酸 Histidine His H氨基酸记忆口诀1、必须氨基酸:携一本蛋色书来[缬氨酸,异亮(亮)氨酸,苯丙氨酸,蛋氨酸,色氨酸(甲硫氨酸),苏氨酸,赖氨酸,]2、半必须氨基酸:半斤组[精(斤)氨酸,组氨酸]4、芳香族氨基酸:老芳本色[酪氨酸,苯丙氨酸,色氨酸]5、支链氨基酸:支姐,亮一亮[缬氨酸,亮氨酸,异亮氨酸]6、非极性疏水性氨基酸:非姐,脯亮一亮,(给你)本饼干[缬氨酸,脯氨酸,亮氨酸,异亮氨酸,苯丙氨酸,丙氨酸,甘氨酸]7、酸性氨基酸:酸谷天(三伏天)[谷氨酸,天冬氨酸]8、碱性氨基酸:碱组精赖[组氨酸,精氨酸,赖氨酸]9、生糖氨基酸:姐,天天,哭哭(谷谷),脯(羟)脯,(要吃)半斤组蛋饼(和)钢丝[缬氨酸,天冬氨酸,天冬酰氨,谷氨酸,谷氨酰氨,脯(羟)脯氨酸,半胱氨酸,精氨酸,组氨酸,蛋氨酸,丙氨酸,甘氨酸,丝氨酸]10、生酮氨基酸:酮赖亮[赖氨酸,亮氨酸]11、生糖兼生酮氨基酸:一本老色书[异亮氨酸,苯丙氨酸,酪氨酸,色氨酸,苏氨酸]12、生成一碳单位氨基酸:一组色钢丝[组氨酸,色氨酸,甘氨酸,丝氨酸]生物化学人体八种必须氨基酸(第一种较为顺口)1.“一两色素本来淡些”(异亮氨酸、亮氨酸、色氨酸、苏氨酸、苯丙氨酸、赖氨酸、蛋氨酸、缬氨酸)。
酵母表达简介

酵母表达外源蛋白1、菌株用GS115表达不出蛋白,换KM71H后,大部分克隆能表达。
2、温度:在28度和室温下诱导表达,表达水平可能都不低。
3、pH手册上用6.0,pH提高到6.8,不表达的蛋白可能就表达出来。
BMMY 的pH7.0-7.5比较合适。
国内外做的最好的rHSA,最适pH大概5-6左右。
pH3的时候yeast和peptone好像会沉淀的,可以用磷酸和磷酸二氢钾调,具体比例自己去试试。
4、偏爱密码子codon bias一般不是主要的问题,你要表达的蛋白特性才是主要问题,酵母对分子量大(30KD以上),结构复杂(如一些蛋白酶),二硫键含量多的蛋白往往不能有效表达,尤其是分泌表达。
密码子改造对一些较小的而且结构简单的蛋白表达量的提高可能有一些作用。
比如一位战友用Pichia酵母表达一个单链抗体,29KD,含有2对二硫键,表达量约几毫克每升,选用酵母偏好密码子全基因合成后,表达量没有什么提高。
5、表达时间与空质粒转化对照诱导时间长了以后,是会有很多蛋白分泌出来的,时间越长杂蛋白就越多,且分子量都比较大。
最好做一个空质粒转化的对照,这样就会比较肯定到底是不是自身的蛋白分泌的结果。
6、污染每个样品从G418板上挑10个左右单克隆于2ml BMGY摇菌(30ml 玻璃管,比LB管大一点),纱布一般用8层,一天左右看着比较浑离心,留样1ml,余1ml换2ml BMMY诱导表达,3,4层纱布足够了。
污染一般都是跟瓶口覆盖有关的原因造成的,只盖纱布肯定会污染。
加盖报纸后,就再没遇到过污染。
如果只用6层纱布,污染的可能当然很大,100ml三角瓶,装量10ml培养液,用橡筋把8层纱布和2层报纸拴紧封口,空气浴摇床。
7、不表达蛋白有没有表达就要看你的运气了,一般重复2-3次实验都没有表达菌株,这个蛋白就放弃表达了。
8、表达量30KD,10mg/L表达量已经很高,最直接的方法是发酵,一般提高5-10倍。
大肠杆菌一样出现大团的超表达蛋白。
2-氨基-4-羟基-6-甲基蝶呤啶pteridine氨基酸aminoacid
汉英索引A癌基因 oncogene,onc氨 ammonia氨蝶呤 aminopterinγ-氨基丁酸γ-aminobutyric acid, GABA氨基甲酰磷酸合成酶Ⅰ carbamoyl phosphate synthetase Ⅰ,CPS-Ⅰ2-氨基-4-羟基-6-甲基蝶呤啶 pteridine氨基酸 amino acidδ-氨基-γ-酮戊酸合酶δ-aminolevulinic acid synthaseδ氨基酮戊酸脱水酶δ-aminolevulinic acid dehydratase胺类 aminesB巴士德效应 Pastuer effect白三烯 leukotrienes,LT摆动性 wobble斑点印迹 dot blot半保留复制 semiconservative replication半不连续复制 semidiscontinuous replication半乳糖 galactose,Gal半寿期 half-life伴侣蛋白 chaperone胞苷 cytidine胞苷磷酸鸟苷 cytidyl phosphate guanosine,CPG胞苷酸 cytidine monophosphate,CMP胞嘧啶 cytosine,C胞嘧啶脱氨酶 cytosine deaminase,CD胞外信号调节的蛋白激酶 extracellular signal-regulated kinase,ERK 苯丙酮酸尿症 phenyl ketonuria,PKU吡哆胺 pyridoxamine吡哆醛 pyridoxal吡咯赖氨酸 pyrrolysine必需氨基酸 essential amino acid必需基团 essential group必需脂肪酸 essential fatty acid编码链 coding strand变构酶 allostericenzyme变构调节 allostericregulation变构效应剂 allosteric effector遍多酸 pantothenic acid标准碳酸氢盐 standard bicarbonate,SB 表达载体 expressing vector丙氨酸氨基转移酶 alanine transaminase,ALT 丙酮 acetone丙酮酸激酶 pyruvate kinase,PK病毒癌基因 virus oncogene,v-onc补救合成途径 salvage pathway不规则卷曲 random coil不可逆性抑制 irreversible inhibitionC残基 residue操纵基因 operator操纵子 operon产物 product,P长末端重复序列 long terminal repeated,LTR 超螺旋 supercoil超氧化物岐化酶 superoxide dismutase,SOD 沉默子 silencer成肽 peptide bond formation出位或E位 exit site初级胆汁酸 primary bile acids储存脂 stored fat锤头核酶 hammerheadribozyme醇脱氢酶 alcohol dehydrogenase,ADH次黄嘌呤-鸟嘌呤磷酸核糖转移酶 hypoxanthine-guanine phosphoribosyl transferase,HGPRT次级胆汁酸 secondery bile acids从头合成途径 de novo synthesis促红细胞生成素 erythropoietin,EPO催化基团 catalytic groupD大沟 major groove代谢水 metabolism water代偿性代谢性碱中毒 compensatory metabolic alkalosis代偿性代谢性酸中毒 compensatory metabolic acidosis代偿性呼吸性碱中毒 compensatory respiratory alkalosis代偿性呼吸性酸中毒 compensatory respiratory acidosis代谢性碱中毒 metabolic alkalosis代谢性酸中毒 metabolic acidosis单胺氧化酶系 monoamine oxidase,MAO单纯酶 simple enzyme单核苷酸多态性 single nucleotide polymorphism,SNP单链DNA结合蛋白 single strand DNA binding protein,SSB单链构象多态性 single strand conformation polymorphism,SSCP 单葡糖醛酸胆红素 bilirubin monoglucuronide,BMG胆钙化醇 cholecalciferol胆固醇 cholesterol,Ch胆固醇酯 cholesterol ester,CE胆红素-尿苷二磷酸-葡糖醛酸基转移酶 UDP-glucuronyl transferase,UGT 胆绿素 biliverdin胆色素 bile pigment胆色素原 porphobilinogen,PBG胆素 bilin胆素原 bilinogen胆素原的肠肝循环 bilinogen enterohepatic circulation胆汁酸 bile acids胆汁酸的肠肝循环 enterohepatic circulation蛋白激酶A protein kinase A,PKA蛋白激酶B protein kinase B,PKB蛋白激酶C protein kinase C,PKC蛋白激酶G protein kinase G,PKG蛋白激酶 protein kinase蛋白聚糖 proteoglycan蛋白磷酸酶 calcineurin蛋白质 protein氮平衡 nitrogen balance氮杂丝氨酸 azaserine等电点 isoelectric point,pI低密度脂蛋白 low density lipoprotein,LDL底物 substrate,S底物水平磷酸化 substrate phosphorylation第二信使 second messenger电穿孔法 electroporation调节酶 regulatory enzyme动力蛋白 dynein动脉粥样硬化 atherosclerosis端粒 telomere断裂基因 split gene对氨基苯甲酸 paminobenzoic acid, PABA3,4-二羟苯丙氨酸 3,4-dihydroxyphenylalanine,DOPA,多巴多巴胺 dopamine,DA多聚核糖体 polyribosome多克隆位点 multiple cloning sites,MCS多肽链 polypeptide chain多异戊烯甲基萘醌 multiprenylmenaquinoneE鹅膏蕈碱 amanitine1,3-二磷酸甘油酸 1,3-bisphosphoglycerate,1,3-BPG1,6-二磷酸果糖 fructose-1,6-bisphosphate,F-1,6-BP2,3-二磷酸甘油酸 2,3-bisphosphoglycerate,2,3-BPG二级结构 secondary structure二氧化碳分压 partial pressure of carbon dioxide二氧化碳结合力 carbon dioxide combining powper,CO-CP2F翻译 translation反馈抑制 feedback inhibition反密码环 anticodon loop反式作用因子 trans-acting factor泛醌 ubiquinone方向性 direction非必需氨基酸 non-essential amino acid非蛋白氮 non protein nitrogen, NPN非还原末端 nonreducing end非挥发性酸 non-volatile acid非竞争性抑制作用 non-competitive inhibition分支酶 branching enzyme分子克隆 molecular cloning分子生物学 molecular biology辅基 prosthetic group辅酶 coenzyme辅酶A coenzyme A, CoA辅酶Q coenzyme Q,CoQ辅助因子 cofactor5-氟尿嘧啶 5-fluorouracil,5FU腐败作用 putrefaction复性 renaturation复制 replication腹泻 diarrhoeaG钙调蛋白 calmodulin,CaM钙磷浓度关系(钙磷乘积) relation between the concentration of calcium and phosphosphorus甘油 glycerol甘油磷脂 phosphoglyceride甘油三酯 triglyceride, TG感染 infection感受态细胞 competent cell冈崎片断 Okazaki fragment高密度脂蛋白 high density lipoprotein,HDL高血糖 hyperglycemia高脂蛋白血症 hyperlipoproteinemia高脂血症 hyperlipidemia给位或P位 donor site,peptidyl site共价修饰 covalent modification谷胱甘肽 glutathione,GSH谷胱甘肽-S-转移酶 glutathione s-trandferase,GST谷胱甘肽过氧化物酶 glutathione peroxidase,GSHPX钴胺素 cobalamine固定酸 fixed acid寡核苷酸阵列 oligonucleotide array寡霉素敏感蛋白 oligomycin-sensitivity-conferring protein,OSCP 关键酶 key enzyme光敏生物素 photobiotin国际单位 international unit,IU果糖激酶 fructokinase,FK过敏反应的慢反应物质 slow reacting substance of anaphylaxis,SRS-A 过氧化氢酶 catalase过氧化物酶 peroxidaseHATP合酶 ATP synthase核不均-RNA hetero-nuclear RNA,hnRNA核苷 nucleoside核苷酸 nucleotide核酶 ribozyme核酸 nucleic acid核酸分子杂交 nucleic acid hybridization核糖 ribose核糖核酸 ribonucleic acid, RNA核糖体RNA ribosomal RNA,rRNA核糖体循环 ribosome cycle核小体 nucleosome核心酶 core enzyme呼吸链 respiratory chain呼吸性碱中毒 respiratory alkalosis呼吸性酸中毒 respiratory acidosisβ-胡罗卜素β-carotene琥珀酸 succinate琥珀酸脱氢酶 succinate dehydrogenase琥珀酰辅酶A succinyl CoA互补DNA complementary DNA,cDNA化学修饰 chemical modification缓冲体系 buffer system黄疸 jaundice黄酶 flavo-enzyme黄素单核苷酸 flavin mononucleotide,FMN黄素蛋白 flavin protein, FP黄素腺嘌呤二核苷酸 flavin adenine dinucleotide,FAD 挥发性酸 volatile acid回补反应 anaplerotic reaction活性部位 active site活性中心 active centerJRous肉瘤病毒 Rous sarcoma virus,RSV基因表达 gene expression基因分部定位 genewalking基因工程 genetic engineering基因剔除 gene knock out基因突变 gene mutation基因文库 genomic library基因芯片 gene chips基因诊断 gene diagnosis基因治疗 gene therapy激活剂 activator激素 hormone激素反应元件 hormone response element,HRE激素敏感性甘油三酯脂肪酶 hormone-sensitive-triglyceride lipase,HSL 极低密度脂蛋白 very low density lipoprotein, VLDL己糖激酶 hexokinase,HK加单氧酶 monooxygenase甲氨蝶呤 methotrexate,MTX甲钴胺素 methylcobalamin甲基化 methylation2-甲基萘醌 menaquinone甲羟戊酸 mevalonic acid, MVA假尿嘧啶 pseudouridine,ψ假神经递质 false neurotransmitter简并性 degeneracy碱基 base碱过剩 base exess, BE碱欠缺 base deficient,BD碱性亮氨酸拉链模体 basic leucine zipper motif碱中毒 alkalosis降解 degradation焦磷酸法呢酯 farnesyl pyrophosphate,FPP焦磷酸硫胺素 thiamine pyrophosphate, TPP酵母人工染色体 yeast artificial chromosome,YAC结构基因 structural gene结构域 domain结合反应 conjugation reaction结合基团 binding group结合酶 conjugated enzyme结合水 bound water结合型胆汁酸 conjugated bile acid解链温度 melting temperature,Tm解旋酶 helicase金属活化酶 metal activated enzyme金属酶 metalloenzyme竞争性抑制作用 competitive inhibition巨幼红细胞性贫血 macrocytic anemia聚合酶链式反应 polymerase chain reaction,PCRDNA聚合酶DNA polymeraseK抗癌基因 anti-oncogene抗利尿激素 antidiuretic hormone,ADH可逆性抑制 reversible inhibition空间构象 conformationL癞皮病 pellagra酪氨酸蛋白激酶 tyrosine protein kinase,TPK类胡萝卜素 carotenoids类脂 lipoid连接酶类 ligasesDNA连接酶 DNA ligase连续性 commaless两性离子 zwitterion裂解酶类 lyases磷蛋白 phospholamban磷蛋白磷酸酶 protein phosphatase磷酸丙糖异构酶 triose phosphate isomerasecAMP磷酸二酯酶 cAMP phosphodiesterase,cAMP-PDE磷酸甘油酸激酶 phosphoglycerate kinase3-磷酸甘油醛脱氢酶 glyceraldehyde-3-phosphate dehydrogenase α-磷酸甘油穿梭作用 a-glycerol phosphate shuttle6-磷酸果糖 fructose-6-phosphate,F-6-P磷酸果糖激酶-1 phosphofructokinase,PFK磷酸肌酸 creatine phosphate,CP1-磷酸葡萄糖 glucose-1-phosphate,G-l-P6-磷酸葡萄糖 glucose-6-phosphate,G-6-P磷酸戊糖途径 pentose phosphate pathway磷酸烯醇式丙酮酸 phosphoenolpyruvate,PEP3’-磷酸腺苷-5’-磷酰硫酸 3’-phospho-adenosine-5’-phosphosulfate,PAPS 磷脂 phospholipid,PL磷脂酰肌醇-3-激酶 phosphatidylinositol 3-kinase,PI3K磷脂酰肌醇磷脂酶 Cphosphatidylinositol phospholipase C,PI-PLC 硫解酶 thiolase硫辛酸 lipoic acid氯离子转移 chloride shift卵磷脂胆固醇脂酰转移酶 lecithin cholesterol acyl transferase,LCAT 卵磷脂胆固醇脂酰转移酶 lecithin cholesterol acyl transferase,LCATα-螺旋α-helix螺旋-环-螺旋 helix-loop-helix螺旋-转角-螺旋 helix-turn-helix洛伐他汀 lovastatinM麦角钙化醇 ergocalciferol帽子结构ca p sequence酶 enzyme,E酶蛋白 apoenzymeGTP酶活化蛋白 GTPase-activated protein,GAP酶原 zymogen密码子 codon嘧啶 pyrimidine模板 template模板链 template strandN内含子 intron尼克酸 niacin尼克酰胺 niacinamide逆转录 reverse transcription逆转录PCR reverse transcription-PCR,RT-PCR 逆转录病毒 retrovirus逆转录酶 reserve transcriptase鸟苷 guanosine鸟苷酸 guanosine monophosphate,GMP鸟苷酸环化酶 guanylate cyclase,GC鸟嘌呤 guanine,G尿苷 uridine尿卟啉原Ⅲ uroporphyrinogen Ⅲ,UPGⅢ尿苷二磷酸葡萄糖 uridine diphosphate glucose,UDPG 尿苷酸 uridine monophosphate,UMP尿嘧啶 uracil,U柠檬酸 citrate柠檬酸-丙酮酸循环 citrate pyruvate cycle柠檬酸裂解酶 citrate lyaseO偶氮还原酶类 azoreductaseP皮炎 dermatitis嘌呤 purine嘌呤醇 allopurinol苹果酸-天冬氨酸穿梭作用 malate-asparate shuttle苹果酸脱氢酶 malate dehydrogenase葡糖醛酸胆红素 bilirubin glucuronide葡萄糖 glucose葡萄糖-6-磷酸酶 glucose- 6-phosphatase葡萄糖激酶 glucokinase,GK葡萄糖耐量因子 glucose tolerance facter,GTFQ启动基因 promoter启动子 promoter起始密码子 initiation codon起始因子 initiation factor, IF前β-脂蛋白 preβ-lipoprotein,preβ-LP前病毒 provirus前导链 leading strand前列腺素 prostaglandin,PG前清蛋白 prealbumin, PAβ-羟丁酸β-hydroxybutyrate羟钴胺素 hydroxocobalaminβ-羟-β-甲基戊二酸单酰CoA β-hydroxy-β-methyl glutaryl CoA,HMGCoA 鞘磷脂 sphingomyelin鞘糖脂 glycosphingolipids,GSLs7α-羟化酶 7-α-hydroxylase切除修复 excision repair亲免素 immunophilin5-氢过氧化廿碳四烯酸 5-hydroperoxy eicotetraenoic acid,5-HPETE 氰钴胺素 cyanocobalamin6-巯基嘌呤 6-mercaptopurine,6MP全酶 holoenzyme醛固酮 aldosterone醛缩酶 aldolase醛脱氢酶 aldehyde dehydrogenase,ALDHR人类基因组计划 Human Genome Project溶菌性 1ytic溶原性 1ysogenic肉碱 carnitine肉碱脂酰转移酶Ⅰ carnitine acyl transferaseⅠ,CATⅠ乳糜微粒 chylomicron, CM乳酸 lactate乳糖操纵子 Lac operonS三级结构 tertiary structure三联体密码 triplet codeSOS son of sevenless三羧酸循环 tricarboxylic acid cycle,TCAC三脂酰甘油 triacylglycerol鲨烯 squalene神经递质 neurotransmitter肾上腺皮质激素 adrenal corticosteroid hormone肾糖阈 •renal threshold of glucose生长因子 growth factor生物催化剂 biocatalyst生物化学 biochemistry生物素 biotin生物芯片 biochip生物氧化 biological oxidation生物转化作用 biotransformation生育酚 tocopherol失代偿性代谢性碱中毒 non-compensatory metabolic alkalosis 失代偿性代谢性酸中毒 non-compensatory metabolic acidosis失代偿性呼吸性碱中毒 non-compensatory respiratory alkalosis 失代偿性呼吸性酸中毒 non-compensatory respiratory acidosis 实际碳酸氢盐 actual bicarbonate, AB视蛋白 opsin视黄醇结合蛋白 retinol binding protein, RBP视网膜母细胞瘤 retinoblastoma视紫红质 rhodopsin释放因子 releasing factor, RF噬菌体 bacteriophage,phage受体 receptor受位或A位 acceptor site,aminoacyl site数目可变串联重复序列 variable number of tandem repeats,VNTR 双链DNA循环测序法 dsDNA cycle sequencing双葡糖醛酸胆红素 bilirubin diglucuronide,BDG水、电解质平衡 water electrolyte balance水和电解质代谢 water electrolyte metabolism水解酶类 hydrolases水溶性维生素 water-soluble vitamin顺式作用元件 cis-acting element丝裂原激活的蛋白激酶 mitogen-activated protein kinase,MAPK 四级结构 quarternary structure四氢叶酸 tetrahydrofolic acid, THFA, FH4酸碱平衡 acid-base balance酸碱平衡紊乱 acid-base imbalance酸中毒 acidosisT肽 peptide碳酸酐酶 carbonic anhydrase,CA糖胺聚糖 glycosaminoglycan,GAG糖蛋白 glycoprotein糖复合物 glycoconjugate糖酵解 glycolysis糖尿病 glucosuria糖异生作用 gluconeogenesis糖原分解 glycogenlysis糖原合成 glycogenesis糖原合酶 glycogen synthase糖原累积症 glycogen storage disease糖原磷酸化酶 glycogen phosphorylase糖原引物蛋白 glycogenin糖脂 glycolipids,GL特殊片段 sarcoma体液 body fluid天冬氨酸氨基转移酶 aspartate transaminase,AST铁硫蛋白 iron-sulfur protein通用性 universal同工酶 isoenzyme同源结构域 homodomain,HD酮尿症 ketonuria酮体 ketone bodies酮血症 ketonemiaα-酮戊二酸α-ketoglutatrateα-酮戊二酸脱氢酶复合体α-ketoglutatrate dehydrogenase complex 退火 annealing退火温度 annealing temperature脱氧胞苷 deoxycytidine脱氧胞苷酸 deoxycytidine monopho sphate,dCMP脱氧核苷 deoxyribonucleoside脱氧核酶 deoxyribozyme脱氧核糖 deoxyribose脱氧核糖核酸 deoxyribonucleic acid, DNA脱氧鸟苷 deoxyguanosine脱氧鸟苷酸 deoxyguanosine monophosp hate,dGMP脱氧腺苷 deoxyadenosine5/-脱氧腺苷钴胺素 5/-deoxyadenosylcobalamin脱氧腺苷酸 deoxyadenosine monophosphate,dAMP脱氧胸苷 deoxythymidine脱氧胸腺苷酸 deoxythymidine monophosph ate,dTMP脱支酶 debranching enzyme拓扑异构酶 topoisomeraseW微量元素 trace elementDNA微集芯片 DNA microchips维生素 vitamin维生素A原 provitamin Acobalamine维生素B12维生素缺乏病 avitaminosis维生素需要量 vitamin requirmentcDNA文库 cDNA libraryX烯醇化酶 enolase硒代半胱氨酸 selenocysteine细胞癌基因 c-oncogene ,c-onc细胞程序化死亡 programmed cell death细胞内液 intracellular fluid细胞色素 cytochromes,Cyt细胞外液 extracellular fluid细胞信号转导 cellular signal transduction细胞因子 cytokine细胞周期蛋白依赖性激酶 cyclin dependent kinase,CDK细胞周期素D cyclin D细菌人工染色体 bacterial artificial chromosome,BAC酰基载体蛋白 acyl carrier protein, ACP限速酶 limiting velocity enzyme限制性片段长度多态性 restriction fragment length polymorphism,RFLP 腺苷 adenosineS-腺苷蛋氨酸 S-adenosyl methionine,SAM腺苷酸 adenosine monophosphate,AMP腺苷酸环化酶 adenylate cyclase,AC腺苷酸脱氨酶 adenosine deaminase,ADA腺嘌呤 adenine,A腺嘌呤磷酸核糖转移酶 adenine phosphoribosyl transferase,APRT向上调节 up regulation向下调节 down regulation硝基还原酶 nitroreductase小分子核内核蛋白颗粒 small nuclear ribonuleoprotein particle,snRNP 小沟 minor groove小核RNA small nuclear RNA,snRNA小核糖核酸蛋白 small nuclear ribonucleoprotein,snRNP辛伐他汀 simvastatinDNA芯片 DNA chipscDNA芯片 cDNA chips锌指模体 zinc finger motif信号分子 signaling molecules信号交流 crosstalk信使RNA messenger RNA,mRNA性激素 sex hormone胸苷激酶 thymidine kinase,TKSD序列 Shine-Dalgarno sequence血红素 heme血红素加氧酶 heme oxygenase血栓素 thromboxane,TX血糖 blood sugarY压电打印 piezoelectric printing烟酰胺腺嘌呤二核苷酸 nicotinamide adenine dinucleotide,NAD+烟酰胺腺嘌呤二核苷酸磷酸 nicotinamide adenine dinucleotide phosphate,NADP+延长因子 elongation factor, EF延胡索酸酶 fumarate hydratase氧化还原酶类 oxidoreductases氧化磷酸化 oxidative phosphorylation叶绿甲基萘醌 phytylmenaquinone叶酸 folic acid一级结构 primary structure一氧化氮合酶 nitric oxide synthase,NOS依赖CaM的蛋白激酶 CaM dependent protein kinase,CaM-PK依赖DNA的DNA聚合酶 DNA dependent DNA polymerase,DDDP依赖DNA的RNA聚合酶 DNA dependent RNA polymerase,DDRP依赖RNA的DNA聚合酶 RNA dependent DNA polymerase,RDDP依赖磷脂酰肌醇的蛋白激酶 phosphatidylinositol dependent protein kinase,PDK 胰岛素 insulin移位 translocation遗传密码 genetic codon乙酰乙酸 acetoacetate异构酶类 isomerases异柠檬酸 isocitrate异柠檬酸脱氢酶 isocitrate dehydrogenase抑制剂 inhibitor阴离子间隙 anion gap,AG引物 primer引物酶 primaseNorthern印迹杂交 Northern blotSouthern印迹杂交 Southern blot应激 stress营养价值 nutrition value游离型胆汁酸 free bile acid游离脂肪酸 free fatty acid, FFA有氧氧化 aerobic oxidation诱导剂 inducer诱导契合学说 induced fit theory原癌基因 proto-oncogene原位杂交 in situ hybridizationZ杂多糖 heteropolysaccharides杂化双链 heteroduplex杂交 hybridizationβ-折叠β-pleated sheet载脂蛋白 apolipoprotein, apoDNA阵列 DNA array增强子 enhancer增色效应 hyperchromic effect粘粒 cosmid折叠酶 foldase脂蛋白 lipoprotein, LP脂蛋白脂肪酶 lipoprotein lipase,LPLα-脂蛋白α-lipoprotein, α-LPβ-脂蛋白β-lipoprotein, β-LP脂肪 fat脂肪酸 fatty acid脂类 lipids脂溶性维生素 lipid-soluble vitamin脂酰CoA合成酶 acyl-CoA synthetase脂酰辅酶A胆固醇脂酰转移酶 acyl-CoAcholesterol acyl transferase,ACAT 直接修复 direct repair滞后链 lagging strand中间密度脂蛋白 intermediate density lipoprotein, IDL 中心法则 central dogmaDNA重组DNA recombination终止密码子 termination codon终止因子 termination factor终止子 terminator肿瘤抑制基因 tumor suppressor gene6-重氮-5-氧去甲亮氨酸 diazonor-leucine重组修复 recombinational repair注册 registration专一性 specificity转化 transformationβ-转角β-turn转录 transcription转录单位 transcription unit转录空泡 transcription bubble转录因子 transcription factor,TF转移酶类 transferases转运RNA transfer RNA,tRNA阻遏剂 repressor组织间液 interstitial fluid最低需水量 minimal requirement for water最适pH optimum pH最适温度 optimum temperature。
赖氨酸二肽对奶牛乳腺mTOR信号通路元件基因表达的影响
赖氨酸二肽对奶牛乳腺mTOR信号通路元件基因表达的影响周苗苗;崔景香【摘要】为研究赖氨酸二肽对奶牛乳腺组织中哺乳动物雷帕霉素靶蛋白(mTOR)信号通路的影响,在体外培养的奶牛乳腺组织培养液中分别添加赖氨酸—赖氨酸、赖氨酸—亮氨酸和赖氨酸—组氨酸二肽,等量取代培养液中φ=5%、5%和15%的游离赖氨酸(赖氨酸总质量浓度为210 mg/L);在此基础上,在赖氨酸组和赖氨酸—赖氨酸二肽5%取代组分别添加终浓度为0和100 nmol/L的mTOR抑制剂雷帕霉素.试验结束后收集乳腺组织用于αs1酪蛋白、mTOR、4E-BP1和S6K1的基因表达检测.结果发现,与游离氨基酸相比,添加3种赖氨酸二肽显著增加αs1酪蛋白、mTOR、4E-BP1和S6K1基因的表达;添加雷帕霉素抑制上述基因的表达,赖氨酸—赖氨酸二肽可以降低雷帕霉素的抑制作用.结果表明,除作为合成底物外,赖氨酸二肽还可能通过调控mTOR信号通路促进乳蛋白的合成.%The study was to investigate the effects of lysine (Lys) dipeptides on gene expression of mammalian target of rapamycin (mTOR) signal pathway elements in gland explants of bovine mammary.Mammary gland tissues were obtained from Chinese Holstein dairy cows and cultured in Dulbecco's modified Eagle's medium-F12 with the lactogenic hormones (prolactin,hydrocortisone and insulin).Firstly,the free Lys in culture medium was equivalent substituted with Lys-Lys,Lys-leucine (Leu),Lys-histidine (His) at ratio ofφ=5%,5%,10%,respectively.Then,rapamycin,the mTOR inhibitor,was added in the Lys group and Lys-Lys group at concentration of 0 and 100nmol/L,respectively.After 48 h,mammary gland tissues were harvested for casein alpha s1,mTOR,4E-BP1 and S6K1 gene expression analysis by real-time PCR.The Lys dipeptides significantly enhanced the gene expression of casein alpha s1,mTOR,4E-BP1 and compared S6K1 with equivalent free Lys.The addition of rapamycin inhibited the gene expression of casein alpha s1,mTOR,4E-BP1 and S6K1,and Lys-Lys dipeptide decreased the inhibitory effect.The results indicated that,as the synthetic substrates,the Lys dipeptides may also promote the synthesis of milk protein by modulating the mTOR signal pathway.【期刊名称】《西北农业学报》【年(卷),期】2017(026)007【总页数】5页(P963-967)【关键词】赖氨酸二肽;αs1酪蛋白;mTOR;奶牛乳腺组织【作者】周苗苗;崔景香【作者单位】山东潍坊科技学院动物科学研究所,山东寿光262700;山东潍坊科技学院动物科学研究所,山东寿光262700【正文语种】中文【中图分类】S823哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)信号通路能感受来自营养素、胰岛素和生长因子、能量及压力信号控制细胞生长[1]。
2-1-蛋白质结构基础
Ala, Glu, Leu, Met:出现频率高 Pro, Gly Tyr, Ser:出现频率低
-Strands & Sheets
1. -链 -strand, 5-10 residues long, in an almost fully extended conformation
2. 分类
1)疏水氨基酸 (hydrophobic or nonpolar amino acids) : 8 Ala, Val, Leu, Ile, Met, Pro, Phe, Trp 趋于彼此间或与其它非极性原子发生疏水相互作用。侧链一 般没有化学反应。主要位于蛋白质分子内部。 2)极性氨基酸 (polar amino acids) :
2)-turn: 3个氨基酸组成
is a tight turn involving three amino acid residues. 肽链的转变没 有了中间的缓冲,显得更为紧急。
3) 凸起( -bulge)
在两个连续型氢键之间的一个凸起区域,一股链上的两 个残基对着另一股链上的一个残基。 特点:i.大多数连接反平行链;
It is a tight turn of ~180 degrees involving four amino acid residues.
The essence of the structure is the hydrogen bonding between the C=O group of residue n and the NH group of the residue n+3.
Proteins are built up by amino acids that are linked by peptide bonds into a polypeptide chain. 三肽,四肽:<12 寡肽 oligopeptide 12~20 多肽polypeptide >20 蛋白质:几十个peptides以上 活性肽: 谷胱甘肽GSH: 三肽 催产素,加压素:九肽 胰岛素:51肽
氨基酸残基的侧链修饰
生化课件整理之——氨基酸残基的侧链修饰(~~by luckyboy)一.精氨酸Arginine甲基化Methylation精氨酸的三个甲基化衍生物(Nω-methyl- Nω, N ω-dimethyl-, and Nω, Nω`,-dimethyl-)常出现于一些蛋白质当中,主要是核苷酸结合蛋白,例如:组蛋白,核仁蛋白,髓磷脂碱性蛋白,甲基化的功能还没有完全研究清楚磷酸化PhosphorylationN?-磷酸精氨酸也常出现在髓磷脂碱蛋白中,一种鼠肝DNA结合的精氨酸特异性蛋白激酶,它磷酸化它自身和一个11-kDa的染色体结合蛋白ADP-核糖基化ADP-ribosylation(有一种催化ADP 核糖基化的酶)1. Nω-ADP-核糖基化精氨酸(? and ?异头物) 常出现在细菌肠毒素、霍乱毒素和大肠杆菌不耐热肠毒素等蛋白质的修饰中2. 脊椎动物的精氨酸特异核糖基转移酶是常见的ADP-核糖基化水解酶3. 第三类精氨酸特异的核糖基转移酶是由噬菌体编码的瓜氨酸Citrulline由精氨酸残基衍生化而成,多见于头发和皮肤蛋白中。
鸟氨酸Ornithine可能也是有精氨酸衍生而来,被发现于一种洋芋中的不常见的富羟脯氨酸糖蛋白凝集素中戊糖素PentosidinePentosidine是由精氨酸残基的侧链和被氧化的糖基化的赖氨酸衍生物结合形成的二.天冬酰胺Asparagine一、糖基化Glycosylation(一)结构:其中一种最常见的细胞膜胞外区域、分泌体和溶酶体蛋白的翻译后修饰是天门冬酰胺侧链糖基化(N-连接糖基化),?-N-乙酰葡糖胺作为连接单元连接到N原子上绝大多数聚糖的结构都已经被确定,它们大多数都存在于三种结构类型:高甘露糖型、复杂型和杂合型。
在糖蛋白中发现的常见单糖部分在下图中列出:1、真核生物中A.a.移多萜酰连接的前体糖基的转移:Glc3-Man9-GlcNAc2-到序列-Asn-Xaa-(Ser或Thr)-的天冬酰胺侧链上,其中Xaa可以是除脯氨酸外的其它任何一种氨基酸b.聚糖链的依次添加成熟的过程包括去除葡萄糖单元和在大多数情况下除去甘露糖残基,紧接着添加岩藻糖、半乳糖,N-乙酰葡萄糖胺和铝硅脂酸,有时也加入其它糖类化合物、磷酸盐和硫酸盐B.,具体怎样产生特异性的精确聚糖链结构还不是很清楚:a.不是所有的胞外的Asn-Xaa-(Ser or Thr)的天门冬酰胺残基都被糖基化b.在许多糖蛋白中是不均一性的,由于一些分子携带了比其它分子更多的糖基侧链;糖基结构上一般也有微不专一性,但是一个特异性位点主要携带单一种类糖基侧链。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-Substitiuted Thio- and Amino-5,8-dimethoxy-1,4-naphthoquinonesas a Novel Class of Acyl-CoA: Cholestrol Acyltransferase InhibitorsGui-Nan Shen, Jung Ho Choi,† Kondaji Gajulapati,‡ Jee Hyun Lee, Young Kook Kim,† Mun Chal Rho,† Sang-Hun Jung, Kyeong Lee,† Sung Sik Han,‡ Gyu-Yong Song,* and Yongseok Choi‡,*College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea. *E-mail: gysong@cnu.ac.kr †Korea Research Institute of Biosciences and Biotechnology, Daejeon305-733, Korea ‡School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea. *E-mail: ychoi@korea.ac.krReceived February 21, 2009, Accepted March 25, 2009A series of 2-alkyl or 2-arylthio-5,8-dimethoxy-1,4-naphthoquinones (2-Thio-DMNQ, 5a-s) and 2-alkylamino-5,8-dimethoxy-1,4-naphthoquinones (2-Amino-DMNQ, 6a-k) was synthesized and evaluated for their ACA T inhibitoryactivities. Among them, the 2-dodecylthio-DMNQ 5l and 2-isobutylamidoundodecylthio-DMNQ 5r showed themost potent ACA T inhibitory activities with IC50 value of 22.8 and 24.4 µM, respectively. In a structure-activityrelationship study, 2-thio-DMNQs with side chains of carbon number 11 ~ 15 exhibited significant ACA T inhibitoryactivities.Key Words: Naphthoquinones, Mast cells, Acyl CoA: Cholestrol Acyl Transferase (ACAT), Structure-ac-tivity relationshipIntroductionCholesterol is an important biological molecule as a pre-cursor for the synthesis of the steroid hormones and bile acids. The cholesterol regulation, namely cholesterol homeostasis, is kept by preventing accumulation of cholesterol by transport-ing through the circulation in blood plasma and artery. The two third of cholesterol in blood plasma is stored as cholesteryl ester form. This cholesteryl ester is synthesized by activation of high density lipoprotein (HDL)-associated enzyme lecithin cholesterol acyltransferase (LCA T) or acyl-CoA:cholesterol acyltransferase (ACA T).1,2 Increment of cholesteryl ester by high activation of ACA T enzyme brings about the formation of foam cell originated from macrophage. The massive accu-mulation of cholesterol, particularly cholesteryl ester in foam cells, causes hypercholesterinemia. Long term maintenance of this condition eventually leads to atherosclerosis.3,4 Thus, the inhibitor of ACA T activity could be the competitive drug in the prevention and treatments of hypercholesterinemia and atherosclerosis by inhibiting the formation of cholesteryl ester within the cell.So far, many ACAT inhibitors have been developed such as VULM 1457,5 K-604,6 CS-505,7 and F12511,8etc. It was recently reported that shikonin derivatives with 5,8-dihydroxy- 1,4-naphthoquinone, naphthazarin, (1-3, Figure 1), isolated from the roots of Lithospermum erythrorhizon, were tested for inhibitory effect against human ACA T-1 (hACA T-1) and human ACAT-2 (hACA T-2).9 Among them, the shikonin derivative with isobutyl moiety (2) showed moderate inhi-bitory activities, with IC50 value of 57.7 µM against hACA T-2 and 32% inhibition at 120 µM against hACA T-1. Among the shikonin analogues, a derivative with 3-methylbutanoyl moiety 4, which was semi-synthesized from isolated shikonin, showed the most potent ACAT inhibitory activity with IC50 value of 13.8 µM and 25.1 µM against hACA T-1 and hACA T-2, respec-tively.1 R= CH32 R= CH(CH3)23 R= CH2C(CH3)2OH4 R= CH2CH(CH)3CH3OOFigur e 1. Structure of shikonin derivatives 1-4 known to ACAT inhibitor.OOMeS R5OOMeNHR6Figur e 2. Structure of thio-DMNQ 5 and amino-DMNQ 6.On the basis of ACAT inhibitory effect of the 1,4-naph-thoquinone derivatives, it was of great interest to synthesize 1,4-naphthoquinone derivatives with different side chains to understand the structural requirement for ACA T inhibitory activity of naphthoquinone derivatives. Herein we describe the initial structure-activity relationships (SAR) in this series, particularly 2-alkyl and 2-arylthio-5,8-dimethoxy-1,4-naph-toquinones (5, thio-DMNQ) and 2-alkylamino-5,8-dimethoxy-1,4-naphthoquinones (6, amino-DMNQ) as novel ACA T inhi-bitors.Results and DiscussionThe synthetic routes for 2-substituted thio-DMNQ deri-vatives and 2-substituted amino-DMNQ derivatives were summarized in Scheme 1 and Scheme 2. 1,5-Dihydroxynaph-T able 1.ACAT inhibitory activities of 2-Thio-DMNQ derivatives (5a-s ) in vitro assay system CompoundRIC 50 (µM)5a -CH 3>1105b -CH 2CH 3>1105c -(CH 2)2CH 3>1105d -(CH 2)3CH 3>1105e -(CH 2)4CH 3>1105f -(CH 2)5CH 3>1105g -(CH 2)6CH 3106.75h -(CH 2)7CH 3107.35i -(CH 2)8CH 388.655j -(CH 2)9CH 376.505k -(CH 2)10CH 339.775l-(CH 2)11CH 322.785m -(CH 2)14CH 339.665n -(CH 2)17CH 3>1105o -Ph>1105p -(CH 2)10CH 2OH >1105q -(CH 2)10CH 2COOH>1105r -(CH 2)10CH 2CONHCH 2CH(CH 3)224.405s-(CH 2)10CH 2COOCH 2CH(CH 3)2>110T able 2.ACAT inhibitory activities of 2-Amino-DMNQ derivatives (6a-k ) in vitro assay system CompoundR IC 50 (µM)a6a -CH 3>1106b -CH 2CH 3>1106c -(CH 2)2CH 3>1106d -(CH 2)3CH 3>1106e-(CH 2)4CH 3>1106f -(CH 2)5CH 3>1106g -(CH 2)6CH 3>1106h -(CH 2)7CH 3>1106i -(CH 2)8CH 3>1106j -(CH 2)9CH 3>1106k-(CH 2)10CH 3>110aIC 50 indicates concentrations for 50% inhibition of ACAT activitity.11OOMe N HR6a-k5a-q10Scheme 1. Reagents and conditions: (a) NaOH, (CH 3)2SO 4, N 2, rt, 2 h; (b) NBS, rt, 3h, CH 3CN; (c) CH 3ONa, CuI, reflux, 30 h, DMF, MeOH; (d) CAN, rt, 1 h, CH 3CN, CHCl 3 (3:1); (e) HS-R or HS-(CH 2)10-COOH, Na 2Cr 2O 7, H 2SO 4, rt, 4 h, MeOH; (f) NH 2 -R, rt,4 h, MeOH.5sScheme 2. Reagents and conditions: (a) DCC, DMAP , isobutylamide, dry CH 2Cl 2, 0 oC, 4h; (b) DCC, DMAP, isobutyl alcohol, dryCH 2Cl 2, 0 oC, 4 h.thalene, as a starting material, was reacted with sodium hydroxide and dimethyl sulfate under nitrogen followed by bromination with N -bromosuccinimide (NBS) in room tem-perature for 3 h to afford 1,5-dibromo-4,8-dimethoxy-naphthalene (9). After methoxylation with sodium methoxide and copper (I) iodide in N,N -dimethyl formamide/methanol solution, oxidative demethylation of the 1,4,5,8-tetramethoxy-naphthalene (10) with cerium (IV) ammonium nitrate (CAN) gave the key intermediate 5,8-dimethoxy-1,4-naphthoquine (DMNQ, 11). Direct 1,4-type addition of various alkylthiols or arylthiols to the quinone moiety of DMNQ 11 yielded the appropriated 2-thio-DMNQs, 5a-q , with yields varying from 10.6 to 77.9%. Treatment of compound 5q with isobutylamine or isobutylalcohol in the presence of DCC and DMAP yielded the amide compound 5r and acylated compound 5s , respec-tively. Also, direct 1,4-type addition of various alkylamines to the quinone moiety of DMNQ 11 yielded the appropriated 2-amino-DMNQs, 6a-k .As shown in Table 1 and 2, the synthesized 2-thio-DMNQanalogues (5a-s ) and 2-amino-DMNQ analogues (6a-k ) were evaluated for their inhibition of ACAT in human hepatoma HepG2 cells. It was notable that the inhibitory effect of the 2-thio-DMNQs against ACA T was dependent on the carbon length of alkyl groups. Compounds with alkyl chains of intermediate length (C 7-C 15) possessed significant ACAT inhibitory activity with IC 50 values of 22.78 to 107.3 µM. However, the elongation of the alkyl moiety beyond C 18 or shortening below C 6 decreased the potency. Thus, there seems to be a relationship between inhibitory ACAT activity and the carbon length of the substituents. 1,4-Naphthoquinone deri-vative 5l with dodecyl alkyl chain exhibited the most potency with IC 50 value of 22.78 µM.Next, we synthesized and assayed the 2-phenylthio-DMNQ (5o ) with aromatic ring as substituent instead of aliphatic linear chain. However, compound 5o did not exhibit inhibition of ACA T activity. In addition, in order to improve solubility ofDMNQ derivatives in water, we introduced hydroxyl (5p ) or carboxylic group (5q ) instead of methyl group in the terminal of 2-dodecylthio-DMNQ (5l ) with the most potency against ACAT. However, introduction of hydroxyl and carboxylic group of 5l completely lost inhibitory effect on ACA T activity. These results indicate that the liphophic groups are more suitable than the hydrophilic groups in the terminal of DMNQ analogues.Previously, it was reported that piperchabamide D, an alkamide compound isolated from Piper nigrum , stronglyinhibited ACAT activity.10This compound has a benzodioxol ring as a basic skeleton with the alkenyl side chain including isobutyl amide moiety in the terminal of alkene moiety. On the basis of this observation, isobutyl amide was introduced to the terminal carboxylic acid moiety of the 2-thio-DMNQ analogue 5q to afford compound 5r which turned out to show potent ACAT inhibitory effect (IC 50, 24.4 µM) as potent as 2-dodecylthio-DMNQ (5l ), the most potent compound (IC 50, 22.78 µM) in this series of compounds. This result suggests that isobutyl amide moiety at terminal alkyl chain appears to play an important role for ACAT inhibitory activity.On the other hand, replacement of sulfur atom of 2-thio-DMNQ analogues with nitrogen atom, 2-amino-DMNQ anal-ogues (6a-k ), resulted in complete loss of the inhibitory activity regardless of carbon length at side chain. This result may suggest that hydrophobic groups such as sulfur atom are more suitable for the inhibition of ACAT activity than hydrophilic group like -NH (6a-k ), -OH (5p ) or -COOH (5q ) group.In conclusion, we synthesized the 2-substituted thio/amino-DMNQ analogues and evaluated their ACA T inhibitory activities. Preliminary structure-activity relatioships identified novel ACA T inhibitors represented by analogue 5l . It is noticeable that the ACAT enzyme activity of DMNQ anal-ogues is dependent on the carbon length and lipophilicity of DMNQ’s substituents. Taken together, 2-thio-DMNQ anal-ogues may prove useful for the design of new potent ACA T inhibitors.Experimental SectionChemical reagents were obtained from Aldrich Chemical Company. Solvents were of reagent grade and used without further purification. Melting points were determined on an Electrothermal capillary melting point apparatus and were uncorrected. Nuclear magnetic resonance (NMR) spectra were recorded on a JNM-AL 400 (400 MHz). Chemical shifts (δ) are given in ppm downfield from tetramethylsilan as the internal standard. MS spectra were collected with a PE SCIX API 2000 MS/MS.1,5-Dimethoxynaphthalene (8): Under ice cooling, dimethyl sufate (156 g, 1.24 mol) was dropwise to a solution of 1,4-dihydroxynaphthalene 7 (100 g, 0.62 mol) in 10% aque-ous NaOH (500 mL), and stirred for 2 h. The precipitate was collected by filtration, washed with 5% aqueous KOH (200 mL × 2) and water (200 mL × 3), and then dried in oven. The crude product was recrystallized from benzene to givecompound 8 (73.0 g, 63%) as a white solid: m.p. 181-182 oC; 1H-NMR (CDCl 3, 400 MHz) δ 7.70 (d, J = 8.8 Hz, 2H), 7.38(t, J = 8.0 Hz, 2H), 6.98 (d, J = 8.0 Hz, 2H), 3.94 (s, 6H).4,8-Dibromo-1,5-dimethoxynaphthalene (9): To a solution of 8 (10.0 g, 0.053 mol) in acetonitrile (160 mL) was dropwise solution of N -bromosuccinimide (21.0 g, 0.118 mol) in acetonitrile (180 mL). The resulting mixture was stirred at room temperature under nitrogen for 2.5 h. The solid was collected filtration, washed with acetonitrile (50 mL × 2) and then with 20 mL of hexane to give compound 9 (12.7 g, 69%)as a white solid: m.p. 187-188 o C; 1H-NMR (CDCl 3, 400 MHz) δ 7.68 (d, J = 8.4 Hz, 2H), 6.72 (d, J = 8.4 Hz, 2H), 3.91 (s, 6H).1,4,5,8-T etramethoxynaphthalene (10): To a solution of 9 (14.5 g, 0.04 mol) in N,N -dimethylformamide (300 mL) and MeOH (300 mL) was added copper iodide (26.6 g, 0.14 mol) and sodium methoxide (7.47 g, 0.14 mol). The resulting mixture was reflux for 30 h. 500 mL of ice water was added to the solution. The mixture was filtered, washed with water (100 mL), and dried in oven, separated with chloroform. The crude product was recrystallized from benzene to give compound 10 (6.50 g, 62.5%) as a white solid: m.p. 168-169 o C; 1H-NMR (CDCl 3, 400 MHz) δ 6.85 (s, 4H), 3.90 (s, 12H).5,8-Dimethoxynaphthalene-1,4-dione (11): To a solution of 10 (10 g, 40.3 mmol) in acetonitrile (450 mL) and chloro-form (150 mL) was added dropwise a solution of cerium ammonium nitrate (54 g, 98.5 mmol) in water (300 mL). The resulting mixture was stirred at room temperature for 1 h, after solution was added water (600 mL) and CHCl 3 (600 mL). The organic layer was separated, dried over sodium sulfate, and concentrated in vacuo. The residue was recrystallized from MeOH to give compound 11 (4.80 g, 54.6%) as a red solid:m.p. 122-123 o C; 1H-NMR (CDCl 3, 400 MHz) δ 7.33 (s, 2H), 6.79 (s, 2H), 3.97 (s, 6H).General procedur e for the synthesis of compounds (5a-5q). To a solution of 11 (1.38 mmol) in MeOH (30 mL) were added corresponding alkyl thiols (1.65 mmol), respectively. The mixture was stirred at room temperature for 4 h and to the solution was added dropwise a solution of sodium dichromate (0.23 mmol) and sulfuric acid (0.76 mmol) in water. The resulting mixture was stirred for a few minute and the acidic solution was then extracted with dichloromethane (50 mL × 3). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered, and then con-centrated under reduced pressure. The residue was chromato-graphy (hexane:EtOAc = 2:1) to give the title compounds 5a -5q .2-Methylthio-5,8-dimethoxy-1,4-naphthoquinone (5a): Obt-ained as a red solid (64 mg, 28.2%): m.p. 167-169 oC; 1H-NMR (CDCl 3, 400 MHz) δ 7.33 (d, J = 9.2 Hz, 1H), 7.27 (d, J = 9.2 Hz, 1H), 6.41 (s, 1H), 3.97 (s, 3H), 3.96 (s, 3H), 2.31 (s, 3H); m/z 286.9 (M+Na)+.2-Ethylthio-5,8-dimethoxy-1,4-naphthoquinone (5b): Obt-ained as a red solid (235 mg, 61.2%): m.p. 130-131 oC; 1H-NMR (CDCl 3, 400 MHz) δ 7.32 (d, J = 9.2 Hz, 1H), 7.26 (d, J = 9.2 Hz, 1H), 6.44 (s, 1H), 3.94 (s, 6H), 2.78 (q, J = 7.2Hz, 2H), 1.38 (t, J = 7.2 Hz, 3H); m/z 301.0 (M+Na)+.2-Pr opylthio-5,8-dimethoxy-1,4-naphthoquinone (5c): Obt-ained as a red solid (242 mg, 60%): m.p. 80-81 o C; 1H-NMR (CDCl 3, 400 MHz) δ 7.34 (d, J = 9.2 Hz, 1H), 7.27 (d, J = 9.2Hz, 1H), 6.45 (s, 1H), 3.96 (s, 6H), 2.74 (t, J = 7.2 Hz, 2H), 1.81-1.72 (m, 2H), 1.08 (t, J = 7.2 Hz, 3H); m/z 315.0 (M+Na)+. 2-Butylthio-5,8-dimethoxy-1,4-naphthoquinone (5d): Obt-ained as a red solid (226 mg, 53.5%): m.p. 104-105 o C; 1H-NMR (CDCl3, 400 MHz) δ 7.33 (d, J = 9.6 Hz, 1H), 7.27 (d, J = 9.6 Hz, 1H), 6.44 (s, 1HHH), 3.95 (s, 6H), 2.76 (t, J = 7.2 Hz, 2H), 1.76-1.68 (m, 2H), 1.54-1.45 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H); m/z 329.0 (M+Na)+.2-Pentylthio-5,8-dimethoxy-1,4-naphthoquinone (5e): Obt-ained as a red solid (186 mg,42.1%): m.p. 101-102 o C; 1H-NMR (CDCl3, 400 MHz) δ 7.33 (d, J = 9.6 Hz, 1H), 7.27 (d, J = 9.6 Hz, 1H), 6.44 (s, 1H), 3.96 (s, 3H), 3.95 (s, 3H), 2.75 (t, J = 7.6 Hz, 2H), 1.77-1.33 (m, 6H), 0.92 (t, J = 7.2 Hz, 3H); m/z 343.0 (M+Na)+.2-Hexylthio-5,8-dimethoxy-1,4-naphthoquinone (5f): Obt-ained as a red solid (194 mg,42.1%): m.p. 139-140 o C; 1H-NMR (CDCl3, 400 MHz) δ 7.33 (d, J = 9.2 Hz, 1H), 7.27 (d, J = 9.6 Hz, 1H), 6.44 (s, 1H), 3.96 (s, 3H), 3.95 (s, 3H), 2.75 (t, J = 7.6 Hz, 2H), 1.73-1.48 (m, 2H), 1.47-1.30 (m, 6H), 0.90 (t, J = 7.2 Hz, 3H); m/z 356.9 (M+Na)+.2-Heptylthio-5,8-dimethoxy-1,4-naphthoquinone (5g): Obt-ained as a red solid (51 mg,10.6%): m.p. 125-126 o C; 1H-NMR (CDCl3, 400 MHz) δ 7.33 (d, J = 9.2 Hz, 1H), 7.26 (d, J = 9.2 Hz, 1H), 6.45 (s, 1H), 3.96 (s, 3H), 3.95 (s, 3H), 2.75 (t, J = 7.2 Hz, 2H), 1.75-1.26 (m, 10H), 0.89 (t, J = 6.8 Hz, 3H); m/z 371.0 (M+Na)+.2-Octylthio-5,8-dimethoxy-1,4-naphthoquinone (5h): Obt-ained as a red solid (221 mg,44.2%): m.p. 109-110 o C; 1H-NMR (CDCl3, 400 MHz) δ 7.33(d, J = 9.2 Hz, 1H), 7.26 (d, J = 9.2 Hz, 1H), 6.44 (s, 1H), 3.96 (s, 3H), 3.95 (s, 3H), 2.75 (t, J = 7.2 Hz, 2H), 1.77-1.27 (m, 12H), 0.88 (t, J = 6.8 Hz, 3H); m/z 384.8 (M+Na)+.2-Nonylthio-5,8-dimethoxy-1,4-naphthoquinone (5i): Obt-ained as a red solid (400 mg,77%): m.p. 75-76 o C; 1H-NMR (CDCl3, 400 MHz) δ 7.33 (d, J = 9.6 Hz, 1H), 7.27 (d, J = 9.6 Hz, 1H), 6.44 (s, 1H), 3.96 (s, 3H), 3.95 (s, 3H), 2.75 (t, J = 7.2 Hz, 2H), 1.77-1.27 (m, 14H), 0.89 (t, J = 7.2 Hz, 3H); m/z 398.8 (M+Na)+.2-Decylthio-5,8-dimethoxy-1,4-naphthoquinone (5j): Obt-ained as a red solid (348 mg,64.5%): m.p. 97-98 o C; 1H-NMR (CDCl3, 400 MHz) δ 7.33 (d, J = 9.6 Hz, 1H), 7.27 (d, J = 9.2 Hz, 1H), 6.45 (s, 1H), 3.97 (s, 3H), 3.96 (s, 3H), 2.75 (t, J = 7.2 Hz, 2H), 1.76-1.26 (m, 16H), 0.88 (t, J = 7.2 Hz, 3H); m/z 412.9 (M+Na)+.2-Undecanthio-5,8-dimethoxy-1,4-naphthoquinone (5k): Obtained as a red solid (280 mg,50.1%): m.p. 83-84 o C; 1H-NMR (CDCl3, 400 MHz) δ 7.32 (d, J = 9.2 Hz, 1H), 7.26 (d, J = 9.2 Hz, 1H), 6.44 (s, 1H), 3.95 (s, 3H), 3.94 (s, 3H), 2.75 (t, J = 7.2 Hz, 2H), 1.74-1.69 (m, 2H), 1.47-1.42 (m, 2H), 1.35-1.25 (m, 14H), 0.87 (t, J = 6.8 Hz, 3H); m/z 405.1 (M+H)+.2-Dodecanthio-5,8-dimethoxy-1,4-naphthoquinone (5l): Obtained as a red solid (234 mg,40.5%): m.p. 74-75 o C; 1H-NMR (CDCl3, 400 MHz) δ 7.32 (d, J = 9.6 Hz, 1H), 7.26 (d, J = 9.6 Hz, 1H), 6.44 (s, 1H), 3.96 (s, 3H), 3.95 (s, 3H), 2.75 (t, J = 7.2 Hz, 2H), 1.74-1.70 (m, 2H), 1.47-1.42 (m, 2H), 1.35-1.25 (m, 16H), 0.87 (t, J = 6.8 Hz, 3H); m/z 441.1 (M+Na)+.2-Pentadecanthio-5,8-dimethoxy-1,4-naphthoquinone (5m): Obtained as a red solid (325 mg,51.1%): m.p. 78-80 o C; 1H-NMR (CDCl3, 400 MHz) δ 7.32 (d, J = 9.2 Hz, 1H), 7.26 (d, J = 9.6 Hz, 1H), 6.44 (s, 1H), 3.95 (s, 3H), 3.94 (s, 3H), 2.75 (t, J = 7.2 Hz, 2H), 1.74-1.69 (m, 2H), 1.47-1.42 (m, 2H), 1.35-1.25 (m, 22H), 0.87 (t, J = 7.2 Hz, 3H); m/z 483.1 (M+Na)+. 2-Octadecanthio-5,8-dimethoxy-1,4-naphthoquinone(5n): Obtained as a red solid (264 mg,38.1%): m.p. 97-98 o C; 1H-NMR (CDCl3, 400 MHz) δ 7.32 (d, J = 9.6 Hz, 1H), 7.26 (d, J = 9.6 Hz, 1H), 6.44 (s, 1H), 3.96 (s, 3H), 3.95 (s, 3H), 2.75 (t, J = 7.6 Hz, 2H), 1.76-1.69 (m, 2H), 1.47-1.42 (m, 2H), 1.35-1.25 (m, 28H), 0.88 (t, J = 7.2 Hz, 3H); m/z 525.1 (M+Na)+.2-Phenylthio-5,8-dimethoxy-1,4-naphthoquinone(5o): Obtained as a red solid (261 mg,58%): m.p. 105-106 o C; 1H- NMR (CDCl3, 400 MHz) δ 7.52-7.47 (m, 5H), 7.31 (s, 2H), 5.97 (s, 1H), 3.98 (s, 3H), 3.92 (s, 3H); m/z 348.7 (M+Na)+. 2-(11-Hydroxyundecanthio)-5,8-dimethoxy-1,4-naphtho-quinone (5p):Obtained as a red solid (390 mg, 67.2%): m.p. 67-68 o C; 1H-NMR (CDCl3, 400 MHz) δ 7.32 (d, J = 9.6Hz, 1H), 7.26 (d, J = 9.2 Hz, 1H), 6.44 (s, 1H), 3.96 (s, 3H), 3.95 (s, 3H), 3.64 (t, J = 6.8 Hz, 2H), 2.75 (t, J = 7.2 Hz, 2H), 1.75-1.69 (m, 2H), 1.47-1.42 (m, 2H), 1.35-1.25 (m, 14H); m/z 442.9 (M+Na)+.11-(5,8-Dimethoxy-1,4-dioxo-naphthalen-2-ylthio)undeca-noic acid (5q):Obtained as a red solid (467 mg,77.9%): m.p. 146-147 o C; 1H-NMR (CDCl3, 400 MHz) δ 7.33 (d, J = 9.6 Hz, 1H), 7.27 (d, J = 9.6 Hz, 1H), 6.46 (s, 1H), 3.96 (s, 3H), 3.95 (s, 3H), 3.34 (t, J = 7.2 Hz, 2H), 2.75 (t, J = 2.7 Hz, 2H), 2.41-2.32 (m, 5H), 2.06-2.00 (m, 2H), 1.76-1.56 (m, 5H), 1.48-1.39 (m, 2H), 0.97-0.88 (m, 2H); m/z 435 (M+H)+.11-(5,8-Dimethoxy-1,4-dioxo-1,4-dihydronaphthalen-2-ylthio)isobutyl amide (5r):To a solution of 5q (250 mg, 0.575 mmol) in dry dichloromethane (30 mL) was added DCC (142 mg, 0.69 mmol), DMAP (28.1 mg, 0.23 mmol), and isobutyl amide (0.069 mL,0.69 mmol). The mixture was stirred at 0 o C for 4 h and the mixture was concentrated under reduced pressure. The residue was purified by column chromatography (hexanes:EtOAc = 3:1) to give compound 5r (219 mg, 77.9%) as a red solid: m.p. 74-75 o C; 1H-NMR (CDCl3, 400 MHz) δ7.33 (d, J = 9.6 Hz, 1H), 7.27 (d, J = 9.2 Hz, 1H), 6.44 (s, 1H), 5.55 (s, 1H), 3.96 (s, 3H), 3.95 (s, 3H), 3.10 (t, J = 6.6 Hz, 2H), 2.75 (t, J = 7.6 Hz, 2H), 2.17 (t, J = 7.4 Hz, 2H), 1.78-1.7 (m, 2H), 1.63 (m, 2H), 1.45 (m, 1H), 0.92 (s, 3H), 0.90 (s, 3H); m/z 490.0 (M+H)+.11-(5,8-Dimethoxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl-thio)isobutyl ester (5s):To a solution of 5q (250 mg, 0.575 mmol) in dry dichloromethane (30 mL) was added DCC (142 mg, 0.69 mmol), DMAP (28 mg, 0.23 mmol), and isobutyl alcohol (63.8 mL,0.69 mmol). The mixture was stirred at 0 o C for 4 h and the mixture was concentrated under reduced pressure. The residue was purified by column chromatography (hexanes: EtOAc = 3:1) to give compound 5s (138 mg, 48.8%) as a red solid: m.p. 58-59 o C; 1H-NMR (CDCl3, 400 MHz) δ 7.32 (d, J = 9.6 Hz, 1H), 7.26 (d, J = 9.6Hz, 1H), 6.44 (s, 1H), 3.96 (s, 3H), 3.95 (s, 3H), 3.85 (d, J = 6.8 Hz, 2H), 2.75 (t, J = 7.6 Hz, 2H), 2.31 (t, J = 7.6 Hz, 2H), 1.96-1.89 (m, 1H), 1.72-1.68 (m, 4H), 1.29-1.25 (m, 12H), 0.94 (s, 3H), 0.92 (s, 3H); m/z 491 (M+H)+.General procedure for the synthesis of compounds (6a-6k). To a solution of 11 (301 mg, 1.38 mmol) in methanol (30 mL) was added the corresponding alkyl amine (2.07 mmol). The mixture was stirred at room temperature for 4 h and evaporated under reduced pressure. The crude product was purified by column chromatography (hexanes:EtOAc = 2:1) to give the titled compounds 6a -6k .2-Methylamino-5,8-dimethoxy-1,4-naphthoquinone (6a):Obtained as a red solid (194 mg, 56.7%): m.p. 203-204 oC; 1H-NMR (CDCl 3, 400MHz) δ 7.34 (d, J = 9.6 Hz), 7.19 (d, J = 9.2 Hz, 1H), 5.75 (br s, 1H), 5.60 (s, 1H), 3.96 (s, 3H), 3.94 (s,3H), 2.87 (d, J = 5.2 Hz, 3H); m/z 248 (M+H)+.2-Ethylamino-5,8-dimethoxy-1,4-naphthoquinone (6b): Obtained as a red solid (85 mg, 23.6%): m.p. 172-173 o C; 1H-NMR (CDCl 3, 400 MHz) δ 7.34 (d, J = 9.2 Hz, 1H), 7.19 (d, J = 9.6 Hz, 1H), 5.63 (br s, 1H), 5.61 (s, 1H), 3.96 (s, 3H), 3.94 (s, 3H), 3.18-3.127 (m, 2H), 1.29 (t, J = 7.2 Hz, 3H); m/z262.1 (M+H)+.2-Propylamino-5,8-dimethoxy-1,4-naphthoquinone (6c): Obtained as a red solid (177 mg, 46.5%): m.p. 175-176 o C; 1H-NMR (CDCl 3, 400 MHz) δ 7.34 (d, J = 9.2 Hz, 1H), 7.19 (d, J = 9.2 Hz, 1H), 5.72 (br s, 1H), 5.61 (s, 1H), 3.96 (s, 3H), 3.94 (s, 3H), 3.09 (q, 2H), 1.68 (m, J = 6.8 Hz, 2H), 0.99 (t, J =7.6 Hz, 3H); m/z 276 (M+H)+.2-Butylamino-5,8-dimethoxy-1,4-naphthoquinone (6d): Obtained as a white solid (185 mg, 46.2%): m.p. 104-105 o C; 1H-NMR (CDCl 3, 400 MHz) δ 7.34 (d, J = 9.6 Hz, 1H), 7.19 (d, J = 9.6 Hz, 1H), 5.70 (br s, 1H), 5.61 (s, 1H), 3.96 (s, 3H), 3.94 (s, 3H), 3.11 (q, J = 6.8 Hz, 2H), 1.64 (m, 2H), 1.46-1.38(m, 2H), 0.95 (t, J = 7.2 Hz, 3H); m/z 290 (M+H)+.2-Pentylamino-5,8-dimethoxy-1,4-naphthoquinone (6e): Obtained as a red solid (234 mg, 55.9%): m.p. 106-107 o C; 1H-NMR (CDCl 3, 400 MHz) δ 7.34 (d, J = 9.2 Hz, 1H), 7.19 (d, J = 9.2 Hz, 1H), 5.70 (br s, 1H), 5.61 (s, 1H), 3.96 (s, 3H), 3.94 (s, 3H), 3.11 (q, J = 6.8 Hz, 2H), 1.29 (t, J = 7.2 Hz, 3H);m/z 303.6 (M+H)+.2-Hexylamino-5,8-dimethoxy-1,4-naphthoquinoe (6f): Obtained as a red solid (207 mg, 47.3%): m.p. 83-84 o C; 1H-NMR (CDCl 3, 400 MHz) δ 7.34 (d, J = 9.6 Hz, 1H), 7.18 (d, J = 9.6 Hz, 1H), 5.69 (br s, 1H), 5.61 (s, 1H), 3.96 (s, 3H), 3.94 (s, 3H), 3.11 (q, J = 6.8 Hz, 2H), 1.66-1.58 (m, 4H),1.32-1.30 (m, 4H), 0.89 (t, J = 6.8 Hz, 3H); m/z 318 (M+H)+.2-Heptylamino-5,8-dimethoxy-1,4-napthoquinone (6g): Obtained as a red solid (191 mg, 41.8%): m.p. 74-75 o C; 1H-NMR (CDCl 3, 400 MHz) δ 7.34 (d, J = 9.6 Hz, 1H), 7.33 (d, J = 9.6 Hz, 1H), 7.18 (d, J = 9.6 Hz, 1H), 5.69 (br s, 1H), 5.60 (s, 1H), 3.96 (s, 3H), 3.94 (s, 3H), 3.11 (q, J = 6.8 Hz, 2H), 1.66-1.61 (m, 2H), 1.35-1.29 (m, 8H), 0.89 (t, J = 6.4 Hz,3H); m/z 332 (M+H)+.2-Octylamino-5,8-dimethoxy-1,4-naphthoquinone (6h):Obtained as a red solid (214 mg, 45.1%): m.p. 81-82 oC; 1H-NMR (CDCl 3, 400 MHz) δ 7.34 (d, J = 9.6 Hz, 1H), 7.18 (d, J = 9.6 Hz, 1H), 5.69 (br, 1H), 5.61 (s, 1H), 3.96 (s, 3H), 3.94 (s, 3H), 3.11 (q, J = 6.8 Hz, 2H), 1.68-1.61 (m, 2H),1.41-1.20 (m, 10H), 0.88 (t, J = 6.4 Hz, 3H); m/z 346 (M+H)+.2-Nonylamino-5,8-dimethoxy-1,4-naphthoquinone (6i):Obtained as a red solid (218 mg, 44.0%): m.p. 85-86 oC; 1H-NMR (CDCl 3, 400 MHz) δ 7.34 (d, J = 9.6 Hz, 1H), 7.18(d, J = 9.6 Hz, 1H), 5.69 (br s, 1H), 5.61 (s, 1H), 3.96 (s, 3H), 3.94 (s, 3H), 3.11 (q, J = 7.2 Hz, 2H), 1.66-1.61 (m, 2H), 1.41-1.20 (m, 12H), 0.88 (t, J = 6.4 Hz, 3H); m/z 360 (M+H)+.2-Decylamino-5,8-dimethoxy-1,4-naphthoquinone (6j):Obtained as a red solid (91 mg, 17.6%): m.p. 86-87 oC; 1H-NMR (CDCl 3, 400 MHz) δ 7.33 (d, J = 9.2 Hz, 1H), 7.18 (d, J = 9.2 Hz, 1H), 5.69 (br s, 1H), 5.60 (s, 1H), 3.96 (s, 3H), 3.94 (s, 3H), 3.11 (q, J = 6.8 Hz, 2H), 1.66-1.61 (m, 2H), 1.40-1.20 (m, 14H), 0.88 (t, J = 6.4 Hz, 3H); m/z 374.0 (M+H)+.2-Dodecylamino-5,8-dimethoxy-1,4-naphthoquinone (6k):Obtained as a red solid (308 mg, 55.5%): m.p. 74-75 o C; 1H-NMR (CDCl 3, 400 MHz) δ 7.33 (d, J = 9.6 Hz, 1H), 7.18 (d, J = 9.2 Hz, 1H), 5.69 (br s, 1H), 5.60 (s, 1H), 3.96 (s, 3H), 3.94 (s, 3H), 3.11 (q, J = 6.8 Hz, 2H), 1.66-1.61 (m, 2H), 1.40-1.20(m, 18H), 0.88 (t, J = 6.4 Hz, 3H); m/z 402.0 (M+H)+.ACA T inhibition assay. In vitro study for cellular cholesteryl ester formation: Target cells were seeded in a 6 well plate atthe density of 1×106cells/mL/well and cultured in the medium containing 10% FBS for 2 days and then cultured overnight in the medium containing 1% BSA. The medium was replaced and the cells were incubated with 2.5 µL of sample or 0.1%DMSO 0.1% as their vehicle and [l-14C] oleic acid (0.5 µCi) for 6 h in 6 well plate. Then, the medium was removed and the cells were washed three times with PBS. The intracellular lipids of cells were extracted by hexanes/isopropanol (3/2) and the organic phase was evaporated under nitrogen. The total lipid was separated by silica gel TLC plate in petroleum ether/diethyl ether/acetic acid (90/10/1) and the amount of radioactivity was analyzed with a bioimaging analyzer (BAS- 1500, FUJIFILM). Each experiment was performed at least in triplicate. Results are expressed or plotted as the mean value.Acknowledgments. This study was supported by a grant from the Agricultural R&D Promotion Center (R0708132), Korea.References1.Meiner, V . L.; Cases, S.; Myers, H. M. et al . Proc. Natl. Acad.Sci. USA 1996, 93, 14041.2.Sucking, K. E.; Stange, E. F. J. Lipid Res. 1985, 26, 647.3.Adameova, A.; Kuzelova, M.; Faberova, V .; Holub, P.; Svec, P .Triglycerides and Cholesterol Research ; Welson, L. T., Ed.; Nova Science Publishers, Inc.: 2006; Chapter VII. 4.Ikenoya, M.; Yoshinaka, Y .; Kobayashi, H.; Kawamine, K.;Shibuya, K.; Sato, F.; Sawanobori, K.; Watanabe, T.; Miyazaki, A. Atherosclerosis 2007, 191, 290.5.Terasaka, N.; Miyazaki, A.; Kasanuki, N.; Ito, K.; Ubukata, N.;Koieyama, T.; Kitayama, K.; Tanimoto, T.; Maeda, N.; Inaba, T. Atherosclerosis 2007, 190, 239.6.Zamorano-Leon, J. J.; Fernandez-Sanchez, R.; Lopez Farre, A.J.; Lapuente-Tiana, L.; Alonso-Orgaz, S.; Sacristan, D.; Junquera, D.; Delhon, A.; Conesa, A.; Mateos-Caceres, P. J.; Macaya, C. J. Cardiovas. Pharm. 2006, 48, 128.7.Ross, R . New Engl. J. Med. 1999, 340, 115.8.Stein, O.; Stein, Y. Atherosclerosis 2005, 178, 217.9.An, S.; Park, Y . D.; Paik, Y . K.; Jeong, T. S.; Lee, W. S. Bioorg.Med. Chem. Lett . 2007, 17, 1112.10.Rho, M. C.; Lee, S. W.; Park, H. R.; Choi, J. H.; Kang, J. Y .; Kim,K.; Lee, H. S.; Kim, Y . K. Phytochem. 2007, 68, 899.。