离散数学习题集(十五套含答案)

合集下载

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 在集合论中,下列哪个选项表示两个集合A和B的并集?A. A ∩ BB. A ∪ BC. A - BD. A × B答案:B2. 命题逻辑中,下列哪个符号表示逻辑非?A. ∧B. ∨C. ¬D. →答案:C3. 在有向图中,如果存在一条从顶点u到顶点v的路径,那么称顶点v为顶点u的:A. 祖先B. 后代C. 邻居D. 连接点答案:B二、填空题1. 一个命题函数P(x)表示为“x是偶数”,那么其否定形式为________。

答案:x是奇数2. 在关系R上,如果对于所有的a和b,如果(a, b)∈R且(b, a)∈R,则称R为________。

答案:自反的三、简答题1. 简述什么是等价关系,并给出其三个基本性质。

答案:等价关系是一种特殊的二元关系,它满足自反性、对称性和传递性。

自反性指每个元素都与自身相关;对称性指如果a与b相关,则b也与a相关;传递性指如果a与b相关,b与c相关,则a与c也相关。

2. 解释什么是图的连通分量,并给出如何判断一个图是否是连通图。

答案:连通分量是指图中最大的连通子图,即图中任意两个顶点之间都存在路径。

判断一个图是否是连通图,可以通过深度优先搜索或广度优先搜索算法遍历整个图,如果所有顶点都被访问,则图是连通的。

四、计算题1. 给定命题公式P:((p → q) ∧ (r → ¬p)) → (q ∨ ¬r),证明P是一个重言式。

答案:通过使用命题逻辑的等价规则和真值表,可以证明P在所有可能的p, q, r的真值组合下都为真,因此P是一个重言式。

2. 给定一个有向图G,顶点集合V(G)={1, 2, 3, 4},边集合E(G)={(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)}。

找出所有强连通分量。

答案:通过Kosaraju算法或Tarjan算法,可以找到图G的强连通分量,结果为{1, 4}和{2, 3}。

离散数学复习题含答案

离散数学复习题含答案

离散数学复习题含答案1. 集合论基础集合A和集合B的交集表示为A∩B,它包含所有既属于A又属于B的元素。

请写出集合{1, 2, 3}和{2, 3, 4}的交集。

答案:{2, 3}2. 逻辑运算设命题p为“今天是周一”,命题q为“明天是周三”。

请判断复合命题“p且q”的真值。

答案:假3. 图论初步在无向图中,若存在一条路径使得起点和终点相同,则称该图为欧拉图。

请判断一个有5个顶点且每个顶点的度均为2的无向图是否一定是欧拉图。

答案:是4. 组合数学从5个不同的球中选取3个,有多少种不同的选取方法?答案:10种5. 布尔代数在布尔代数中,逻辑或运算符表示为∨,逻辑与运算符表示为∧。

请计算表达式(A∨B)∧(¬A∨¬B)的值。

答案:¬(A∧B)6. 归纳与递归给定递归关系式T(n) = 2T(n-1) + 1,初始条件为T(1) = 1,求T(3)的值。

答案:T(3) = 2T(2) + 1 = 2(2T(1) + 1) + 1 = 2(2*1 + 1) + 1 =2(3) + 1 = 77. 有限状态机在有限状态机中,状态转移可以通过一个转移函数来描述。

若状态转移函数定义为δ(q, a) = q',其中q和q'是状态,a是输入符号,请说明该函数的作用。

答案:该函数定义了在给定当前状态q和输入符号a的情况下,有限状态机将转移到新的状态q'。

8. 正则表达式正则表达式用于描述字符串的模式。

请写出匹配任意长度的数字串的正则表达式。

答案:\d*9. 命题逻辑命题逻辑中的等价关系是指两个命题逻辑表达式在所有可能的真值赋值下具有相同的真值。

请判断命题p∨¬p和命题¬(p∧¬p)是否等价。

答案:是10. 树的遍历在计算机科学中,树的遍历有前序、中序和后序三种方式。

请简述后序遍历的步骤。

答案:后序遍历的步骤是先访问左子树,然后访问右子树,最后访问根节点。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、单项选择题(每题2分,共20分)1. 在集合论中,空集的表示符号是()。

A. {0}B. ∅C. {}D. Ø答案:B2. 如果A和B是两个集合,那么A∩B表示()。

A. A和B的并集B. A和B的交集C. A和B的差集D. A和B的补集答案:B3. 命题逻辑中,p ∧ q的真值表中,当p和q都为假时,p ∧ q的值为()。

A. 真B. 假C. 不确定D. 无定义答案:B4. 在图论中,如果一个图中的任意两个顶点都由一条边相连,则称这个图为()。

A. 连通图B. 无向图C. 完全图D. 有向图答案:C5. 布尔代数中,逻辑或运算符表示为()。

A. ∧B. ∨C. ¬D. →答案:B6. 一个关系R是从集合A到集合B的二元关系,如果对于A中的每个元素x,B中都存在唯一的元素y与之对应,则称R为()。

A. 单射B. 满射C. 双射D. 单满射答案:C7. 在命题逻辑中,如果p是假命题,那么¬p的值为()。

A. 真B. 假C. 不确定D. 无定义答案:A8. 一个有向图是无环的,那么它一定是()。

A. 有向无环图B. 无向无环图C. 有向有环图D. 无向有环图答案:A9. 在集合论中,如果集合A是集合B的子集,那么A⊆B表示()。

A. A包含于BB. A是B的真子集C. A是B的超集D. A与B相等答案:A10. 命题逻辑中,p → q的真值表中,当p为真,q为假时,p → q 的值为()。

A. 真B. 假C. 不确定D. 无定义答案:B二、多项选择题(每题3分,共15分)1. 在集合论中,以下哪些符号表示的是集合的并集()。

A. ∪B. ∩C. ⊆D. ⊂答案:A2. 在图论中,以下哪些说法是正确的()。

A. 有向图可以是无环的B. 无向图可以是无环的C. 有向图一定是连通的D. 无向图一定是连通的答案:A B3. 在命题逻辑中,以下哪些符号表示的是逻辑与()。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学练习题(含答案)题目1. 对于集合 $A={1,2,3,...,10}$ 和 $B={n|n是偶数,2<n<8}$,求 $A \cap B$ 的元素。

2. 存在三个可识别的状态A,B,C。

置换群 $S_3$ 作用在状态集上。

定义四个动作:$α: A → C, β: A → B, γ: C→ A, δ: B→ C$。

确定式子,描述 $\{α,β,γ,δ\}$ 的乘法表。

3. 证明 $\forall n \in \mathbb{N}$,合数的个数不小于$n$。

4. 给定一个无向带权图,图中每个节点编号分别是$1,2,...,n$,证明下列结论:a. 如果从节点$i$到$j$只有一条权值最小的路径,则这条路径的任意子路径都是最短路径。

b. 如果从节点$i$到$j$有两条或两条以上权值相等的路径,则从$i$到$j$的最短路径可能不唯一。

答案1. $A \cap B = \{2,4,6\}$。

2. 乘法表:3. 对于任意$n$,我们可以选择$n+1$个连续的自然数$k+1,k+2,...,k+n,k+n+1$中的$n$个数,其中$k \in \mathbb{Z}$。

这$n$个数构成的$n$个正整数均为合数,因为它们都至少有一个小于它自身的因子,所以不是质数。

所以合数的个数不小于任意$n$。

4.a. 根据题意,从$i$到$j$只有一条权值最小的路径,即这条最短路径已被确定。

如果从这条路径中任意取出一段子路径,假设这段子路径不是这个节点到$j$的最短路径,那么存在其他从$i$到$j$的路径比这段子路径更优,又因为这条路径是最短路径,所以这段子路径也一定不优于最短路径,矛盾。

所以从这条路径中任意取出的子路径都是最短路径。

b. 如果从节点$i$到$j$有多条权值相等的路径,则这些路径权值都是最短路径的权值。

因为所有最短路径的权值相等,所以这些路径的权值就是最短路径的权值。

所以从$i$到$j$的最短路径可能不唯一。

离散数学试题总汇及答案

离散数学试题总汇及答案

离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1, 2, 3, 4}中,子集{1, 2}的补集是()。

A. {3, 4}B. {1, 3, 4}C. {2, 3, 4}D. {1, 2, 3, 4}答案:A2. 命题“若x > 0,则x² > 0”的逆否命题是()。

A. 若x² ≤ 0,则x ≤ 0B. 若x² > 0,则x > 0C. 若x ≤ 0,则x² ≤ 0D. 若x² ≤ 0,则x < 0答案:C3. 函数f(x) = x² + 2x + 1的值域是()。

A. {x | x ≥ 0}B. {x | x ≥ 1}C. {x | x ≥ 2}D. {x | x ≥ -1}答案:B4. 以下哪个图是无向图()。

A. 有向图B. 无向图C. 有向树D. 无向树答案:B5. 以下哪个图是二分图()。

A. 完全图B. 非完全图C. 任意两个顶点都相连的图D. 任意两个顶点都不相连的图答案:C6. 以下哪个是哈密顿回路()。

A. 经过每个顶点恰好一次的回路B. 经过每个顶点至少一次的回路C. 经过每个顶点恰好两次的回路D. 经过每个顶点至少两次的回路答案:A7. 以下哪个是欧拉回路()。

A. 经过每条边恰好一次的回路B. 经过每条边至少一次的回路C. 经过每条边恰好两次的回路D. 经过每条边至少两次的回路答案:A8. 以下哪个是二进制数()。

A. 1010B. 1020C. 1102D. 1120答案:A9. 以下哪个是格雷码()。

A. 0101B. 1010C. 1100D. 1110答案:B10. 以下哪个是素数()。

A. 4B. 6C. 7D. 8答案:C二、填空题(每题2分,共20分)11. 集合{1, 2, 3}与{2, 3, 4}的交集是______。

答案:{2, 3}12. 命题“若x > 0,则x² > 0”的逆命题是:若x² > 0,则______。

离散数学习题集(十五套含答案)

离散数学习题集(十五套含答案)

离散数学试题与答案试卷一一、填空20% (每小题2分)1.设}7|{)},5()(|{<∈=<∈=+xExxBxNxxA且且(+=⋃BA{0,1,2,3,4,6} 。

2.A,B,C表示三个集合,文图中阴影部分的集合表达式为。

3R,S的真值为1,则)()))(((SRPRQP⌝∨→⌝∧→∨⌝的真值= 1 。

4.公式PRSRP⌝∨∧∨∧)()(的主合取范式为)()(RSPRSP∨⌝∨⌝∧∨∨⌝。

5.若解释I的论域D仅包含一个元素,则)()(xxPxxP∀→∃在I下真值为1 。

6.设A={1,2,3,4},A上关系图为则R2 = {<a.b>,<a,c>,<a,d>,<b,d>,<c,d> 。

7.设A={a,b,c,d},其上偏序关系R的哈斯图为则R= {<a.b>,<a,c>,<a,d>,<b,d>,<c,d>} I A。

8.图的补图为9.设A={a,b,c,d} ,A上二元运算如下:那么代数系统<A,*>的幺元是 a ,有逆元的元素为a , b , c ,d,它们的逆元分别为 a , d , c , d 。

10.下图所示的偏序集中,是格的为 c 。

二、选择20% (每小题2分)1、下列是真命题的有(CD)A.}}{{}{aa⊆;B.}}{,{}}{{ΦΦ∈Φ;C.}},{{ΦΦ∈Φ;D.}}{{}{Φ∈Φ。

2、下列集合中相等的有(BC )A.{4,3}Φ⋃;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。

3、设A={1,2,3},则A上的二元关系有( C )个。

A.23 ;B.32 ;C.332⨯;D.223⨯。

4、设R,S是集合A上的关系,则下列说法正确的是(A )A.若R,S 是自反的,则SR 是自反的;B.若R,S 是反自反的,则SR 是反自反的;C .若R ,S 是对称的, 则S R是对称的;D .若R ,S 是传递的, 则S R 是传递的。

离散考试试题及答案

离散考试试题及答案

离散考试试题及答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念不是布尔代数的基本运算?A. 与B. 或C. 非D. 模答案:D2. 集合论中,下列哪个符号表示“属于”关系?A. ∈B. ∉C. ⊆D. ⊂答案:A3. 命题逻辑中,下列哪个符号表示“蕴含”关系?A. ∧B. ∨C. →D. ↔答案:C4. 关系R在集合A上是自反的,意味着什么?A. 对于所有a∈A,(a, a)∈RB. 对于所有a∈A,(a, a)∉RC. 对于所有a∈A,(a, b)∈RD. 对于所有a∈A,(a, b)∉R答案:A二、填空题(每题5分,共20分)1. 一个集合的基数是集合中元素的________。

答案:数量2. 在有向图中,如果存在一条从顶点u到顶点v的路径,则称顶点v 是顶点u的________。

答案:可达的3. 一个图是连通的,当且仅当图中任意两个顶点都是________。

答案:连通的4. 在命题逻辑中,一个命题的否定是________。

答案:它的对立命题三、简答题(每题10分,共30分)1. 请解释什么是图的哈密顿回路。

答案:哈密顿回路是一个图中的闭合回路,它恰好访问图中的每个顶点一次。

2. 描述一下什么是二元关系,并给出一个例子。

答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。

例如,小于关系是数字集合上的一个二元关系。

3. 什么是图的生成树?答案:图的生成树是图的一个子图,它包含图中的所有顶点,并且是一棵树,即它是连通的且没有环。

四、计算题(每题15分,共30分)1. 给定一个集合A={1,2,3,4,5},计算它的幂集。

答案:幂集P(A)={∅, {1}, {2}, {3}, {4}, {5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3,5}, {4,5},{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, {3,4,5}, {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}, {1,2,3,4,5}, A}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学试题与答案试卷一一、填空20% (每小题2分)1.设}7|{)},5()(|{<∈=<∈=+xExxBxNxxA且且(+=⋃BA{0,1,2,3,4,6} 。

2.A,B,C表示三个集合,文图中阴影部分的集合表达式为。

3R,S的真值为1,则)()))(((SRPRQP⌝∨→⌝∧→∨⌝的真值= 1 。

4.公式PRSRP⌝∨∧∨∧)()(的主合取范式为)()(RSPRSP∨⌝∨⌝∧∨∨⌝。

5.若解释I的论域D仅包含一个元素,则)()(xxPxxP∀→∃在I下真值为1 。

6.设A={1,2,3,4},A上关系图为则R2 = {<a.b>,<a,c>,<a,d>,<b,d>,<c,d> 。

7.设A={a,b,c,d},其上偏序关系R的哈斯图为则R= {<a.b>,<a,c>,<a,d>,<b,d>,<c,d>} I A。

8.图的补图为9.设A={a,b,c,d} ,A上二元运算如下:那么代数系统<A,*>的幺元是 a ,有逆元的元素为a , b , c ,d,它们的逆元分别为 a , d , c , d 。

10.下图所示的偏序集中,是格的为 c 。

二、选择20% (每小题2分)1、下列是真命题的有(CD)A.}}{{}{aa⊆;B.}}{,{}}{{ΦΦ∈Φ;C.}},{{ΦΦ∈Φ;D.}}{{}{Φ∈Φ。

2、下列集合中相等的有(BC )A.{4,3}Φ⋃;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。

3、设A={1,2,3},则A上的二元关系有( C )个。

A.23 ;B.32 ;C.332⨯;D.223⨯。

4、设R,S是集合A上的关系,则下列说法正确的是(A )A.若R,S 是自反的,则SR 是自反的;B.若R,S 是反自反的,则SR 是反自反的;C .若R ,S 是对称的, 则S R是对称的;D .若R ,S 是传递的, 则S R 是传递的。

5、设A={1,2,3,4},P (A )(A 的幂集)上规定二元系如下|}||(|)(,|,{t s A p t s t s R =∧∈><=则P (A )/ R=( D )A .A ;B .P(A) ;C .{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D .{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A 上包含关系“⊆”的哈斯图为( C )7、下列函数是双射的为( A )A .f : I →E , f (x) = 2x ;B .f : N →N ⨯N, f (n) = <n , n+1> ;C .f : R →I , f (x) = [x] ;D .f :I →N, f (x) = | x | 。

(注:I —整数集,E —偶数集, N —自然数集,R —实数集) 8、图 中 从v 1到v 3长度为3 的通路有( D )条。

A . 0;B . 1;C . 2;D . 3。

9、下图中既不是Eular 图,也不是Hamilton 图的图是( B )10、在一棵树中有7片树叶,3个3度结点,其余都是4度结点则该树有(A )个4度结点。

A .1;B .2;C .3;D .4 。

三、证明 26%1、R 是集合X 上的一个自反关系,求证:R 是对称和传递的,当且仅当< a, b> 和<a , c>在R 中有<.b , c>在R 中。

(8分)1、 证:“⇒”Xc b a ∈∀,, 若R>c ,a <,>b ,a <∈由R 对称性知R a ,c <,>a ,b <∈>,由R 传递性得 R >c ,b <∈“⇐” 若R >b ,a <∈,R >c ,a <∈有 R >c ,b <∈ 任意 X b a ∈,,因R >a ,a <∈若R >b ,a <∈R >a ,b < ∈∴ 所以R 是对称的。

若R >b ,a <∈,R >c b,<∈ 则 R c b, R >a b,<>∈<∧∈ R >c ,a < ∈∴ 即R 是传递的。

2、f 和g 都是群<G 1 ,★>到< G 2, *>的同态映射,证明<C , ★>是<G 1, ★>的一个子群。

其中C=)}()(|{1x g x f G x x =∈且(8分)证Cb a ∈∀,,有)()(),()(b g b f a g a f ==,又)()(,)()(1111b g b g b f b f ----==)()()()(1111----===∴b g b g b f b fa f (∴★a gb g a g b f a f b ()(*)()(*)()111===---★)1-ba ∴★Cb ∈-1 ∴< C , ★> 是 < G 1 , ★>的子群。

3、G=<V , E> (|V| = v ,|E|=e ) 是每一个面至少由k (k ≥3)条边围成的连通平面图,则2)2(--≤k v k e , 由此证明彼得森图(Peterson )图是非平面图。

(11分)证:①设G 有r 个面,则rkF d e ri i ≥=∑=1)(2,即ke r 2≤。

而2=+-r e v 故k e e v r e v 22+-≤+-=即得 2)2(--≤k v k e 。

(8分)②彼得森图为10,15,5===v e k ,这样2)2(--≤k v k e 不成立,所以彼得森图非平面图。

(3分) 四、逻辑推演 16%用CP 规则证明下题(每小题 8分)1、F A F E D D C B A →⇒→∨∧→∨,证明:①A P (附加前提) ②B A ∨T ①I ③D C B A ∧→∨ P ④D C ∧T ②③I ⑤D T ④I ⑥E D ∨T ⑤I⑦F E D →∨P ⑧F T ⑥⑦I⑨F A →CP2、)()())()((x xQ x xP x Q x P x ∀→∀⇒→∀①)(x xP ∀ P (附加前提) ②)(c P US ①③))()((x Q x P x →∀ P ④)()(c Q c P →US ③⑤)(c Q T ②④I ⑥)(x xQ ∀UG ⑤⑦)()(x xQ x xP ∀→∀CP五、计算 18%1、设集合A={a ,b ,c ,d}上的关系R={<a , b > ,< b , a > ,< b, c > , < c , d >}用矩阵运算求出R 的传递闭包t (R)。

(9分) 解:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0000100001010010R M , ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==00000000101001012R R R M M M⎪⎪⎪⎪⎪⎭⎫⎝⎛==000000000101101023R R R M M M ,⎪⎪⎪⎪⎪⎭⎫⎝⎛==00000001010010134R R R M M M ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+++=0000100011111111432)(R R R R R t M M M M M∴t (R)={<a , a> , <a , b> , < a , c> , <a , d > , <b , a > , < b ,b > , < b , c . > ,< b , d > , < c , d > }2、如下图所示的赋权图表示某七个城市721,,,v v v 及预先算出它们之间的一些直接通信线路造价,试给出一个设计方案,使得各城市之间能够通信而且总造价最小。

(9分)解: 用库斯克(Kruskal )算法求产生的最优树。

算法略。

结果如图:树权C(T)=23+1+4+9+3+17=57即为总造价。

试卷二试题与答案一、填空 20% (每小题2分)1、P :你努力,Q :你失败。

“除非你努力,否则你将失败”的翻译为Q P →⌝;“虽然你努力了,但还是失败了”的翻译为Q P ∧ 。

2、论域D={1,2}。

3、设S={a 1 , 2 8i 31的子集是},,,,{876540001111131a a a a a B B == 。

4、设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则R=R={<2,2>,<2,3>,<2,4>,<2,5>,<2,6>,<3,2>,<3,3>,<3,4>,<3,5>,<3,6>,<4,5>,<4,6>,<5,2>,<5,3>,<5,4>,<5,5>,<5,6>}(列举法)。

R 的关系矩阵M R =⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0000011111110001111111111。

5、设A={1,2,3},则A 上既不是对称的又不是反对称的关系R= R={<1,2>,<1,3>,<2,1>}; ;A 上既是对称的又是反对称的关系R= R={<1,1>,<2,2>,<3,3>} 。

6、设代数系统<A ,*>,其中A={a ,b ,c},则幺元是 A ;是否有幂等性 否 ;是否有对称性 有 。

7、4阶群必是 Klein 四元群 群或 循环群 群。

8、下面偏序格是分配格的是 B 。

9、n 个结点的无向完全图K n 的边数为 )1(21-n n ,欧拉图的充要条件是图中无奇度结点且连通。

10、公式R Q P Q P P ⌝∧∨⌝∧∧⌝∨)(())((的根树表示为二、选择 20% (每小题2分)1、在下述公式中是重言式为( BD )A .)()(Q P Q P ∨→∧;B .))()(()(P Q Q P Q P →∧→↔↔;C .Q Q P∧→⌝)(; D .)(Q P P ∨→。

2、命题公式 )()(P Q Q P ∨⌝→→⌝ 中极小项的个数为(D ),成真赋值的个数为( D )。

相关文档
最新文档