卡尔曼滤波预测方程基础的计算过程

合集下载

卡尔曼滤波计算举例

卡尔曼滤波计算举例

卡尔曼滤波计算举例⏹计算举例⏹卡尔曼滤波器特性假设有一个标量系统,信号与观测模型为[1][][]x k ax k n k +=+[][][]z k x k w k =+其中a 为常数,n [k ]和w [k ]是不相关的零均值白噪声,方差分别为和。

系统的起始变量x [0]为随机变量,其均值为零,方差为。

2nσ2σ[0]x P (1)求估计x [k ]的卡尔曼滤波算法;(2)当时的卡尔曼滤波增益和滤波误差方差。

220.9,1,10,[0]10nx a P =σ=σ==1. 计算举例根据卡尔曼算法,预测方程为:ˆˆ[/1][1/1]xk k ax k k -=--预测误差方差为:22[/1][1/1]x x nP k k a P k k -=--+σ卡尔曼增益为:()1222222[][/1][/1][1/1][1/1]x x x nx n K k P k k P k k a P k k a P k k -=--+σ--+σ=--+σ+σˆˆˆ[/][/1][]([][/1])ˆˆ[1/1][]([][1/1])ˆ(1[])[1/1][][]xk k x k k K k z k x k k axk k K k z k ax k k a K k xk k K k z k =-+--=--+---=---+滤波方程:()()2222222222222[/](1[])[/1][1/1]1[1/1][1/1][1/1][1/1]x x x nx n x n x nx nP k k K k P k k a P k k a P k k a P k k a P k k a P k k =--⎛⎫--+σ=---+σ ⎪--+σ+σ⎝⎭σ--+σ=--+σ+σ滤波误差方差起始:ˆ[0/0]0x=[0/0][0]x x P P =k [/1]x P k k -[/]x P k k []K k 012345689104.76443.27012.67342.27652.21422.18362.16832.16089.104.85923.64883.16542.94752.84402.79352.76870.47360.32700.26730.24040.22770.22140.21840.2168ˆ[0/0]0x=[0/0]10x P =220.9110na =σ=σ=2. 卡尔曼滤波器的特性从以上计算公式和计算结果可以看出卡尔曼滤波器的一些特性:(1)滤波误差方差的上限取决于测量噪声的方差,即()2222222[1/1][/][1/1]x nx x na P k k P k k a P k k σ--+σ=≤σ--+σ+σ2[/]x P k k ≤σ这是因为(2)预测误差方差总是大于等于扰动噪声的方差,即2[/1]x nP k k -≥σ这是因为222[/1][1/1]x x n nP k k a P k k -=--+σ≥σ(3)卡尔曼增益满足,随着k 的增加趋于一个稳定值。

卡尔曼滤波算法步骤

卡尔曼滤波算法步骤

卡尔曼滤波算法步骤一、引言卡尔曼滤波算法是一种用于估计系统状态的优化算法,它可以通过利用系统的动态模型和传感器测量数据,实时地进行状态估计,并且具有较高的精度和鲁棒性。

本文将介绍卡尔曼滤波算法的基本步骤,以帮助读者了解和应用该算法。

二、系统模型在开始使用卡尔曼滤波算法之前,我们需要建立系统的动态模型。

系统模型描述了系统状态的变化规律,通常使用状态转移方程来表示。

状态转移方程可以是线性的或非线性的,具体取决于系统的性质。

在建立系统模型时,我们需要考虑系统的物理特性和运动规律,以准确地描述系统的运动过程。

三、观测模型观测模型描述了传感器测量数据与系统状态之间的关系。

通常情况下,传感器的测量数据是不完全的、噪声干扰的,因此我们需要建立观测模型来描述这种关系。

观测模型可以是线性的或非线性的,具体取决于传感器的性质和测量方式。

在建立观测模型时,我们需要考虑传感器的测量误差和噪声特性,以准确地描述传感器的观测过程。

四、预测步骤卡尔曼滤波算法的预测步骤用于预测系统的状态。

预测步骤基于系统的动态模型和当前的状态估计,通过状态转移方程对系统的状态进行预测。

预测步骤的输出是对系统状态的最优预测值和预测误差的协方差矩阵。

预测步骤的目标是尽可能准确地预测系统的状态,以便对系统进行控制或决策。

五、测量更新步骤卡尔曼滤波算法的测量更新步骤用于根据传感器的测量数据来更新对系统状态的估计。

测量更新步骤基于观测模型和预测步骤的输出,通过观测模型将测量数据转换为状态空间中的残差。

然后,通过计算残差的协方差矩阵和系统的预测误差的协方差矩阵的加权平均,得到对系统状态的最优估计值和估计误差的协方差矩阵。

测量更新步骤的目标是通过融合传感器的测量数据和系统的状态估计,得到对系统状态的最优估计。

六、迭代更新卡尔曼滤波算法的预测步骤和测量更新步骤可以交替进行,以实现对系统状态的连续估计。

在每次迭代中,首先进行预测步骤,然后进行测量更新步骤。

通过迭代更新,卡尔曼滤波算法可以逐步优化对系统状态的估计,提高估计的精度和鲁棒性。

卡尔曼滤波及其算法实现

卡尔曼滤波及其算法实现

卡尔曼滤波及其算法实现一、卡尔曼滤波原理1.预测步骤:根据系统的动态模型,以当前时刻的状态估计值为输入,预测下一时刻的状态估计值,同时计算预测误差的协方差矩阵。

2.更新步骤:根据测量模型,将测量值与预测值进行比较,通过加权平均的方式获得更新后的状态估计值,同时计算更新后的状态估计误差的协方差矩阵。

通过不断交替进行预测和更新步骤,卡尔曼滤波可以逐渐优化状态估计值,提供对真实状态的更准确估计。

二、卡尔曼滤波算法实现1.初始化:初始化状态估计值和协方差矩阵。

通常将状态估计值初始化为系统的初始状态,协方差矩阵初始化为一个较大的对角矩阵。

2.预测步骤:通过动态模型预测下一时刻的状态估计值和协方差矩阵。

这可以通过以下几个步骤实现:a.预测状态估计值:使用系统的动态模型和当前时刻的状态估计值,进行状态演化预测。

b.预测误差协方差:使用系统的动态模型和当前时刻的协方差矩阵,计算状态估计误差的协方差矩阵。

c.状态类比噪声:加入过程噪声,以考虑由于系统建模不完备引入的不确定性。

3.更新步骤:根据测量模型,将测量值与预测值进行比较,通过加权平均的方式获得更新后的状态估计值和协方差矩阵。

这可以通过以下几个步骤实现:a.计算卡尔曼增益:使用预测误差协方差矩阵和测量模型的噪声协方差矩阵,计算卡尔曼增益。

卡尔曼增益表示预测误差与测量误差之间的权衡关系。

b.更新状态估计值:使用卡尔曼增益和测量偏差,通过加权平均的方式更新状态估计值。

c.更新误差协方差矩阵:使用卡尔曼增益和测量模型的噪声协方差矩阵,通过加权平均的方式更新预测误差的协方差矩阵。

通过不断交替进行预测和更新步骤,可以得到连续的状态估计值和协方差矩阵,用于对真实状态的估计。

总结:卡尔曼滤波是一种基于概率统计的动态系统估计算法,通过预测和更新步骤,逐渐优化对系统状态的估计。

实际应用中,还可以通过扩展卡尔曼滤波(Extended Kalman Filter)和无迹卡尔曼滤波(Unscented Kalman Filter)等方法来处理非线性系统和非高斯噪声,提高滤波的效果。

卡尔曼滤波算法基本原理

卡尔曼滤波算法基本原理

卡尔曼滤波算法基本原理一、概述卡尔曼滤波算法是一种基于线性系统状态空间模型的递归滤波算法,主要用于估计含有噪声的测量数据,并能够有效地消除噪声对估计的影响,提高估计精度。

本篇文章将详细介绍卡尔曼滤波算法的基本原理。

二、基本原理1.状态方程:卡尔曼滤波算法基于线性系统状态空间模型,该模型可以用状态方程来表示。

状态方程通常包含系统的内部状态、输入和输出,可以用数学公式表示为:x(t+1)=Ax(t)+Bu(t)+w(t)。

其中,x(t)表示系统内部状态,u(t)表示输入,w(t)表示测量噪声。

2.测量方程:测量数据通常受到噪声的影响,卡尔曼滤波算法通过建立测量方程来处理噪声数据。

测量方程通常表示为:z(t)=h(x(t))+v(t),其中z(t)表示测量数据,h(x(t))表示系统输出,v(t)表示测量噪声。

3.卡尔曼滤波算法:卡尔曼滤波算法通过递归的方式,根据历史状态和测量数据来估计当前系统的内部状态。

算法的核心是利用过去的估计误差和测量误差来预测当前的状态,并不断更新估计值,以达到最优估计的效果。

卡尔曼滤波算法主要包括预测和更新两个步骤。

预测步骤根据状态方程和上一步的估计值,预测当前的状态;更新步骤则根据当前的测量数据和预测值,以及系统协方差矩阵,来更新当前状态的估计值和系统协方差矩阵。

4.滤波器的选择:在实际应用中,需要根据系统的特性和噪声的性质来选择合适的卡尔曼滤波器。

常见的滤波器有标准卡尔曼滤波器、扩展卡尔曼滤波器等。

选择合适的滤波器可以提高估计精度,降低误差。

三、应用场景卡尔曼滤波算法在许多领域都有应用,如航空航天、自动驾驶、机器人控制等。

在上述领域中,由于系统复杂、噪声干扰大,使用卡尔曼滤波算法可以有效地提高系统的估计精度和控制效果。

四、总结卡尔曼滤波算法是一种基于线性系统状态空间模型的递归滤波算法,通过预测和更新的方式,能够有效地消除噪声对估计的影响,提高估计精度。

本篇文章详细介绍了卡尔曼滤波算法的基本原理和应用场景,希望能对大家有所帮助。

kalman滤波算法预测和状态估计的基本方程

kalman滤波算法预测和状态估计的基本方程

kalman滤波算法预测和状态估计的基本方程一、简介Kalman滤波算法是一种广泛应用于估计和预测过程的统计方法,尤其在自动化控制领域具有广泛的应用。

本文将介绍Kalman滤波算法的基本方程,包括预测和状态估计的过程。

二、基本方程1.预测方程预测方程是Kalman滤波算法的基础,它基于当前状态和已知的信息,对未来的状态进行预测。

预测方程的形式如下:x[k+1]=x[k]+u[k]+w[k]其中,x[k+1]表示未来的状态,x[k]表示当前状态,u[k]表示输入,w[k]表示过程噪声。

2.状态估计方程状态估计方程是在观测数据与预测数据存在误差的情况下,对当前状态进行估计。

状态估计方程的形式如下:x[k]=(A*x[k]+B*z[k])/(C*z[k]+D*x[k])+e[k]其中,x[k]表示当前状态,z[k]表示观测数据,A、B、C、D分别为状态转移矩阵、观测矩阵、控制矩阵和噪声协方差矩阵,e[k]表示误差项。

3.噪声模型Kalman滤波算法中,噪声模型是关键的一部分。

过程噪声和观测噪声通常被视为正态分布,其方差可以根据实际情况进行调整。

4.滤波增益矩阵滤波增益矩阵是Kalman滤波算法的核心,它用于在预测方程和状态估计方程之间进行转换。

滤波增益矩阵的形式如下:K[k]=P[k|k-1]C*T[C*P[k|k-1]*C*]+R[]/Q[]=H[k]*P[k|k-1]*H*T+R[]/Q[]P[k|k-1]=A*H[k]*P[k|k-1]*H*A*T+H*Q[k]*H*R[k]*H*Q*H+D*C*P[k]*D*C*T+D*Q*D*(A+C)为求得状态估计值及噪声协方差矩阵P及Q的值,必须知道噪声协方差矩阵R及Q的初值及噪声源特性参数(即过程的初值),但具体计算方式较复杂不便详述,读者可以查阅相关文献获取更详细的信息。

同时为了计算滤波增益矩阵K,也需要已知A、B、C、D的值。

三、总结Kalman滤波算法是一种广泛应用于估计和预测过程的统计方法,具有简单易实现、鲁棒性强等特点。

一种卡尔曼滤波自适应算法概要

一种卡尔曼滤波自适应算法概要

一种卡尔曼滤波自适应算法概要卡尔曼滤波是一种常用于估计状态变量的自适应滤波算法。

该算法利用系统观测值和系统模型之间的差异,通过调整权重对观测值和模型进行融合,从而提高对状态变量的估计精度。

卡尔曼滤波算法包含两个主要步骤:预测和修正。

在预测步骤中,通过系统模型和前一个状态的估计值,用一个预测模型来预测当前状态的估计值。

在修正步骤中,通过与实际观测值之间的比较,来修正预测的估计值,得到更准确的状态估计值。

具体的卡尔曼滤波算法如下:1.初始化:设定初始状态和协方差矩阵。

2.预测:基于系统模型,预测当前状态的估计值和协方差矩阵。

利用如下公式进行预测计算:预测状态估计值:x(k,k-1)=F*x(k-1,k-1)+B*u(k)预测协方差矩阵:P(k,k-1)=F*P(k-1,k-1)*F^T+Q其中,F是状态转移矩阵,x(k-1,k-1)是上一状态的估计值,B是输入矩阵,u(k)是输入向量,Q是过程噪声协方差矩阵。

3.修正:基于观测值,修正预测的状态估计值和协方差矩阵。

利用如下公式进行修正计算:卡尔曼增益:K(k)=P(k,k-1)*H^T*(H*P(k,k-1)*H^T+R)^{-1}修正状态估计值:x(k,k)=x(k,k-1)+K(k)*(z(k)-H*x(k,k-1))修正协方差矩阵:P(k,k)=(I-K(k)*H)*P(k,k-1)其中,H是观测矩阵,z(k)是观测值,R是观测噪声协方差矩阵,I是单位矩阵。

4.重复进行预测和修正的步骤,以更新状态的估计值和协方差矩阵。

需要注意的是,卡尔曼滤波算法的有效性依赖于对系统模型和噪声的准确建模。

如果模型不准确或者噪声过大,卡尔曼滤波算法的性能可能降低。

卡尔曼滤波算法的优点是能够通过权衡观测值和模型的信息,得到更准确的状态估计值。

它的自适应性使得它在应对不确定性和噪声的情况下表现优秀。

因此,卡尔曼滤波算法在许多应用领域都有广泛的应用,如航天、导航、机器人等。

卡尔曼滤波计算范文

卡尔曼滤波计算范文

卡尔曼滤波计算范文1.预测过程:预测过程主要基于系统的动态模型进行,根据上一时刻的状态估计和系统的动态模型,预测当前时刻的状态。

预测的状态估计值(先验估计)通过以下公式计算:x^=Fx+Bu其中,x^为先验估计值,F为状态转移矩阵,x为上一时刻的状态估计值,B为控制输入矩阵,u为控制输入。

预测的状态估计误差协方差(先验误差协方差)通过以下公式计算:P^=FPF^T+Q其中,P^为先验误差协方差,P为上一时刻的状态估计误差协方差,Q为过程噪声的协方差矩阵。

2.更新过程:更新过程主要基于测量的信息进行,根据测量值与预测值之间的关系,计算出更新后的状态估计值和状态估计误差协方差。

更新的状态估计值(后验估计)通过以下公式计算:x=x^+K(y-Hx^)其中,x为后验估计值,x^为先验估计值,K为卡尔曼增益,y为测量值,H为测量矩阵。

更新的状态估计误差协方差(后验误差协方差)通过以下公式计算:P=(I-KH)P^其中,P为后验误差协方差,P^为先验误差协方差,I为单位矩阵。

卡尔曼增益K的计算公式如下:K=P^H^T(HP^H^T+R)^-1其中,K为卡尔曼增益,P^为先验误差协方差,H为测量矩阵,R为测量噪声的协方差矩阵。

以上就是卡尔曼滤波的基本计算过程。

需要注意的是,系统的动态模型、控制输入和测量模型是卡尔曼滤波计算的前提条件,不同的系统需要设计相应的模型以进行卡尔曼滤波的计算。

同时,过程噪声的协方差矩阵Q和测量噪声的协方差矩阵R也需要根据实际情况进行估计或测量。

卡尔曼滤波器具有估计精度高、计算效率高等优点,在许多领域都有广泛应用,比如导航、目标跟踪、图像处理等。

但是,由于卡尔曼滤波器的基本假设是线性系统且噪声呈高斯分布,对于非线性系统或非高斯噪声,需要通过扩展卡尔曼滤波(Extended Kalman Filter)或粒子滤波(Particle Filter)等方法进行改进。

卡尔曼滤波计算举例全

卡尔曼滤波计算举例全

卡尔曼滤波计算举例⏹计算举例⏹卡尔曼滤波器特性假设有一个标量系统,信号与观测模型为[1][][]x k ax k n k +=+[][][]z k x k w k =+其中a 为常数,n [k ]和w [k ]是不相关的零均值白噪声,方差分别为和。

系统的起始变量x [0]为随机变量,其均值为零,方差为。

2nσ2σ[0]x P (1)求估计x [k ]的卡尔曼滤波算法;(2)当时的卡尔曼滤波增益和滤波误差方差。

220.9,1,10,[0]10nx a P =σ=σ==1. 计算举例根据卡尔曼算法,预测方程为:ˆˆ[/1][1/1]xk k ax k k -=--预测误差方差为:22[/1][1/1]x x nP k k a P k k -=--+σ卡尔曼增益为:()1222222[][/1][/1][1/1][1/1]x x x nx n K k P k k P k k a P k k a P k k -=--+σ--+σ=--+σ+σˆˆˆ[/][/1][]([][/1])ˆˆ[1/1][]([][1/1])ˆ(1[])[1/1][][]xk k x k k K k z k x k k axk k K k z k ax k k a K k xk k K k z k =-+--=--+---=---+滤波方程:()()2222222222222[/](1[])[/1][1/1]1[1/1][1/1][1/1][1/1]x x x nx n x n x nx nP k k K k P k k a P k k a P k k a P k k a P k k a P k k =--⎛⎫--+σ=---+σ ⎪--+σ+σ⎝⎭σ--+σ=--+σ+σ滤波误差方差起始:ˆ[0/0]0x=[0/0][0]x x P P =k [/1]x P k k -[/]x P k k []K k 012345689104.76443.27012.67342.27652.21422.18362.16832.16089.104.85923.64883.16542.94752.84402.79352.76870.47360.32700.26730.24040.22770.22140.21840.2168ˆ[0/0]0x=[0/0]10x P =220.9110na =σ=σ=2. 卡尔曼滤波器的特性从以上计算公式和计算结果可以看出卡尔曼滤波器的一些特性:(1)滤波误差方差的上限取决于测量噪声的方差,即()2222222[1/1][/][1/1]x nx x na P k k P k k a P k k σ--+σ=≤σ--+σ+σ2[/]x P k k ≤σ这是因为(2)预测误差方差总是大于等于扰动噪声的方差,即2[/1]x nP k k -≥σ这是因为222[/1][1/1]x x n nP k k a P k k -=--+σ≥σ(3)卡尔曼增益满足,随着k 的增加趋于一个稳定值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

卡尔曼预测方程:
不考虑控制信号对系统的影响,则该离散系统的方程为:
11,1,=k k k k k k k
k k k k
k k x x H x v v ωω+++Φ+Γ=+公式里括号里的东西其实就是下标,
为了看着方便改成下标
状态方程:观测方程:z 其中、都是白噪声序列
1,k k +Φ为状态矩阵,k H 为观测矩阵,1,k k +Γ为噪声的系数矩阵
一堆公式推导之后得到结果如下
1,/1/1/1+1/1,/11,1,/1/11//1/11,11
=[](1)[](2)
=[]T T k k k k k k k k k k k k k T T T k k k k k k k k k k k k k k k k k k T k k k k k k k k k k k k k K K K P H H P H R P P P P H H P H R H P x x x H x +---+-++--∧∧∧∧+--+--=Φ+ΦΦΦ+Φ+-----------------------
-其中其中是估计值
z 是最优增益矩阵
是估计误差方差阵
/11,1,1,(3)T T k k k k k k k k k
Q -+++ΦΓΓ+-----------------
其中
[]Q []T T k k k k k k R E v v E w w ==、
递推方程的具体计算步骤如下:
1、 在0t 时刻给定初值
0/0_000=(x )x x E m ∧∧
==
200/0_00{[]}x P P E x ∧==-
2、 根据公式(2)计算0t 时刻的最优增益矩阵0K
101,0000000[]T T K P H H P H R -Φ=+ 3、 根据公式(1)计算1x 的估计值1/0x ∧
1/0001,0000[]x x K z H x ∧∧∧
Φ=+-
4、 根据公式(3)计算1/0P
1,011/01,001,01,0000000001,01,00[]T T T T T P H H P P H P H R P Q -ΦΦΦΦ=-++ΓΓ
5、 根据1/0P 计算1t 时刻的1K
6、 根据1K 计算2x 的估计值2/1x
重复以上步骤得到3/2/k 11/k 2/123/23/1,,,,,............,,,k k k k k P K x P K x P K x ∧∧∧-+-。

相关文档
最新文档