大学物理课后习题及答案16

合集下载

大学物理 第16章量子力学基本原理-例题及练习题

大学物理 第16章量子力学基本原理-例题及练习题
2( 2k + 1) ( k = 0,1,2......)
∴ n = 2,6,10...... 时概率密度最大
nhπ 6 × 10 = =1时 (3) n=1时: E = =1 2mL L
2 2 2 2 2 −38
A 例题3 例题3 设粒子沿 x 方向运动,其波函数为 ψ ( x ) = 方向运动, 1 + ix
( n = 1,2,3,...)
E n=4
p2 E = 2m p= nπh nh 2 mE = = a 2a
n=3 n=2 n=1
h 2a λ= = p n
二者是一致的。 二者是一致的。
( n = 1, 2, 3,...)
o a
x
例题2 粒子质量为m, 在宽度为L的一维无限 的一维无限深势 例题2 P516例1:粒子质量为m, 在宽度为 的一维无限深势 中运动,试求( 粒子在0 阱中运动,试求(1)粒子在0≤x≤L/4区间出现的概率。并 ≤ / 区间出现的概率。 求粒子处于n=1 状态的概率。 在哪些量子态上, 求粒子处于 1和n=∞状态的概率。(2)在哪些量子态上, 状态的概率 (2)在哪些量子态上 L/4处的概率密度最大?(3)求n=1时粒子的能量 补充 。 /4处的概率密度最大 (3)求 =1时粒子的能量(补充 处的概率密度最大? =1时粒子的能量 补充)。 2 nπ x 由题得: 解:(1) 由题得: 概率密度 |ψ | = sin
2 2 2 2 0
2
2
2
2
0
0
k
0
2
2
2 k
0
k
k
k
0
h ∴λ = = p
hc 2E m c + E
2 k 0

大学物理下(毛峰版)课后习题答案ch16+光的偏振+习题及答案

大学物理下(毛峰版)课后习题答案ch16+光的偏振+习题及答案

第16章 光的偏振 习题解答1.自然光、线偏光和部分偏振光有何区别?用哪些方法可以获得线偏振光?如何使用检偏器检验光的偏振状态?解:自然光、线偏光和部分偏振光偏振态不同;可以通过偏振片、自然光以布儒斯特角入射到两种各相同性介质分界面上产生反射和折射、双折射晶体的双折射等方法来获得线偏振光。

2.自然光是否一定不是单色光?线偏振光是否一定是单色光?解:自然光不能说一定不是单色光.因为它只强调存在大量的、各个方向的光矢量,并未要求各方向光矢量的频率不一样.线偏振光也不一定是单色光.因为它只要求光的振动方向同一,并未要求各光矢的频率相同.3.一束光入射到两种透明介质的分界面上时,发现只有透射光而无反射光,这束光是怎样入射的?其偏振状态如何?解:这束光是以布儒斯特角入射的.其偏振态为平行入射面的线偏振光.4.什么是寻常光线和非常光线? 什么是光轴、主平面和主截面?寻常光线和非常光线的振动方向和各自的主平面有何关系?解:当一束平行自然光正入射到双折射晶体的一个表面上,在另一表面有两束光出射,其中一束遵从折射定律,称为寻常光线(o 光),另外一束不遵从折射定律,称为非常光线(e 光);当光在双折射晶体中沿一特殊方向传播时,o 光和e 光不分开,它们在该方向具有相同的传播速度,这个特殊的方向称为晶体的光轴;光线在晶体表面上入射,此界面的法线与晶体的光轴所构成的平面称为主截面;光轴与晶体内任一折射光线所构成的平面称为该光线的主平面;o 光的光振动方向垂直于o 光的主平面,e 光的光振动方向在e 光的主平面内。

5.在单轴晶体中,e 光是否总是以e n c /的速率传播?哪个方向以0/n c 的速率传播? 答:e 光沿不同方向传播速率不等,并不是以e n c /的速率传播.沿光轴方向以0/n c 的速率传播.6.用一束线偏振光照射双折射晶体,此时能否观察到双折射现象?解:能观察到双折射现象。

7.投射到起偏器的自然光强度为0I ,开始时,起偏器和检偏器的透光轴方向平行,然后使检偏器绕入射光的传播方向转过30°、45°、60°,试问在上述三种情况下,透过检偏器后光的强度是0I 的几倍?解:由马吕斯定律有0o 2018330cos 2I I I == 0ο2024145cos 2I I I == 0ο2038160cos 2I I I ==所以透过检偏器后光的强度分别是0I 的83,41,81倍. 8.在两块偏振化方向相互垂直的偏振片1P 和3P 之间插入另一块偏振片2P ,1P 和2P 的夹角为α,光强为0I 的自然光垂直入射1P ,求通过3P 的透射光强I 。

《大学物理》习题册题目及答案第16单元 机械波

《大学物理》习题册题目及答案第16单元 机械波

第16单元 机械波(一)学号 姓名 专业、班级 课程班序号一 选择题[ C ]1.在下面几种说法中,正确的说法是: (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的 (B) 波源振动的速度与波速相同 (C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后 (D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前[ A ]2. 一横波沿绳子传播时的波动方程为)104cos(05.0t x y ππ-= (SI),则(A) 其波长为0.5 m (B) 波速为5 m ⋅s -1(C) 波速为25 m ⋅s -1 (D)频率为2 Hz[ C ]3. 一简谐波沿x 轴负方向传播,圆频率为ω,波速为u 。

设t = T /4时刻的波形如图所示,则该波的表达式为: (A) )/(cos u x t A y -=ω (B) ]2/)/([cos πω+-=u x t A y (C) )/(cos u x t A y +=ω (D) ])/([cos πω++=u x t A y[ D ]4. 一平面简谐波沿x 轴正向传播,t = T/4时的波形曲线如图所示。

若振动以余弦函数表示,且此题各点振动的初相取π-到π之间的值,则 (A) 0点的初位相为00=ϕ(B) 1点的初位相为 21πϕ-=(C) 2点的初位相为 πϕ=2(D) 3点的初位相为 23πϕ-=[ D ]5. 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中: (A) 它的动能转换成势能。

(B) 它的势能转换成动能。

(C) 它从相邻的一段质元获得能量其能量逐渐增大。

(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小。

二 填空题1.频率为100Hz 的波,其波速为250m/s ,在同一条波线上,相距为0.5m 的两点的相位差为52π. 2. 一简谐波沿x 轴正向传播。

1x 和2x 两点处的振动曲线分别如图(a)和(b)所示。

昆明理工大学物理习题集(下)第十六章元答案

昆明理工大学物理习题集(下)第十六章元答案

昆明理工大学物理习题集(下)第十六章元答案第十六章量子物理基础一、选择题:1. 关于光的波粒二象性,下述说法正确的是 [ D ](A )频率高的光子易显示波动性(B )个别光子产生的效果以显示粒子性(C )光的衍射说明光具有粒子性(D )光电效应说明光具有粒子性2. 金属的光电效应的红限依赖于:[ C ](A )入射光的频率(B )入射光的强度(C )金属的逸出功(D )入射光的频率和金属的逸出功3. 用频率为1ν单色光照射某种金属时,测得饱和电流为1I ,以频率为2ν的单色光照射该金属时,测得饱和电流为2I ,若21I I >,则:[ D ](A )21νν> (B )21νν<(C )21νν= (D )1ν与2ν的关系还不能确定4. 光电效应中光电子的最大初动能与入射光的关系是: [ C ](A )与入射光的频率成正比(B )与入射光的强度成正比(C )与入射光的频率成线性关系(D )与入射光的强度成线性关系5. 两束频率、光强都相同的光照射两种不同的金属表面,产生光电效应,则: [ C ](A )两种情况下的红限频率相同(B )逸出电子的初动能相同(C )在单位时间内逸出的电子数相同(D )遏止电压相同6. 钾金属表面被蓝光照射时,有光电子逸出,若增强蓝光强度,则:[ A ](A )单位时间内逸出的光电子数增加(B )逸出的光电子初动能增大(C )光电效应的红限频率增大(D )发射光电子所需的时间增长7. 用频率为1ν的单色光照射一金属表面产生光电效应,用频率为2ν的单色光照射该金属表面也产生光电效应,而且测得它们的光电子有E k 1>E k 2的关系,则:[ A ](A )1ν>2ν (B )1ν<2ν (C )1ν=2ν (D )不能确定8. 当照射光的波长从4000?变到3000?时,对同一金属,在光电效应实验中测得的遏止电压将:[ D ](A )减小V 56.0 (B )增大V 165.0 (C )减小V 34.0 (D )增大V 035.19. 钠光的波长是λ,设h 为普朗克恒量,c 为真空中的光速,则此光子的:[ C ](A )能量为c h /λ (B )质量为λc h / (C )动量为λ/h(D )频率为c /λ (E )以上结论都不对10. 以下一些材料的功函数(逸出功)为:铍—eV 9.3、钯—5.0eV 、铯—1.9eV 、钨—4.5eV 。

大学物理学第三版答案16电磁感应.docx

大学物理学第三版答案16电磁感应.docx

习题1616・1・如图所示,金属圆环半径为/?,位于磁感应强度为P的均匀磁场中,圆环平面与磁场方向垂直。

当圆环以恒定速度▽在环所在平面内运动时,求环中的感应电动势及环上位于与运动方向垂直的直径两端〃间的电势差。

解:(1)由法拉第电磁感应定律考虑到圆环内的磁通量不变,所以,环中的感dtr u ——(2)利用:8ah= £ (vxB)-dl ,有:£ah = Bv・2R = 2BvR。

【注:相同电动势的两个电源并联,并联后等效电源电动势不变】16-2.如图所示,长直导线屮通有电流/ = 5.0/1,在与其相距d = 0.5cm 处放有一矩形线圈,共1000匝,设线圈长/ = 4.0cm ,宽a = 2.0cm。

不计线圈口感,若线圈以速度v = 3.0cm/s沿垂直于长导线的方向向右运动,线圈中的感生电动势多大?解法一:利用法拉第电磁感应定律解决。

首先用[fp•〃二工/求出电场分布,易得:则矩形线圈内的磁通量为:rh s = -N有:dxdt八=1.92x107 V。

2 兀(d + a)解法二:利用动生电动势公式解决。

由击j〃二“0工/求出电场分布,易得:“()/ 17tr考虑线圈框架的两个平行长直导线部分产生动生电动势,近端部分:®=NBJv,远端部分:E2=NB2I V,吗丄—丄”心2兀 ' d d + a 27ld(d 十= l・92xlOP。

16・3・如图所示,长直导线屮通有电流强度为/的电流,长为/的金属棒必与长直导线共面且垂直于导线放置,其。

端离导线为d,并以速度E平行于长直导线作匀速运动,求金属棒中的感应电动势£并比较4、5的电势大小。

解法一:利用动生电动势公式解决:d£ = (yxBydl如力,171 r"o" dr“0以[〃 + /------ ——= -------- In -----17C r 2兀 d由右手定则判定:u(l>u ho解法二:利用法拉第电磁感应定律解决。

大学物理(第四版)课后习题及答案 动量

大学物理(第四版)课后习题及答案 动量

题3.1:质量为m 的物体,由水平面上点O 以初速为0v 抛出,0v 与水平面成仰角α。

若不计空气阻力,求:(1)物体从发射点O 到最高点的过程中,重力的冲量;(2)物体从发射点到落回至同一水平面的过程中,重力的冲量。

题3.1分析:重力是恒力,因此,求其在一段时间内的冲量时,只需求出时间间隔即可。

由抛体运动规律可知,物体到达最高点的时间g v t αsin 01=∆,物体从出发到落回至同一水平面所需的时间是到达最高点时间的两倍。

这样,按冲量的定义即可求出结果。

另一种解的方法是根据过程的始、末动量,由动量定理求出。

解1:物体从出发到达最高点所需的时间为g v t αsin 01=∆ 则物体落回地面的时间为gv t t αsin 22012=∆=∆ 于是,在相应的过程中重力的冲量分别为 j j F I αsin d 0111mv t mg t t -=∆-==⎰∆j j F I αsin 2d 0222mv t mg t t -=∆-==⎰∆解2:根据动量定理,物体由发射点O 运动到A 、B 的过程中,重力的冲量分别为j j j I αsin 00y Ay 1mv mv mv -=-= j j j I αsin 200y By 2mv mv mv -=-=题3.2:高空作业时系安全带是必要的,假如质量为51.0kg 的人不慎从高空掉下来,由于安全带的保护,使他最终被悬挂起来。

已知此时人离原处的距离为2米,安全带的缓冲作用时间为0.50秒。

求安全带对人的平均冲力。

题3.2解1:以人为研究对象,在自由落体运动过程中,人跌落至2 m 处时的速度为ghv 21= (1)在缓冲过程中,人受重力和安全带冲力的作用,根据动量定理,有()12mv mv t -=∆+P F (2)由(1)式、(2)式可得安全带对人的平均冲力大小为 ()N 1014.123⨯=∆+=∆∆+=tgh m mg t mv mg F解2:从整个过程来讨论,根据动量定理有N 1014.1/23⨯=+∆=mg g h tmgF 题 3.3:如图所示,在水平地面上,有一横截面2m 20.0=S 的直角弯管,管中有流速为1s m 0.3-⋅=v 的水通过,求弯管所受力的大小和方向。

大学物理学第二版习题解答

大学物理学第二版习题解答

大学物理学习题答案习题一答案习题一1.1 简要回答下列问题:(1)位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2)平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3)瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4)质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变? (5)r ∆v 和r ∆v 有区别吗?v ∆v 和v ∆v 有区别吗?0dv dt =v 和0d v dt=v 各代表什么运动? (6)设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =dr v dt=及22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =及a = 你认为两种方法哪一种正确?两者区别何在? (7)如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8)“物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9)任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10)质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变?(11)一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

解:(1)最初s 2内的位移为为:(2)(0)000(/)x x x m s ∆=-=-=最初s 2内的平均速度为:00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dx v t t dt==-s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2)s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3)s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。

大学物理习题答案16

大学物理习题答案16

第十六章 电磁场P177.16.1 一条铜棒长为L = 0.5m ,水平放置,可绕距离A 端为L /5处和棒垂直的轴OO'在水平面内旋转,每秒转动一周.铜棒置于竖直向上的匀强磁场中,如图所示,磁感应强度B = 1.0×10-4T .求铜棒两端A 、B 的电势差,何端电势高.[解答]设想一个半径为R 的金属棒绕一端做匀速圆周运动,角速度为ω,经过时间d t 后转过的角度为d θ = ωd t ,扫过的面积为d S = R 2d θ/2,切割的磁通量为d Φ = B d S = BR 2d θ/2,动生电动势的大小为ε = d Φ/d t = ωBR 2/2.根据右手螺旋法则,圆周上端点的电势高.AO 和BO 段的动生电动势大小分别为22()2550AO B LBL ωωε==, 22416()2550BOB LBL ωωε==. 由于BO > AO ,所以B 端的电势比A 端更高,A 和B 端的电势差为2310BO AOBL ωεεε=-=242332π 1.010(0.5)1010BL ω-⨯⨯⨯=== 4.71×10-4(V). [讨论]如果棒上两点到O 的距离分别为L 和l ,则两点间的电势差为222()(2)222B L l Bl B L Ll ωωωε++=-=.16.2 一长直载流导线电流强度为I ,铜棒AB 长为L ,A 端与直导线的距离为x A ,AB 与直导线的夹角为θ,以水平速度v 向右运动.求AB 棒的动生电动势为多少,何端电势高?[解答]在棒上长为l 处取一线元d l ,在垂直于速度方向上的长度为 d l ⊥ = d l cos θ;线元到直线之间的距离为r = x A + l sin θ,直线电流在线元处产生的磁感应强度为图16.1图16.2002π2π(sin )A IIB rx l μμθ==+.由于B ,v 和d l ⊥相互垂直,线元上动生电动势的大小为0cos d d d 2π(sin )A Iv lBv l x l μθεθ⊥==+,棒的动生电动势为00cos d 2πsin LAIv lx l μθεθ=+⎰00cos d(sin )2πsin sin LA A Iv x l x l μθθθθ+=+⎰ 0sin cot ln2πA AIvx L x μθθ+=,A 端的电势高.[讨论](1)当θ→π/2时,cot θ = cos θ/sin θ→0,所以ε→0,就是说:当棒不切割磁力线时,棒中不产生电动势.(2)当θ→0时,由于sin sin sin lnln(1)A A A Ax L L L x x x θθθ+=+→,所以02πAIvLx με→,这就是棒垂直割磁力线时所产生电动势.16.3 如图所示,平行导轨上放置一金属杆AB ,质量为m ,长为L .在导轨上的一端接有电阻R .匀强磁场B 垂直导轨平面向里.当AB 杆以初速度v 0向运动时,求:(1)AB 杆能够移动的距离;(2)在移动过程中电阻R 上放出的焦耳热为多少? [分析]当杆运动时会产生动生电动势,在电路中形成电流;这时杆又变成通电导体,所受的安培力与速度方向相反,所以杆将做减速运动.随着杆的速度变小,动生电动势也会变小,因而电流也会变小,所受的安培力也会变小,所以杆做加速度不断减小的减速运动,最后缓慢地停下来.[解答](1)方法一:速度法.设杆运动时间t 时的速度为v ,则动生电动势为ε = BLv ,电流为I = ε/R ,所受的安培力为F = -ILB = -εLB/R = -(BL )2v/R ,负号表示力的方向与速度方向相反.取速度的方向为正,根据牛顿第二定律F = ma 得速度的微分方程为BA图16.32()d d BL v v m R t-=,即: 2d ()d v B L t v m R=-积分得方程的通解为21()ln BL v t C mR=-+.根据初始条件,当t = 0时,v = v 0,可得常量C 1 = ln v 0.方程的特解为20()exp[]BL v v t mR=-.由于v = d x /d t ,可得位移的微分方程20()d exp[]d BL x v t t mR=-,方程的通解为20()exp[]d BL x v t t mR =-⎰2022()exp[]()mRv BL t C BL mR-=-+, 当t = 0时,x = 0,所以常量为022()mRv C BL =. 方程的特解为202(){1exp[]}()mRv BL x t BL mR=--. 当时间t 趋于无穷大时,杆运动的距离为2()mRv x BL =. 方法二:冲量定理.根据安培力的公式可得F = -(BL )2v/R ,负号表示安培力与速度的方向相反.因此2()d d BL x F t R-=,根据冲量定理得d 0tF t mv=-⎰,即:杆所受的冲量等于杆的动量的变化量.积分后可得02()mv Rx BL =. (2)方法一:焦耳定律.杆在移动过程中产生的焦耳热元为222()d d d d BLv Q I R t t t R R ε===220()2()exp[]d BLv BL t t R mR=-整个运动过程中产生的焦耳热为2200()2()exp[]d BLv BL Q t t R mR ∞=-⎰222002()exp[]22mv mv BL t mR ∞-=-=, 即:焦耳热是杆的动能转化而来的.方法二:动能定理.由于I = ε/R ,其中ε = BLv = BL d x /d t ,而安培力为F = -ILB ,负号表示安培力的方向与杆运动的方向相反.因此焦耳热元为d Q = I 2R d t = I εd t = IBL d x = -F d x .负号表示安培力做负功.根据动能定理,磁场的安培力对杆所做的功等于杆的动能的增量,因此安培力在杆的整个运动过程中所做的功为201d (0)2W F x mv =-=--⎰, 所以产生的焦耳热为212Q W mv ==. [小结]在求杆的运动距离时,用冲量定理可避免解微分方程.在求焦耳热时用动能定理可避免积分运算.16.4 如图所示,质量为m 、长度为L 的金属棒AB 从静止开始沿倾斜的绝缘框架滑下.磁感应强度B 的方向竖直向上(忽略棒AB 与框架之间的摩擦),求棒AB 的动生电动势.若棒AB 沿光滑的金属框架滑下,设金属棒与金属框组成的回路的电阻R 为常量,棒AB 的动生电动势又为多少?[解答](1)棒的加速度为a = g sin θ,经过时间t ,棒的速度为v = at = (g sin θ)t ,而切割磁力线的速度为v ⊥ = v cos θ,所以棒的动生电动势为ε = BLv ⊥ = BLg (sin θcos θ)t = BLg (sin2θ)t /2.(2)设棒运动时间t 时的速度为v ,则动生电动势为图16.4ε = BLv cos θ,电流为I = ε/R ,所受的安培力的大小为F = ILB = εLB/R = (BL )2v cos θ/R ,其方向水平向右.安培力沿着斜面向上的分量为F' = F cos θ,其方向与速度的方向相反.取速度的方向为正,根据牛顿第二定律ΣF = ma 得速度的微分方程为2(cos )d sin d BL v vmg m R tθθ-=,即 2d d sin (cos )mRt v mgR BL vθθ=-, 方程可化为222d[sin (cos )]d (cos )sin (cos )mR mgR BL v t BL mgR BL vθθθθθ--=-. 积分得方程的通解为22ln[sin (cos )](cos )mR t mgR BL v C BL θθθ-=-+.根据初始条件,当t = 0时,v = 0,可得常量2ln(sin )(cos )mRC mgR BL θθ=, 方程的特解为22[sin (cos )]ln (cos )sin mR mgR BL v t BL mgR θθθθ--=, 棒的速度为22sin (cos ){1exp[]}(cos )mgR BL v t BL mRθθθ=--, 动生电动势为cos BLv εθ=2(cos )tan {1exp[]}mgR BL t BL mRθθ=--. [讨论]当时间t 趋于无穷大时,最终速度为2sin (cos )mgR v BL θθ=,最终电动势为tan mgRBL εθ=, 最终电流为tan mgI BLθ=. 另外,棒最终做匀速运动,重力做功的功率等于感生电流做功的功率,重力做功的功率为P = mg sin θv ,感生电流做功的功率为222(cos )BLv P I R R Rεθ===, 两式联立也可得2sin (cos )mgR v BL θθ=,由此可以求出最终电动势和电流.[注意]只有当物体做匀速运动时,重力所做的功才等于电流所做的功,否则,重力还有一部分功转换成物体的动能.16.5 电磁涡流制动器是一个电导率为ζ,厚度为t 的圆盘,此盘绕通过其中心的垂直轴旋转,且有一覆盖小面积为a 2的均匀磁场B 垂直于圆盘,小面积离轴r (r >>a ).当圆盘角速度为ω时,试证此圆盘受到一阻碍其转动的磁力矩,其大小近似地表达为M ≈B 2a 2r 2ωζt .[解答]电导率是电阻率的倒数ζ = 1/ρ.不妨将圆盘与磁场相对的部分当成长、宽和高分别为a 、a 和t 的小导体,其横截面积为S = at ,电流将从横截面中流过,长度为a ,因此其电阻为1l R S tρσ==. 宽为a 的边扫过磁场中,速度大小为v = r ω,产生的感生电动势为ε = Bav = Bar ω,圆盘其他部分的电阻远小于小导体的电阻,因此通过小导体的电流强度为I ≈ε/R = Bar ωζt ,所受的安培力为F = IaB ≈B 2a 2r ωζt ,其方向与速度方向相反.产生的磁力矩为M = Fr ≈B 2a 2r 2ωζt .其方向与角速度的方向相反.16.6 如图,有一弯成θ角的金属架COD 放在磁场中,磁感应强度B 的方向垂直于金图16.5t属架COD 所在平面,一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v 向右滑动,v 与MN 垂直,设t = 0时,x = 0,求下列两情形,框架内的感应电动势εi .(1)磁场分布均匀,且B 不随时间改变; (2)非均匀的交变磁场B = Kx cos ωt . [解答](1)经过时间t ,导体杆运动的距离为X = vt ,杆的有效长度为l = X tan θ = v (tan θ)t , 动生电动势为εi = Blv = Bv 2(tan θ)t . (2)导体杆在t 时刻运动到X 处,在三角形中取一个面积元 d S = y d x , 由于y = x tan θ,所以d S = x tan θd x ,通过该面元的磁通量为d Φ = B d S = K cos ωt tan θx 2d x ,通过三角形的磁通量为20tan cos d XK t x x Φθω=⎰31tan cos 3K tX θω=331tan cos 3Kv t t θω=,感应电动势为d d i t Φε=-323tan (3cos sin )3kv t t t t θωωω=--,即: 32tan (sin 3cos )3i kv t t t t θεωωω=-.[注意]公式B = Kx cos ωt 中的x 是场点到O 点的距离,不一定是杆运动的距离,为了区别两个距离,杆的距离用X 表示.16.7 如图所示的回路,磁感应强度B 垂直于回路平面向里,磁通量按下述规律变化Φ = 3t 2 + 2t + 1,式中Φ的单位为毫韦伯,t 的单位为秒.求:(1)在t = 2s 时回路中的感生电动势为多少? (2)电阻上的电流方向如何?[解答](1)将磁通量的单位化为韦伯得 Φ = (3t 2 + 2t + 1)/103,感生电动势大小为ε = |d Φ/d t | = 2(3t + 1)/103.t = 2s 时的感生电动势为1.4×10-2(V).(2)由于原磁场在增加,根据楞次定律,感应电流所产生的磁场的方向与原磁场的方向相反,所以在线圈中感生电流的方向是逆时针的,从电阻的左边流向右边.O图16.6图16.716.8 如图所示的两个同轴圆形导体线圈,小线圈在大线圈上面.两线圈的距离为x ,设x 远大于圆半径R .大线圈中通有电流I 时,若半径为r 的小线圈中的磁场可看作是均匀的,且以速率v = d x /d t 运动.求x = NR 时,小线圈中的感应电动势为多少?感应电流的方向如何?[解答]环电流在轴线上产生的磁感应强度为20223/22()IR B x R μ=+, 当x >>R 时,磁感应强度为2032IRB xμ≈.小线圈的面积为S = πr 2,通过的磁通量为2203π2IR r BS x μΦ=≈, 当小线圈运动时,感应电动势为22043πd d 2IR r vt xμΦε=-≈, 当x = NR 时,感应电动势为20423π2Ir vN Rμε≈. 感应电流的磁场与原磁场的方向相同,感应电流的方向与原电流的环绕方向相同.16.9 如图所示,匀强磁场B 与矩形导线回路的法线n 成θ = 60°角,B = kt (k 为大于零的常数).长为L 的导体杆AB 以匀速v 向右平动,求回路中t 时刻的感应电动势的大小和方向(设t = 0时,x = 0).[解答]经过时间t ,导体杆运动的距离为 x = vt , 扫过的面积为 S = Lx = Lvt ,通过此面积的磁通量为Φ = B ·S = BS cos θ = Lvkt 2/2. 感应电动势的大小为ε = d Φ/d t = Lvkt .由于回路中磁通量在增加,而感应电流的磁通量阻碍原磁通量增加,其磁场与原磁场的方向相反,所以感应电动势的方向是顺时针的.16.10 长为b ,宽为a 的矩形线圈ABCD 与无限长直截流导线共面,且线圈的长边平行于长直导线,线圈以速度v 向右平动,t 时刻基AD 边距离长直导线为x ;且长直导线中的电流按I = I 0cos ωt 规律随时间变化,如图所示.求回路中的电动势ε.[解答]电流I 在r 处产生的磁感应强度为图16.8图16.902πIB rμ=,穿过面积元d S = b d r 的磁通量为0d d d 2πIbB S r rμΦ==,穿过矩形线圈ABCD 的磁通量为001d ln()2π2πx axIbIb x a r r xμμΦ++==⎰, 回路中的电动势为d d t Φε=-0d 11d [ln()()]2πd d b x a I x I x t x a x tμ+=-+-+ 00cos [ln()sin ]2π()I bx a av tt x x x a μωωω+=++. 显然,第一项是由于磁场变化产生的感生电动势,第二项是由于线圈运动产生的动生电动势. *16.11 如图,一个矩形的金属线框,边长分别为a和b (b 足够长).金属线框的质量为m ,自感系数为L ,忽略电阻.线框的长边与x 轴平行,它以速度v 0沿x 轴的方向从磁场外进入磁感应强度为B 0的均匀磁场中,B 0的方向垂直矩形线框平面.求矩形线框在磁场中速度与时间的关系式v = v (t )和沿x 轴方向移动的距离与时间的关系式x = x (t ).[解答]由于b 边很长,所以线框只有右边在做切割磁力线的运动.当线框速度为v 时,产生的动生电动势为ε = B 0av .当线框中的电流为i 时,产生的自感电动势的大小为d d L i Ltε=. 根据欧姆定律得ε + εL = iR ,由于不计电阻,所以有0d 0d iB av Lt+=. ① 右边所受的力为F = iaB 0,根据牛顿第二定律得0d d v iaB mt=, 微分得图16.10图16.11202d d d d i vaB m t t=, ②联立①和②式得微分方程2202()d 0d aB v v t mL+=, 这是简谐振动的微分方程,其通解为v A B =+.当t = 0时,v = v 0,所以A = v 0.加速度a t = d v /dt )A B =-+,当t = 0时,a t = 0,所以B = 0.速度方程为0v v =. 由于v = d x /d t ,所以0d d x v t v t ==⎰⎰00v C =+. 当t = 0时,x = 0,所以C = 0,所以位移方程为0x v =.16.12 如图所示的圆面积内,匀强磁场B 的方向垂直于圆面积向里,圆半径R = 12cm ,d B /d t = 10-2T·s -1.求图中a 、b 、c 三点的涡旋电场为多少(b 为圆心)?设ab = 10cm ,bc = 15cm . [解答](1)当点在磁场之中时,以b 为圆心,以r 为半径作一圆形环中,其周长为C = 2πr ,面积为S = πr 2.取环路的逆时针方向为正,根据右手螺旋法则,面积的法向方向垂直纸面向外。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题十六18-1 用波长为1800Å的紫外光照射红限波长为2730Å的钨,那么从钨表面逸出的电子的最大初动能为多大?初速度是多大(1eV=J 106.119-⨯)?[解] 由Einstien 光电效应方程()⎪⎪⎭⎫ ⎝⎛-=-=002max 1121λλννhc h mv 10834101273011800110310626.6--⨯⎪⎭⎫ ⎝⎛-⨯⨯⨯⨯=eV 35.2J 1076.319=⨯=-已知kg 1011.931-⨯=m ,因此s m 101.95max ⨯=v18-2 当波长为3000Å的光照射在某金属表面时,光电子的能量范围从0到J 100.419-⨯。

在做上述光电效应实验时遏止电压是多大?此金属的红限频率是多大?[解] 由Einstien 光电效应方程()02max 21νν-=h mv 2max 2max 02121mv hc mv h h -=-=λνν19191910626.2100.410626.6---⨯=⨯-⨯=红限频率 Hz 1097.3140⨯=ν 遏止电压a U 满足 J 100.421192max a -⨯==mv eU 所以 V 5.2106.1100.41919a a =⨯⨯==--e eU U18-3 已知铯的逸出功为1.9eV ,如果用波长为3.5710-⨯m 的光照射在铯上,问光电效应的遏止电压a U 是多大?从铯表面逸出的电子的最大速度是多大?[解]A hcmv -=λ2max 21 J 1064.21004.31068.5191919---⨯=⨯-⨯=V 65.1106.11064.22119192maxa =⨯⨯==--e mv Usm 1062.725emaxmax ⨯==m E v18-4 图中所示为一次光电效应实验中得出的遏止电压随入射光频率变化的实验曲线。

(1)求证对不同的金属材料,AB 线的斜率相同;(2)由图上数据求出普朗克常量h 的值。

[解] (1) 由Einstien 光电效应方程得 A h U e -=νa 即 eA e h U -=νa 仅A 与金属材料有关,故斜率eh与材料无关。

(2)()s V 100.4100.50.100.21514⋅⨯=⨯-=-e h 所以 s J 104.6106.1100.4341915⋅⨯=⨯⨯⨯=---h18-5 有一单色光照射在钠表面上,测得光电子的最大动能是 1.2eV ,而钠的红限是5400Å,试求入射光的频率。

[解] 由Einstien 光电效应方程02max 21ννh h mv -= 02max21λνc h mv += Hz 1046.810540*********.6106.12.1141083419⨯=⨯⨯+⨯⨯⨯=---18-6 在康普顿散射中,入射光子的波长为0.03Å,反冲电子的速度为光速的60%。

求散射光子的波长和散射角。

[解] (1) 电子能量的增加ννh h E -=∆0()⎪⎪⎭⎫ ⎝⎛--=-=160.01122020c m c m m2025.0c m =0434.025.011200=⎪⎪⎭⎫⎝⎛-=-h c m λλÅ(2) 由于 )cos 1(0φλ-=∆cm h所以 554.0cos 100=-=-cm h λλφ解得 0463.=φ18-7 已知X 射线光子的能量为0.60MeV ,若在康普顿散射中散射光子的波长变化了20%,试求反冲电子的动能。

[解] 020.0λλ=∆ MeV 60.00=νh0020.1λλλλ=∆+= 20.120.100νλλν===cc反冲电子动能 ()MeV 1.020.11100k =⎪⎭⎫ ⎝⎛-=-=νννh h E18-8 氢原子中的电子在n =3的轨道上的电离能是多少?[解] eV 51.196.136.132===nE18-9 如果用能量为12.6eV 的电子轰击基态氢原子,可能产生哪些谱线?[解] 处于基态的电子吸收轰击电子最多能激发到量子数为n 的轨道上,则应有eV 6.12k =E ≥eV 116.132⎪⎭⎫ ⎝⎛-nn ≤3.688 所以 n =3可产生从n =3到n =2,n =1及n =2到n =1三条谱线。

由公式⎪⎭⎫⎝⎛-=2232040nm118n m h e m cελ (见书363页) 给出波长分别为102831=λÅ 657832=λÅ 121821=λÅ18-10 氢原子光谱的巴耳末线系中,有一光谱线的波长为 4340Å,试求: (1)与这一谱线相应的光子能量为多少电子伏特?min λ (2)该谱线是氢原子由能级n E 跃迁到k E 产生的,n 和k 各等于多少?(3)若有大量氢原子处于能级为5E 的激发态,最多可以发射几个线系?共几条谱线?请在氢原子能级图中表示出来,并指明波长最短的是哪一条谱线。

[解] (1) λνchh =eV 86.2J 1058.4434010988.11915=⨯=⨯=--(2) 86.21416.131136.1222=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=n n k h ν因此 n =5 k =2(3) 共四个线系:赖曼系、巴耳末系、帕邢系、布喇开系。

共十条谱线。

波长最短的是从n =5到n =1跃迁发射的谱线。

18-11 一光子与自由电子碰撞,电子可能获得的最大能量为 60keV ,求入射光子的波长和能量。

[解] 由于电子获得最大能量时光子波长变化最大根据 2sin 220ϕλc m h=∆,可知πϕ= 因为碰撞时y 轴方向动量守恒,有θϕνsin sin 0mv ch -= 所以 0=θ又因碰撞时x 轴方向动量守恒,有θϕννcos cos 0mv ch c h += 所以mv ch c h +-=νν0 (1) 对碰撞过程应用能量守恒定律有 ννh mc h c m +=+2020 (2) 根据题意 keV 600=-ννh h (3) 由(1)、(2)、(3)式可解得 J 1025.2140-⨯=νh nm 108.730-⨯=λ18-12 试求:(1)红光(cm 1075-⨯=λ);(2)X 射线(=λ0.25 Å)的光子的能量、动量和质量。

[解] (1)J 1084.210710988.119725---⨯=⨯⨯==λhcE s m kg 1047.928⋅⨯==-cEp min λkg 1016.3362-⨯==c Em (2) J 1096.71025.010988.1151025---⨯=⨯⨯==λhcE s m kg 1065.223⋅⨯==-c Ep kg 1084.8322-⨯==c Em18-13 一只100W 的灯泡,其功率的5%辐射的是可见光,假设可见光的平均波长为=λ5000 Å,问此灯泡每秒辐射的可见光的光子有多少个?[解] 光子能量 J 10976.3500010988.11925--⨯=⨯==λνhch灯泡每秒辐射可见光能量 J 5%5100=⨯=E换成光子数 191026.1⨯==νh En18-14 求下列各自由粒子的德布罗意波长:(1)被400V 电压由静止加速的电子;(2)能量为100eV 、质量为kg 103-的质点。

[解] (1)eU v m =2021s m 1019.11011.9400106.122731190⨯=⨯⨯⨯⨯==--m eU v 61000.vc c m h v m h p h ====λÅ (2) mp E 22k = 即 k 2mE p =1419334k 107.3106.110010210626.62----⨯=⨯⨯⨯⨯⨯===mE h p h λÅ18-15 求温度为27℃时,对应于方均根速率的氧分子的德布罗意波长。

[解]m kT v 32=23212k kTv m E == mkTh mE h32k==λ3001033.11066.132310626.6232734⨯⨯⨯⨯⨯⨯⨯=---258.0m 1058.211=⨯=- Å18-16 物质波波长为2 Å的电子的动能是多大?热力学温度为多大时,热运动的能量可达此值?[解] ()J 1028.3222122k -⨯====mh m p E hp λλ由k 23E kT= 得K k E T 3.15832k ==18-17 若电子的总能量为静止能量的2倍,求电子的德布罗意波长。

[解] 20220221c m c v c m mc =⎪⎭⎫ ⎝⎛-=c v 23=014.0310====cm h mv h p h λ Å18-18 设电子绕氢原予核旋转的玻尔轨道的周长刚好容纳电子物质波波长的整数倍(驻波条件),试从此点出发推导出玻尔假设中的角动量量子化条件。

[解] 电子看成近自由的,物质波波长p h =λ,驻波条件ph n n r ==λπ2 即角动量 n hnr p L ==⋅=π218-19 试证明自由粒子的不确定[度]关系可以写成λ∆⋅∆x ≥2λ (提示:根据p x ∆⋅∆≥h 求解。

)[证明] 自由粒子λhp =λλ∆=∆2hp由不确定度关系p x ∆⋅∆≥h ,上式可写成λ∆⋅∆x ≥2λ18-20 光子的波长为=λ5000 Å,如果确定此波长的精确度达到λλ610-=∆,试求此光子位置的不确定量x ∆ (按p x ∆⋅∆≥h 求解)。

[解] 根据上题x ∆≥9662210510500010---⨯===∆λλλλ Å=0.5m18-21 质子由1.0V 104⨯电压的电场加速后穿过宽度为0.0001mm 的小狭缝,求穿过狭缝后的第一级衍射角。

若一质量为20g 的铅球以速度30m 穿过宽4cm 的狭缝,其第一级衍射角为多少?并比较两种结果。

[解] 质子n22n 221m p v m eU == eU m p n 2=m 1086.2213n -⨯===eUm h phλ第一级衍射角0613111000016.01011086.2sinsin=⨯⨯==----dλθ 铅球m 101.130102010626.633334---⨯=⨯⨯⨯==mv h λ 1θ≈0所以对宏观物质而言衍射效应完全可以忽略。

18-22 已知粒子在无限深势阱中运动,其波函数为()⎪⎭⎫ ⎝⎛=a x a x πϕ3sin 2 (0≤x ≤a ) 求:(1)粒子在43a x =处出现的概率密度; (2)发现粒子概率最大的位置;(3)画出粒子概率分布的示意图。

[解] 粒子在x 处的概率密度()()⎪⎭⎫ ⎝⎛==a x a x x πψρ3sin 222(1) aa a a a 1433sin 2432=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛πρ(2)令()0=∂∂x x ρ得,06sin =a x π,即ππn ax=6 (n =0,1,……,6) 所以极值点在6nax = (n =0,1,……,6)处。

相关文档
最新文档