回转窑各个带用砖
第七讲 回转窑的结构及工作原理

• 2.轮带(又称滚圈)
• 轮带是一个坚固的大钢圈套装在筒体上,整个回 转窑(包括窑砖和物料)的全部重力,通过轮带传 给托轮,轮带随筒体在托轮上滚动,本身还起着 增加筒体刚性的作用。 • 轮带是以铸钢或锻钢制成,锻造轮带其截面为实 心结构,质量好使用年限长,但是散热差,刚性 差,制造工艺复杂。 • 截面尺寸较大的轮带,一般采用铸造,其截面有 实心矩形和空心箱形两种。
4.回转窑内的传热 • 在燃烧带内,火焰以辐射传热形式(包括对 流传热)把火焰中的热量传递给表层物料, 以传导传热形式把窑衬和窑皮吸收的热量传 给与其接触的物料。前者传递的热量约占整 个烧成带传热的90%,后者约占10%。
物料在窑内煅烧过程的控制
• 1、燃料煅烧及气流温度的控制; • 2、气固换热和物料升温的控制; • 3、物料在一定温度场内滞留时间及物理化 学反应的控制。
回转窑工作原理
1.窑内物料的运动 • 物料进入回转窑后,由于筒体以一定速度回转并 有一定斜度,物料逐渐由窑尾向窑头运动。 • 预分解窑将物料的预热和分解移到预热器和分解 炉,窑内只进行小部分分解反应,窑内一般可分 为过渡带、烧成带。 • 从窑尾起至物料温度1300℃为过渡带,主要任务 是物料升温及部分碳酸盐分解和固相反应;物料 温度1300~1450~1300℃区间为烧成带。
1、可加大窑头排风机挡 板; 2、视电收尘入口温度减 -20~-100Pa 小冷却机鼓风量; 3、视O2情况加大窑尾排 风。
窑 头 负 压
参数
意义及作用 1、反应窑内 燃料供给量及 总热量; 2、反应生料 的易烧性; 3、反应火焰 长短; 4、煤粉的燃 烧状况
控制方法 1、合理的用风比例; 2、合理的用煤比例, 炉:窑=60:40 3、改善煤粉质量; 4、提高二次风温,改 善燃烧环境; 5、保证正常的火焰形 状
回转窑介绍

暴露的衬砖表面
综合传热
衬砖
导热
物料
环境
包括物料间的接触导热、颗粒 表面间的热辐射、气体与物料 表面间的对流换热。
物料
3.燃料燃烧
中低温回转窑多使用固体燃料煤灰等,高温窑多使用液体
燃料重油或气体燃料天然气等。 使用固体燃料煤灰的要求: 热值≥21000kJ/kg,灰分小。 应控制的因素:
⑴火焰温度根据物料所要求的煅烧温度来控制。
回转窑
冷却筒
热交换
窑尾
出料
冷空气
(靠窑尾排烟机在窑头处产生的负压吸进来)
特点:
优点:结构简单,坚固;热效率高,电耗低。 缺点:冷却效果差,扬尘大。
多筒冷却机:
由围绕窑的卸料端的6~14个冷却筒构成。属于逆
流工作方式。冷却空都是靠窑尾排烟机在窑头处产生
的负压吸进来。
篦式冷却机:
㈢回转窑的工作原理
1.物料的运动 理想状况不考虑物料颗粒在窑壁上和料层内的滑动, 以及物料颗粒大小对物料运动的影响。图3-20。 实际状况物料间由于粉料的存在或加料量太少,粉料 或中间一层物料不能与其它物料均匀混合,往往夹在中 间滑动。
图3-15
由冷水进行冷却。在窑体热端的托轮上
安装易于拆卸的遮热板。
⑶挡轮
回转窑倾斜安装,斜率一般3%~5%,绝大多数3.5%~4%
之间。正常情况,窑体本身的重力在沿轴线方向向下滑动的分 力等于滚圈与托轮间的摩擦力,窑体平衡。当失去平衡时,大
小齿轮的轮齿会离开啮合范围,密封装置受到破坏,严重时出
现掉窑或窑体下坑的重大事故。 作用检验窑体是否有纵向移动并控制窑体上下移动。回转窑 正常运转时,滚圈处于两挡轮中间位置,滚圈两侧与挡轮的工 作面间的间隙为30~40mm。当滚圈与任何一侧挡轮接触,说 明窑体发生了窜动。
水泥集团回转窑耐火材料统一选型配置要求规定

集团回转窑耐火材料统一选型配置要求规定根据前期各公司不同的配置方案和经验,为了进一步优化耐火材料的配置,便于管理,推广成功的配置经验,逐渐规范统一集团内耐火材料的配置,对各子公司较为成熟的配置方案进行了归纳和整理。
在今后的生产管理和新线建设中进一步优化和统一配置。
一、耐火材料的总体配置思想1、窑的年运转率:干法线92%,湿法线95%;2、耐火材料的配置要既经济又可靠,立足国产为主,进口为辅的原则,对于大型生产线的关键部位采用进口材料;3、各主要耐火材料的使用寿命满足回转窑2年3次大修的要求;二、集团各回转窑耐火材料统一配置方案(Φ6×95m、Φ6/6.4×90m)窑尾1米2、8000t/d生产线(Φ5.6×87m)87m3、4000~5000t/d生产线(Φ4.7×75m、Φ4.8×72m、Φ4.8×74m)窑尾米(Φ4×60m)60m145m三、耐火材料整体配置要求1、烧成带和两侧过渡带内有稳定窑皮的部位采用镁铬砖,4000吨以上项目采用进口镁铬砖,2000吨以下项目采用国产镁铬砖,湿法窑采用半直接结合镁铬砖。
2、在窑皮不稳定或常有露砖的过渡带采用尖晶石砖,分解带采用抗剥落高铝砖,但如果部分位置受侵蚀较快,寿命太短,也可采用碱性砖如尖晶石砖或镁铬砖。
3、预热器、分解炉系统和三次风管,衬里表面温度小于1200℃,采用粘土质耐碱砖、耐碱浇注料。
在不动设备内除工作层还需增加隔热层,统一选用硅酸钙板作为隔热层。
4、分解炉部位的托砖圈、锥部及篦冷机高温区采用高铝浇注料,篦冷机中、低温区采用高强耐碱浇注料,在窑尾缩口及烟室斜坡部位采用抗结皮浇注料。
5、窑头罩部位在大修时,养护时间能达到24小时以上的情况,采用高铝低水泥浇注料,在窑头罩抢修时,使用PA80高铝或耐磨浇注料,已减少养护时间。
6、篦冷机前墙、出篦冷机三次风管、入分解炉三次风管拐弯等部位,由于该部位温度较高,耐磨性要求高,选高热耐磨型浇注料,同时三次风管入分解炉部位可采用抗剥落砖或废高耐磨砖进行砌筑。
(整理)回转窑技术参数.

各种回转窑用途及技术参数2011-2-22 00:08回转窑回转窑是指旋转煅烧窑(俗称旋窑),属于建材设备类。
回转窑按处理物料不同可分为水泥窑、冶金化工窑和石灰窑。
回转窑按处理物料不同可分为水泥窑、冶金化工窑和石灰窑。
水泥窑主要用于煅烧水泥熟料,分干法生产水泥窑和湿法生产水泥窑两大类。
冶金化工窑则主要用于冶金行业钢铁厂贫铁矿磁化焙烧;铬、镍铁矿氧化焙烧;耐火材料厂焙烧高铝钒土矿和铝厂焙烧熟料、氢氧化铝;化工厂焙烧铬矿砂和铬矿粉等类矿物。
石灰窑(即活性石灰窑)用于焙烧钢铁厂、铁合金厂用的活性石灰和轻烧白云石。
回转窑基本信息在建材、冶金、化工、环保等许多生产行业中,广泛地使用回转圆备对固体物料进行机械、物理或化学处理,这类设备被称为回转窑。
回砖窑设备回转窑的应用起源于水泥生产,1824年英国水泥工J阿斯普发明了间歇操作的土立窑;1883年德国狄茨世发明了连续操作的多层立窑;1885英国人兰萨姆(ERansome)发明了回转窑,在英、美取得专利后将它投入生产,很快获得可观的经济效益。
回转窑的发明,使得水泥工业迅速发展,同时也促进了人们对回转窑应用的研究,很快回转窑被广泛应用到许多工业领域,并在这些生产中越来越重要,成为相应企业生产的核心设备。
它的技术性能和运转情况,在很大程度上决定着企业产品的质量、产量和成本。
“只要大窑转,就有千千万”这句民谣就是对生产中回转窑重要程度的生动描述。
在回转窑的应用领域,水泥工业中的数量最多。
水泥的整个生产工艺概括为“两磨一烧”,其中“一烧”就是把经过粉磨配制好的生料,在回转窑的高温作用下烧成为熟料的工艺过程。
因此,回转窑是水泥生产中的主机,俗称水泥工厂的“心脏”。
建材行业中,回转窑除锻烧水泥熟料外,还用来锻烧粘土、石灰石和进行矿渣烘干等;耐火材料生产中,采用回转窑锻烧原料,使其尺寸稳定、强度增加,再加工成型。
有色和黑色冶金中,铁、铝、铜、锌、锡、镍、钨、铬、锉等金属以回转窑为冶炼设备,对矿石、精矿、中间物等进行烧结、焙烧。
窑的结构——精选推荐

回转窑是水泥生产的主机设备。
生料粉从窑尾筒体高端喂入窑筒体内。
由于窑筒体的倾斜和缓慢地回转,使物料产生一个既沿着圆周方向翻滚,又沿着轴向从高端向低端移动的复合运动,生料在窑内通过分解,烧成等工艺过程,烧成水泥熟料后从窑筒体的低端卸出,进入冷却机。
燃料从窑头喷入,在窑内进行燃烧,发出的热量加热生料,使生料煅烧成为熟料,在与物料热交换过程中形成的热空气,由窑进料端进入窑尾系统(预热器及收尘器),最后由烟囱排入大气。
1、回转窑结构概述回转窑主要有窑筒体、传动装置、支承装置、挡轮装置、窑头密封装置、窑尾密封装置、窑头罩等部件组成,见图1-1 回转窑结构简图。
2、窑筒体部分窑筒体是回转窑的躯干,系由钢板卷制而焊接而成。
窑筒体倾斜地安装在数对托轮上,沿窑筒体长度方向上套有数个矩形轮带,它承受窑筒体、物料、窑衬等所有回转部分的重量,并将其重量传到支承装置上。
3、大齿圈装置窑筒体上固定有大齿圈以传递扭矩。
大齿圈通过切向弹簧板与窑筒体联结,这种使大齿圈悬挂在窑筒体上的联结结构能使大齿圈和窑筒体之间留有足够的散热空间,并能减少窑筒体弯曲变形等对啮合精度的影响,还能起到减震缓冲的作用,有利于延长窑衬的寿命。
4、传动装置传动型式:传动系统采用单传动或双传动,由一台或两台主传动电机电动机带动,主传动系统由主电动机、主减速器、小齿轮组成,辅助传动设备等。
辅助传动设备电源为保安电源或自带发电机,以便于安装、维修、耐火材料干燥及主电源中断时仍能盘窑操作,窑筒体冷却过程中防止窑筒体弯曲变形。
辅助电动机上配有制动器,防止窑在电动机停转后在物料、窑皮的偏重作用下产生反转。
4、支承装置1)、支承装置是回转窑的重要组成部分,它承受着窑筒体的全部重量,并对窑筒体起定位作用。
支承点间跨度的正确分配,使各档支承装置的设计更加合理,保证回转窑安全平稳地进行运转。
2)、支承装置由托轮轴承组及焊接底座等组成。
对于大型回转窑托轮轴承组一般采用滑动轴承,由托轮、托轮轴、轴瓦、球面瓦及轴承座等组成。
干法水泥回转窑各部位用耐火材料有哪些

下面介绍下大型干法水泥回转窑各部位用耐火材料有哪些。
1、窑口随着大型干法回转窑技术上不断发展和完善,熟料日生产规模的不断扩大,其设备运行工作条件出现新的特点,对耐火浇注料尤其是窑口浇注料提出了更高的要求,窑口窑衬是大型回转窑中最薄弱窑衬之一。
在大型干法窑生产中,回转窑窑口处窑气温度可高达1400℃左右,离窑熟料温度高达1400℃,人窑二次风温度达1200℃,窑口几乎是完全裸露在1700℃高温火焰的辐射之下和约1400℃高温的颗粒较大、强度很高的熟料的磨损和冲刷下。
工作条件十分苛刻,窑口衬料的使用周期严重制约了全窑的使用寿命。
窑口易变形造成的频繁掉砖、二次风温度的大幅度提高、窑体的斜度加大和转速的加快、窑口没有稳定的窑皮,使得窑口窑衬必须能承受熟料的磨损、高温气流的冲刷及物料的碱蚀。
另外,还要经受故障停窑及急冷急热的冲击。
事实上,国内回转窑由于诸多的原因,停窑频繁,造成窑口耐火材料遭受更多的热震。
有关统计表明,80%以上的停窑是由于局部耐火材料的蚀损造成的。
针对窑口薄弱的特性多采用具有优越抗热震性能、抗冲击性能和耐磨性能的浇注料。
使用时,在窑体焊上锚固件,用刚玉质或高铝质钢纤维增强浇注料整体浇注窑口,采用高性能窑口专用耐火浇注料或改进型窑口专用耐火浇注料,就可以对上述的破坏作用起到有效防御,从而使窑口耐火材料的使用周期达到与窑内烧成带同步的效果。
2、下过渡带下过渡带也称之为前过渡带。
预分解生产线回转窑的前过渡带非常短,在采用了三风道或四风道喷煤管后,通常仅为1D(1D为窑径),也有的就将窑口笼统的罗列在一起。
前过渡带由于温度稍低于烧成带,窑皮的坚固程度不如烧成带。
在这一区间内,有颗粒状熟料的强烈冲刷,由于温度波动幅度远远超出其他区段,炽热的熟料球与来自篦式冷却机的冷风(约1100~1200℃)换热,带着25%~30%液相量的熟料球在这里硬化,相互黏附形成窑皮,在该带完成大约400~500℃的换热温差,而且是熟料球和窑皮对篦式冷却机二次风的换热,热应力很大,加之熟料球和烧成带脱落窑皮的冲、撞、砸、磨作用,下过渡带的窑皮极不稳定,其工作条件最为恶劣。
回转窑工作原理、主要结构和常用规格的概述

回转窑工作原理、主要结构和常用规格的概述一、工作原理:回转窑是新型干法水泥生产线的核心主机设备。
生料粉从窑尾筒体高端的下料管喂入窑筒体内。
由于窑筒体的倾斜和缓慢地回转,使物料产生一个既沿着圆周方向翻滚,又沿着轴向从高端向低端移动的复合运动,生料在窑内通过分解,烧成等工艺过程,烧成水泥熟料后从窑筒体的低端出,进入冷却机。
燃料从窑头喷入,在窑内进行燃烧,发出的热量加热生料,使生料煅烧成为熟料,在与物料热交换过程中形成的热空气,由窑进料端进入窑尾系统,最后由烟囱排入大气。
二、主要结构:回转窑主要有窑筒体、传动装置、支承装置、挡轮装置、窑头密封装置、窑尾密封装置等组成,见图1 回转窑结构简图。
第3挡第2挡第1挡1.窑尾密封装置2.带挡轮支承装置3.大齿圈装置4.传动装置5.筒体部分6.第2挡支承装置7.第1挡支承装置8.窑头密封装置图1 回转窑结构简图1、窑回转部分:窑筒体是回转窑的躯干,是由钢板卷制而焊接而成。
窑筒体倾斜地安装在数对托轮上,在窑筒体低端装有耐高温耐磨损的窑口护板并组成套筒空间,并设有专用风机对窑口部分进行冷却。
沿窑筒体长度方向上套有3个矩形轮带,它承受窑筒体、物料、窑衬等所有回转部分的重量,并将其重量传到支承装置上。
轮带下采用浮动垫板,可根据运转后的间隙进行调整或更换,以获得最佳间隙。
2、大齿圈装置:在靠近窑筒体尾部固定有大齿圈以传递扭矩。
大齿圈通过切向弹簧板与窑筒体联结,这种使大齿圈悬挂在窑筒体上的联结结构能使大齿圈和窑筒体之间留有足够的散热空间,并能减少窑筒体弯曲变形等对啮合精度的影响,还能起到减震缓冲的作用,有利于延长窑衬的寿命。
3、传动装置:传动系统采用一个大齿轮和一个小齿轮传动,由一台主传动电动机带动,主传动系统由主电动机、主减速器、小齿轮等组成,同时采用了弹性膜片联轴器来提高传动的平稳性。
为保证主电源中断时仍能盘窑操作,以防止窑筒体弯曲变形,也便于检修时盘窑,设有辅助传动设备:它由辅助电动机,辅助减速器,离合器等组成。
回转窑的结构及工作原理概述

回转窑的结构及工作原理概述回转窑的结构及工作原理概述回转窑的筒体由钢板卷制而成,筒体内镶砌耐火衬,且与水平线成规定的斜度,由3个轮带支承在各挡支承装置上,在入料端轮带附近的跨内筒体上用切向弹簧板固定一个大齿圈,其下有一个小齿轮与其啮合。
正常运转时,由主传动电动机经主减速器向该开式齿轮装置传递动力,驱动回转窑。
物料从窑尾(筒体的高端)进入回转窑内煅烧。
由于筒体的倾斜和缓慢的回转作用,物料既沿圆周方向翻滚又沿轴向(从高端向低端)移动,继续完成其工艺过程,最后,生成熟料经窑头罩进入冷却机冷却。
燃料由窑头喷入窑内,燃烧产生的废气与物料进行交换后,由窑尾导出。
本设计不含燃料的燃烧器。
该窑在结构方面有下列主要特点:1、简体采用保证五项机械性能(σa、σb、σ%、αk和冷弯试验)的 20g及Q235-B钢板卷制,通常采用自动焊焊接。
筒体壁厚:一般为25mm,烧成带为32mm,轮带下为65mm,由轮带下到跨间有38mm厚的过渡段节,从而使筒体的设计更为合理,既保证横截面的刚性又改善了支承装置的受力状态。
2、在筒体出料端有耐高温、耐磨损的窑口护板,筒体窑尾端由一米长1Cr18Ni9Ti钢板制作。
其中窑头护板与冷风套组成分格的套筒空间,从喇叭口向筒内吹冷风冷却窑头护板的非工作面,以有利该部分的长期安全工作,在筒体上套有三个矩形实心轮带。
轮带与筒体垫板间的间隙由热膨胀量决定,当窑正常运转时,轮带能适度套在筒体上,以减少筒体径向变形。
3、传动系统用单传动,由变频电动机驱动硬齿面三级圆柱齿轮减速器,再带动窑的开式齿轮副,该传动装置采用胶块联轴器,以增加传动的平稳性,设有连接保安电源的辅助传动装置,可保证主电源中断时仍能盘窑操作,防止筒体弯曲并便利检修。
4、回转窑窑头密封采用罩壳气封、迷宫加弹簧刚片双层柔性密封装置。
通过喇叭口吹入适量的冷空气冷却护板,冷空气受热后从顶部排走;通过交迭的耐热弹簧钢片下柔性密封板压紧冷风套筒体,保证在窑头筒体稍有偏摆时仍能保持密封作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七、回转窑
回转窑内的工况是:燃料燃烧火焰温度高达1800-2000℃,窑内高温烟气与窑料进行热交换,出窑烟气温度降至1200℃左右,入窑物料温度约900℃,逐步加热至1400℃以上,窑料中的不同成分在此过程中进行化学反应,生成熟料。
近年来,随着窑的产量增加,窑速逐步增高,国外新投产的窑有的高达5-5.5r/min。
在此过程中易造成高温金属筒体变形而产生机械应力。
回转窑内温度高,化学反应复杂,且窑料以较快速度运行,因此回转窑内火砖的使用寿命受到影响,成为烧成系统更换最为频繁的部位。
国内大型预分解窑内火砖运转较好的为一年左右,一般为8-10个月,在一些尚未正常的生产线不超过6个月,个别窑不到2个月。
回转窑内耐火砖因承受高的热应力、热化学侵蚀、热机械应力,质量要求严格且价格昂贵,窑内耐火砖的应用是水泥生产厂和耐火材料制造厂关注的焦点,为减少耐火砖的消耗,以下将窑内各部位耐火砖承受的应力作一介绍。
1.分解带
近年来,预热器系统分解炉的功能越来越完善,入窑物料的分解率越来越高,窑内分解带的功能越来越少,分解带的长度呈现缩短的趋势。
带内衬砖所承受的热应力不高,一般烟气温度小于1350℃,而窑料温度高于900℃,此带已有少量C2S生成,带内耐火砖所承受的化学应力主要有:入窑物料含有少量的碱氯化合物及碱硫化合物的熔体和烟气对衬砖产生化学侵蚀。
减缓化学侵蚀的主要方式是尽量减少生料、燃料中的碱、氯、硫的含量,配用既能承受此工况温度,又能承受碱侵蚀的衬砖,同时还需考虑此部位温度较高,应尽量减少筒体散热损失,较为合适的品种是既抗碱侵蚀,且热导率较低的抗剥落高铝耐火砖。
若生料、燃料中碱氯硫化合物的含量严重超标时,可采取放风除碱,减少其含量,相应减少结皮及化学侵蚀。
2.过渡带(上过渡带后端)
从分解带来的已完全分解的窑料进入过渡带,此时物料温度增加很快,熔体仅有少量出现,C2S大量生成,当温度上升至约1300℃时,出现熔融熔体,进入熔体烧成带(上过渡带前端)。
进入过渡带的窑料,仍含有少量碱氯化合物及部分碱硫化合物,随着温度进一步升高,碱氯化合物进一步分解挥发。
当燃烧出现不完全时,窑气和窑料中含有的CO和C易使熟料中的硫酸盐分解,生成的SO2随烟气后逸,与碳酸钙分解的CaO或碱的氧化物作用,生成低熔融温度的化合物。
这些化合物之间形成熔融温度较低的复合化合物与已分解且已完成固相反应的窑料一起,在过渡带后部开始并延伸至分解带,黏结在衬体上,形成长厚窑皮(俗称后窑皮)和结圈(俗称后结圈)。
后结圈形成一定的高度时,圈后的窑料就难于向前进行,在窑的运转过程中,窑料翻滚逐步形成大块。
后结圈的高度越高,则大块越难先前运行,在此过程中越滚越大,在翻动的过程中对窑产生震动。
此时分解带内的衬砖不仅承受严重的低熔融体的窑料的硫碱化学侵蚀,还承受回转窑在运转过程中窑料和窑气温差造成的热震及氧化还原负荷,更为严重的是在窑尾出现大块窑料时的机械震动和磨蚀。
进入过渡带的烟气温度可能超过1600℃,窑料温度一般低于1300℃,该部位所承受的化学侵蚀与窑料中的碱硫含量有关,含量越高,则化学侵蚀越严重。
此外,该部位正处在第三挡拖轮前,烟气温度较高,正常操作时没有窑皮,筒体散热较大,金属筒体受热变性产生椭圆度应力。
综合上述情况,该部位选用荷软温度超过1600℃、抗碱硫侵蚀且热导率较低的耐火砖为宜。
3.熔体烧成带
当窑料温度逐步上升至1300℃时,窑料熔融,大量熔体进入熔体烧成带。
一些熔体和窑料一起,黏结在窑内耐火砖表面形成窑皮,但因温度稍低,所形成的熔体黏度难于将窑料大量挂在火砖表面上,形成时坍时挂的不稳定窑皮。
随着窑料逐步升温,窑料黏度则越来越适合挂窑皮,窑皮的厚度也越来越厚,坍落的次数也越来越少,当窑皮在耐火砖表面形成均匀的窑皮时,则进入最高温度烧成带。
熔体烧成带处在窑的中部,也就是三挡窑中间一挡托轮的部位,该部位烟气温度在1700℃左右,窑料温度在1300℃以上,一般配置高的荷软温度且抗窑料熔体侵蚀的火砖。
此类火砖一般致密,且热导率高,当窑升温时,筒体升温较快,以至于筒体膨胀量超过与轮带之间设计预留的间隙量,造成轮带压迫筒体,产生永久性变形,形成椭圆形,对衬砖产生严重的机械应力。
该部位耐火砖处在高温部位,不仅承受窑运转时形成的窑料和窑气之间温差形成的热震应力,还要承受窑皮时涨时坍对耐火砖造成温差变化产生的热震应力。
该部位处在火焰高温部位的前端,少量未完全燃烧的燃料沉积在该部位的窑料上,随窑旋转埋在高温的窑料内在缺氧的状况下不完全燃烧,易使硫碱化和物分解,加剧了耐火砖的化学侵蚀和氧化还原作用。
熔体烧成带的耐火砖处在高的烟气、物料温度下,缺少窑皮保护,此部位衬砖所承受的热机械应力及热化学应力均处在高负荷下,选择耐火砖时应予注意。
4.最高温度烧成带
此部位处在窑的最高温度部位,火焰温度最高可达2000℃,窑料温度从1350-1400℃以上的熟料形成温度,由于物料温度高,形成厚的窑皮以保护耐火砖,此外,窑料中97%的碱氯化合物挥发,碱硫化合物视烟气还原状况及温度决定其分解及挥发量。
衬砖内有窑皮保护,但窑皮是随原料性能和燃料性能及煅烧情况而变化的,带内衬砖不仅承受窑皮内熔体成分的热化学侵蚀,还需承受窑皮时坍时垮引起的热震应力。
烧成带由于有窑皮保护,在温度作用下,窑皮中的熔体成分渗入耐火砖空隙内,与耐火砖成分作用,生成新的化合物,这些化合物的熔融温度低,且体积膨胀,易使耐火砖损坏,总体来说带内耐火砖所承受的应力低于两端耐火砖所承受的应力。
但是一些窑料中的不易磨细且不易煅烧的SiO2,易造成该部位高温,促使衬砖承受的热化学应力大幅增加,使用寿命大幅降低。
但不论出现何种工况条件,烧成带部位的耐火砖必须具备较强的挂窑皮性能。
5.冷却带
此带熟料冷却固化,离窑进入冷却机。
冷却带的工况变化较大;若熟料内碱硫成分及氧化镁含量较高,在合适的温度下,所形成的窑皮致密,热导率高,易使筒体温度过高而变形,对衬砖产生较大的椭圆度变形应力。
若熟料内粉尘含量较高且随二次空气返回窑内,易对衬体产生磨蚀。
若冷却带部位没有窑皮保护,则熟料对衬砖的磨蚀尤为严重。
综合上述,带内衬砖除承受高温气流及熟料热应力外,更多地要承受高温含尘气流和熟料固化后的磨蚀,以及熟料中的熔体与硫碱化和物熔体的侵蚀,此处还有高温筒体变形带来的椭圆度应力。
在生产时,若将燃料器端面设置在窑口,当燃烧器变形向下弯曲时,易出现未完全燃烧的煤粉沉积在熟料面上,煤粉燃烧将进一步提高熟料表面温度,而使窑
口结圈,影响通风,进一步加重窑内还原气氛,影响生产及对窑内衬砖产生化学侵蚀。
冷却带处在窑筒体的最低部位,为防止窑内耐火砖在运行中下滑,在前段设置挡砖圈。
预分解窑转速高,相应增大挡砖圈部位的机械应力,此外冷却带处在窑口,筒体受热易变形,再加上该部位处在第一挡轮带部位,易形成筒体椭圆应力。
综合上述,冷却带耐火砖是回转窑内衬砖承受热应力、热化学侵蚀、热机械应力最高的部位。
6.回转窑耐火砖综合受力情况
回转窑内耐火砖承受的应力与入窑生料和燃料的性能有关,也与生产操作有关。