粒度粒径测试基本知识
粒度测试的基本知识和基本方法

粒度测试的基本知识和基本方法本文从应用角度出发,提出了大家关心的一些粒度测试方面的基本问题,并对这些问题进行了解答。
同时介绍了目前常用的几种粒度测试方法的原理、应用情况以及它们各自的优缺点,并在此基础上对粒度测试工作的几个实际问题进行了探讨。
关键词:粒度测试;等效粒径;激光法;沉降法粒度测试是通过特定的仪器和方法对粉体粒度特性进行表征的一项实验工作。
粉体在我们日常生活和工农业生产中的应用非常广泛。
如面粉、水泥、塑料、造纸、橡胶、陶瓷、药品等等。
在的不同应用领域中,对粉体特性的要求是各不相同的,在所有反映粉体特性的指标中,粒度分布是所有应用领域中最受关注的一项指标。
所以客观真实地反映粉体的粒度分布是一项非常重要的工作。
下面就我具体讲一下关于粒度测试方面的基知识和基本方法。
一、粒度测试的基本知识1、颗粒:在一尺寸范围内具有特定形状的几何体。
这里所说的一尺寸一般在毫米到纳米之间,颗粒不仅指固体颗粒,还有雾滴、油珠等液体颗粒。
颗粒的概念似乎很简单,但由于各种颗粒的形状复杂,使得粒度分布的测试工作比想象的要复杂得多。
因此要真正了解各种粒度测试技术所得出的测试结果,明确颗粒的定义是很重要的。
2、粉休:由大量的不同尺寸的颗粒组成的颗粒群。
3、粒度:颗粒的大小叫做颗粒的粒度。
4、粒度测试复杂的原因由于颗粒的形状多为不规则体,因此用一个数值去描述一个三维几何体的大小是不可能的。
为了叙述方便,我们以火柴盒为例,如图2。
用一把直尺量一个火柴盒的尺寸,你可以得出这个火柴盒的尺寸是20×10×5mm。
但你不能说这个火柴盒是20mm或10mm或5mm,因为这几个数值只是它大小尺寸的一个侧面而不是它的整体。
可见,用一个数值去直接描述一个火柴盒的大小都是不可能的,同样,对于一个形状极其复杂的颗粒来说,用一个数值去直接描述它们的大小就更不可能了。
那么,怎样仅用一个数值描述一个颗粒的大小?这是粒度测试的基本问题。
粒度粒径测试基本知识

等效粒径的种类 及测试方法
? 等效体积径:即与所测颗粒具有相同体积的同质
球形颗粒的直径。激光法所测粒径一般认为是等
效体积径。 ? 等效筛分径 ( 筛分法的粒径 ) ? 等效沉速径 ( 沉淀法的粒径 ) ? 等效投影面积径 ( 显微镜法的粒径 ) ? 等效体积径 ( 光学法的粒径 ) 。
。 准 HG/T3744 云母珠光颜料
缺点 :不宜测量粒度分布很窄的样品,分辨率相对较低。
第十四页,编辑于星期三:二点 二十一分。
激光法应用领域
应用领域包括制药,生物医药,纳米材 料等行业。典型样品:氧化铝 /铜/金钢粉、
半导体、硅盐等无机材料,聚合物乳胶、
乳液、油漆、颜料、药物、甾体等有机体。
第十五页,编辑于星期三:二点 二十一分。
激光法所用的理论
夫琅和 费理论:当颗粒直径比入射波长大得多时发生衍射散射 ,
这时由夫琅禾费衍射理论求得的光强度和米氏散射理论求得的光强度 大体一致 ,但前者计算过程较简便 ,因此当 D > >λ时用夫琅禾费衍射理
论作为散射理论的近似处理 。
米氏理论:
当颗粒粒径小于等于波长时,就必须使用米氏
理论了。 Mie理论是描述散射现象的严格理论,因此许多国外仪器和
粒子的布朗运动导致光强的波动 当光束遇到颗粒阻挡时,一部分光将发生散射现象。散射光的传播方向 将与主光束的传播方向形成一个夹角。颗粒越大,产生的散射光的 θ角就越小; 颗粒越小,产生的散射光的 θ角就越大。散射光的强度代表该粒径颗粒的数量。 这样,在不同的角度上测量散射光的强度,就可以得到样品的粒度分布了。
仪器原理不同,一般来说测试结果
是不同的。只有当颗粒是球形时,不
粒度测试的基本知识和基本方法

粒度测试的基本知识和基本⽅法粒度测试的基本知识和基本⽅法摘要:本⽂从应⽤⾓度出发,提出了⼤家关⼼的⼀些粒度测试⽅⾯的基本问题,并对这些问题进⾏了解答。
同时介绍了⽬前常⽤的⼏种粒度测试⽅法的原理、应⽤情况以及它们各⾃的优缺点,并在此基础上对粒度测试⼯作的⼏个实际问题进⾏了探讨。
关键词:粒度测试;等效粒径;激光法;沉降法粒度测试是通过特定的仪器和⽅法对粉体粒度特性进⾏表征的⼀项实验⼯作。
粉体在我们⽇常⽣活和⼯农业⽣产中的应⽤⾮常⼴泛。
如⾯粉、⽔泥、塑料、造纸、橡胶、陶瓷、药品等等。
在的不同应⽤领域中,对粉体特性的要求是各不相同的,在所有反映粉体特性的指标中,粒度分布是所有应⽤领域中最受关注的⼀项指标。
所以客观真实地反映粉体的粒度分布是⼀项⾮常重要的⼯作。
下⾯就我具体讲⼀下关于粒度测试⽅⾯的基知识和基本⽅法。
⼀、粒度测试的基本知识1、颗粒:在⼀尺⼨范围内具有特定形状的⼏何体。
这⾥所说的⼀尺⼨⼀般在毫⽶到纳⽶之间,颗粒不仅指固体颗粒,还有雾滴、油珠等液体颗粒。
颗粒的概念似乎很简单,但由于各种颗粒的形状复杂,使得粒度分布的测试⼯作⽐想象的要复杂得多。
因此要真正了解各种粒度测试技术所得出的测试结果,明确颗粒的定义是很重要的。
2、粉休:由⼤量的不同尺⼨的颗粒组成的颗粒群。
3、粒度:颗粒的⼤⼩叫做颗粒的粒度。
4、粒度测试复杂的原因由于颗粒的形状多为不规则体,因此⽤⼀个数值去描述⼀个三维⼏何体的⼤⼩是不可能的。
为了叙述⽅便,我们以⽕柴盒为例,如图2。
⽤⼀把直尺量⼀个⽕柴盒的尺⼨,你可以得出这个⽕柴盒的尺⼨是20×10×5mm。
但你不能说这个⽕柴盒是20mm 或10mm或5mm,因为这⼏个数值只是它⼤⼩尺⼨的⼀个侧⾯⽽不是它的整体。
可见,⽤⼀个数值去直接描述⼀个⽕柴盒的⼤⼩都是不可能的,同样,对于⼀个形状极其复杂的颗粒来说,⽤⼀个数值去直接描述它们的⼤⼩就更不可能了。
那么,怎样仅⽤⼀个数值描述⼀个颗粒的⼤⼩?这是粒度测试的基本问题。
粒度测试的基本知识和基本方法

粒度测试的基本知识和基本方法粒度测试是通过特定的仪器和方法对粉体粒度特性进行表征的一项实验工作。
粉体在我们日常生活和工农业生产中的应用非常广泛。
如面粉、水泥、塑料、造纸、橡胶、陶瓷、药品等等。
在的不同应用领域中,对粉体特性的要求是各不相同的,在所有反映粉体特性的指标中,粒度分布是所有应用领域中最受关注的一项指标。
所以客观真实地反映粉体的粒度分布是一项非常重要的工作。
下面就我具体讲一下关于粒度测试方面的基知识和基本方法。
一、粒度测试的基本知识1、颗粒:在一尺寸范围内具有特定形状的几何体。
这里所说的一尺寸一般在毫米到纳米之间,颗粒不仅指固体颗粒,还有雾滴、油珠等液体颗粒。
2、粉休:由大量的不同尺寸的颗粒组成的颗粒群。
3、粒度:颗粒的大小叫做颗粒的粒度。
4、粒度分布:用特定的仪器和方法反映出的不同粒径颗粒占粉体总量的百分数。
有区间分布和累计分布两种形式。
区间分布又称为微分分布或频率分布,它表示一系列粒径区间中颗粒的百分含量。
累计分布也叫积分分布,它表示小于或大于某粒径颗粒的百分含量。
5、粒度分布的表示方法:①表格法:用表格的方法将粒径区间分布、累计分布一一列出的方法。
②图形法:在直角标系中用直方图和曲线等形式表示粒度分布的方法。
③函数法:用数学函数表示粒度分布的方法。
这种方法一般在理论研究时用。
如著名的Rosin-Rammler分布就是函数分布。
6、粒径和等效粒径:粒径就是颗粒直径。
这概念是很简单明确的,那么什么是等效粒径呢,粒径和等效粒径有什么关系呢?我们知道,只有圆球体才有直径,其它形状的几何体是没有直径的,而组成粉体的颗粒又绝大多数不是圆球形的,而是各种各样不规则形状的,有片状的、针状的、多棱状的等等。
这些复杂形状的颗粒从理论上讲是不能直接用直径这个概念来表示它的大小的。
而在实际工作中直径是描述一个颗粒大小的最直观、最简单的一个量,我们又希望能用这样的一个量来描述颗粒大小,所以在粒度测试的实践中的我们引入了等效粒径这个概念。
粒度相关解释

粒度测试是通过特定的仪器和方法对粉体粒度特性进行表征的一项实验工作。
粉体在我们日常生活和工农业生产中的应用非常广泛。
如面粉、水泥、塑料、造纸、橡胶、陶瓷、药品等等。
在的不同应用领域中,对粉体特性的要求是各不相同的,在所有反映粉体特性的指标中,粒度分布是所有应用领域中最受关注的一项指标。
所以客观真实地反映粉体的粒度分布是一项非常重要的工作。
下面具体讲一下关于粒度测试方面的基知识和基本方法。
一、粒度测试的基本知识1、颗粒:在一尺寸范围内具有特定形状的几何体。
这里所说的一尺寸一般在毫米到纳米之间,颗粒不仅指固体颗粒,还有雾滴、油珠等液体颗粒。
2、粉休:由大量的不同尺寸的颗粒组成的颗粒群。
3、粒度:颗粒的大小叫做颗粒的粒度。
4、粒度分布:用特定的仪器和方法反映出的不同粒径颗粒占粉体总量的百分数。
有区间分布和累计分布两种形式。
区间分布又称为微分分布或频率分布,它表示一系列粒径区间中颗粒的百分含量。
累计分布也叫积分分布,它表示小于或大于某粒径颗粒的百分含量。
5、粒度分布的表示方法:①表格法:用表格的方法将粒径区间分布、累计分布一一列出的方法。
②图形法:在直角标系中用直方图和曲线等形式表示粒度分布的方法。
③函数法:用数学函数表示粒度分布的方法。
这种方法一般在理论研究时用。
如著名的Rosin-Rammler分布就是函数分布。
6、粒径和等效粒径:粒径就是颗粒直径。
这概念是很简单明确的,那么什么是等效粒径呢,粒径和等效粒径有什么关系呢?我们知道,只有圆球体才有直径,其它形状的几何体是没有直径的,而组成粉体的颗粒又绝大多数不是圆球形的,而是各种各样不规则形状的,有片状的、针状的、多棱状的等等。
这些复杂形状的颗粒从理论上讲是不能直接用直径这个概念来表示它的大小的。
而在实际工作中直径是描述一个颗粒大小的最直观、最简单的一个量,我们又希望能用这样的一个量来描述颗粒大小,所以在粒度测试的实践中的我们引入了等效粒径这个概念。
等效粒径是指当一个颗粒的某一物理特性与同质的球形颗粒相同或相近时,我们就用该球形颗粒的直径来代表这个实际颗粒的直径。
粒度测试的基本知识和基本方法概述-基本知识3

其中,n 为测量次数(一般 n>=10) ; xi 为每次测试结果的典型值(一般为 D50 值) ; x 为多次测试结果典型值的平均值; σ为标准差; 那么重复性相对误差为:
δ
8. 粒度测试的准确性
σ 100% x
(6)
(等效投影面积径)
丹东市百特仪器有限公司
服务热线:0415-6184440
网址:
7
丹东百特科技有限公司-粒度测试的基本知识和基本方法概述
可见,由于测量方法不同,同一个颗粒得到了多个不同的结果。也就是说,一个非圆球形的颗粒,如果用一个数值来表示它的大 小时,这个数值不是唯一的,而是有一系列的数值。而每一种测试方法的都是针对颗粒的某一个特定方面进行的,所得到的数值是所 有能表示颗粒大小的一系列数值中的一个,所以相同样品用不同的粒度测试方法得到的结果有所不同的是客观原因造成的。颗粒的形 状越复杂,不同测试方法的结果相差越大。但这并不意味着粒度测试结果可以漫无边际,而恰恰应具有一定的真实性,就是应比较真 实地反映样品的实际粒度分布。真实性目前还没有严格的标准,是一个定性的概念。但有些现象可以作为测试结果真实性好坏的依据。 比如仪器对标准样的测量结果应在标称值允许的误差范围内;经粉碎后的样品应比粉碎前更细;经分级后的样品的粒度分布将发生变 化(比如大颗粒含量减少等) ;结果与行业标准或公认的方法一致等。 9. 重复性和准确性哪个更重要 重复性和准确性是粒度仪的两个重要指标,是用户和仪器生产厂家都非常关心的两个问题。在正常情况下,重复性的重要性要大 于准确性。 第一,重复性是反映仪器本身稳定与否的一个综合指标,是一个可以精确量化的指标,可以用它来直接评价仪器的好坏;准确性 则是一个根本不存在的模糊的概念,它不仅与仪器有关,还与样品、环境及操作方法有关,是评价仪器好坏的次要指标。 第二,在生产实践中粒度测试的相对意义大于绝对意义。也就是说,只要测试结果是稳定的,这种仪器就对生产和控制有指导意 义,否则粒度测试将没有任何意义。 第三,准确性的依据通常是用所谓先进仪器或传统方法得到的结果。从一定意义上讲,这些方法得到的结果可以作为参考,如果 用来检验仪器则要有充分的依据。要知道,即使再先进的仪器,如果在设置和使用不当,所得到的结果也同样存在较大偏差,用未经 过仔细验证的结果作为唯一的检验仪器的依据是不科学的。所以,在仪器满足真实性要求的前提下,重复性比准确性更重要。
粒度测试的基本知识和基本方法.

粒度测试的基本知识和基本方法(丹东市百特仪器有限公司董青云)粒度测试是通过特定的仪器和方法对粉体粒度特性进行表征的一项实验工作。
粉体在我们日常生活和工农业生产中的应用非常广泛。
如面粉、水泥、塑料、造纸、橡胶、陶瓷、药品等等。
在的不同应用领域中,对粉体特性的要求是各不相同的,在所有反映粉体特性的指标中,粒度分布是所有应用领域中最受关注的一项指标。
所以客观真实地反映粉体的粒度分布是一项非常重要的工作。
下面就我具体讲一下关于粒度测试方面的基知识和基本方法。
一、粒度测试的基本知识1、颗粒:在一尺寸范围内具有特定形状的几何体。
这里所说的一尺寸一般在毫米到纳米之间,颗粒不仅指固体颗粒,还有雾滴、油珠等液体颗粒。
2、粉休:由大量的不同尺寸的颗粒组成的颗粒群。
3、粒度:颗粒的大小叫做颗粒的粒度。
4、粒度分布:用特定的仪器和方法反映出的不同粒径颗粒占粉体总量的百分数。
有区间分布和累计分布两种形式。
区间分布又称为微分分布或频率分布,它表示一系列粒径区间中颗粒的百分含量。
累计分布也叫积分分布,它表示小于或大于某粒径颗粒的百分含量。
5、粒度分布的表示方法:①表格法:用表格的方法将粒径区间分布、累计分布一一列出的方法。
②图形法:在直角标系中用直方图和曲线等形式表示粒度分布的方法。
③函数法:用数学函数表示粒度分布的方法。
这种方法一般在理论研究时用。
如著名的Rosin-Rammler分布就是函数分布。
6、粒径和等效粒径:粒径就是颗粒直径。
这概念是很简单明确的,那么什么是等效粒径呢,粒径和等效粒径有什么关系呢?我们知道,只有圆球体才有直径,其它形状的几何体是没有直径的,而组成粉体的颗粒又绝大多数不是圆球形的,而是各种各样不规则形状的,有片状的、针状的、多棱状的等等。
这些复杂形状的颗粒从理论上讲是不能直接用直径这个概念来表示它的大小的。
而在实际工作中直径是描述一个颗粒大小的最直观、最简单的一个量,我们又希望能用这样的一个量来描述颗粒大小,所以在粒度测试的实践中的我们引入了等效粒径这个概念。
粒度测试的基本概念和基本知识

粒度测试的基本概念和基本知识1.什么是颗粒?颗粒是具有一定尺寸和形状的微小的物体,是组成粉体的基本单元。
它宏观很小,但微观却包含大量的分子、原子。
2.什么叫粒度?颗粒的大小称为颗粒的粒度。
3.什么叫粒度分布?不同粒径的颗粒分别占粉体总量的百分比叫做粒度分布。
4.常见的粒度分布的表示方法?•表格法:用列表的方式表示粒径所对应的百分比含量。
通常有区间分布和累计分布。
•图形法:用直方图和曲线等图形方式表示粒度分布的方法。
5.什么是粒径?颗粒的直径叫做粒径,一般以微米或纳米为单位来表示粒径大小。
6.什么是等效粒径?当一个颗粒的某一物理特性与同质球形颗粒相同或相近时,我们就用该球形颗粒的直径来代表这个实际颗粒的直径。
根据不同的测量方法,等效粒径可具体分为下列几种:•等效体积径:即与所测颗粒具有相同体积的同质球形颗粒的直径。
激光法所测粒径一般认为是等效体积径。
•等效沉速粒径:即与所测颗粒具有相同沉降速度的同质球形颗粒的直径。
重力沉降法、离心沉降法所测的粒径为等效沉速粒径,也叫Stokes径。
•等效电阻径:即在一定条件下与所测颗粒具有相同电阻的同质球形颗粒的直径。
库尔特法所测的粒径就是等效电阻粒径。
•等效投影面积径:即与所测颗粒具有相同的投影面积的球形颗粒的直径。
图像法所测的粒径即为等效投影面积直径。
7.为什么要用等效粒径概念?由于实际颗粒的形状通常为非球形的,因此难以直接用粒径这个值来表示其大小,而直径又是描述一个几何体大小的最简单的一个量,于是采用等效粒径的概念。
简单地说,粒径就是颗粒的直径。
从几何学常识我们知道,只有圆球形的几何体才有直径,其他形状的几何体并没有直径,如多角形、多棱形、棒形、片形等不规则形状的颗粒是不存在真实直径的。
但是,由于粒径是描述颗粒大小的所有概念中最简单、直观、容易量化的一个量,所以在实际的粒度分布测量过程中,人们还都是用粒径来描述颗粒大小的。
一方面不规则形状并不存在真实的直径,另一方面又用粒径这个概念来表示它的大小,这似乎是矛盾的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粒度分布的表达
粒度分布的常用表达方法: 数量分布 体积分布
粒度测试中的典型数据
• 平均径: 表示颗粒平均大小的数据。有很多不同的平均值的算法,如D[4, 3]等。根据不同的仪器所测量的粒度分布,平均粒径分、体积平均径、 面积平均径、长度平均径、数量平均径等。 • D50: 也叫中位径或中值粒径,这是一个表示粒度大小的典型值,该值 准确地将总体划分为二等份,也就是说有50%的颗粒超过此值,有 50%的颗粒低于此值。如果一个样品的D50=5μm,说明在组成该样 品的所有粒径的颗粒中,大于5μm的颗粒占50%,小于5μm的颗粒也 占50%。 • 最频粒径: 是频率分布曲线的最高点对应的粒径值。 • D97:D97 一个样品的累计粒度分布数达到 97%时所对应的粒径。 它的物理意义是粒径小于它的的颗粒占 97%。这是一个被广泛应用的 表示粉体粗端粒度指标的数据。
激光法应用领域
应用领域包括制药,生物医药,纳米材 料等行业。典型样品:氧化铝/铜/金钢粉、 半导体、硅盐等无机材料,聚合物乳胶、 乳液、油漆、颜料、药物、甾体等有机体。
激光法所用的理论
夫琅和费理论:当颗粒直径比入射波长大得多时发生衍射散射, 这时由夫琅禾费衍射理论求得的光强度和米氏散射理论求得的光强度 大体一致,但前者计算过程较简便,因此当D > >λ时用夫琅禾费衍射理 论作为散射理论的近似处理。 米氏理论: 当颗粒粒径小于等于波长时,就必须使用米氏 理论了。 Mie理论是描述散射现象的严格理论,因此许多国外仪器和 部分国产仪器都把“采用全米氏理论”作为仪器的重要优点之一。所 谓全米氏理论,是指大颗粒(远远大于光波长,可见光波长范围为 0.4~0.7μm)和小颗粒(小于等于光波长)均采用米氏理论。 光子相关光谱分析法分析PCS 对超细颗粒 ( 如纳米材料 ) 采用 激光衍射散射式粒度仪已不能准确测量其粒径 , 应选用根据光子相关 光谱技术制备的仪器测量 ( 颗粒粒度在 1 nm ~ 1 μ m) 。
由于测量方法不同,同一个颗粒得 到了多个不同的结果。
ห้องสมุดไป่ตู้
粒度测试的基本方法
1,激光法 激光法是通过一台激光散射的方法来测 量悬浮液,乳液和粉末样品颗粒分布的多 用途仪器。纳米型和微米型激光料度仪还 可以通过安装的软件来分析颗粒的形状。 现在已经成为颗粒测试的主流.
激光法特点
优点 :(1) 适用性广 , 既可测粉末状的颗粒 , 也可测悬浮液和乳浊 液中的颗粒 ; (2) 测试范围宽 , 国际标准 ISO 13320 - 1 Particle Size Analysis 2 LaserDiffractionMeth 2 ods 2 Part1: General Princip les 中规定激光衍射散射法的应用范围为 0 . 1 ~ 3 000 μ m; (3) 准确性 高 , 重复性好 ; (4) 测试速度快 ; (5) 可进行在线测量。在涂料工业中 该法也已得到了业内人士的认同 , 某些涂料及相关产品已制定了相应 的测试方法标准 , 如 , 国际标准 ISO 8310 — 13 Coating Powders 2 Part 13: Par 2 ticle Size Analysis by Laser Diffraction 和化工行业标 准 HG/T3744 云母珠光颜料。 缺点 :不宜测量粒度分布很窄的样品,分辨率相对较低。
等效粒径的种类 及测试方法
• 等效体积径:即与所测颗粒具有相同体积的同质 球形颗粒的直径。激光法所测粒径一般认为是等 效体积径。 • 等效筛分径 ( 筛分法的粒径 ) • 等效沉速径 ( 沉淀法的粒径 ) • 等效投影面积径 ( 显微镜法的粒径 ) • 等效体积径 ( 光学法的粒径 ) 。 需注意的是基于不同物理原理的各种测试方法 , 对等效粒径的定义不同 , 因此各种测试方法得到 的测量结果之间无直接的对比性。
粒度仪主要性能指标
• 重复性 重复性是指同一个样品多次测量结果之间的偏 差,是衡量一台粒度测试仪或一种测试方法好坏的最重要 的指标。影响因素有仪器和方法、样品制备因素、环境因 素以及操作因素等。 • 准确性 由于粒度测试的特殊性,通常用真实性来表示准 确性的含义。由于粒度测试所测得的粒径为等效粒径,对 同一个颗粒,不同的等效方法可能会得到不同的等效粒径。 仪器对标准样的测量结果应在标称值允许的误差范围内; 经粉碎后的样品应比粉碎前更细;经分级后的样品的粒度 分布将发生变化(比如大颗粒含量减少等);结果与行业 标准或公认的方法一致等。 • 重复性比准确性更重要。
总之,现有的所有的粒度测量手段 给出的粒径都是等效粒径。因此除了 球形颗粒以外,测试结果同仪器原理 有关,或者说同“等效”所参照的物 理参数或物理行为有关。 仪器原理不同,一般来说测试结果 是不同的。只有当颗粒是球形时,不 同原理仪器的结果才可能相同。
等效球体的意义
• 作为粒度标准的物质必须是球状的,以便 于各种方法之间的比较。 • 目前所说的粒度测试,测试结果均是用 等效球体来表示的。这是目前几乎所有粒 度测试仪器和方法的基本原理。
粒度
颗粒的大小称为“粒径”,又称为“粒度” 或者“直径”。
等效粒径
等效球体
粒度 颗粒的大小称为粒度。一般颗粒的 大小又以直径表示 , 故也称为粒径。用一定方法 反映出一系列不同粒径区间颗粒分别占试样总量 的百分比称为粒度分布。 等效粒径 由于实际颗粒的形状通常为非球 形的 , 难以直接用直径表示其大小 , 因此在颗粒粒 度测试领域 , 对非球形颗粒 , 通常以等效粒径 ( 一 般简称粒径 ) 来表征颗粒的粒径。 等效粒径 是指当一个颗粒的某一物理特性 与同质球形颗粒相同或相近时 , 就用该球形颗粒 的直径代表这个实际颗粒的直径。
颗粒大小分级习惯术语
纳米颗粒 1-100 nm 亚微米颗粒 0.1-1 um 微粒、微粉 1-100 um 细粒、细粉 100-1000 um 粗粒 大于1 mm
粒度测试的目地
微小颗粒态物质在日常生活和工业生产 中有着很广泛的应用,尺寸的大小和分布 情况直接关系到工业流程,产品质量以及 能源消耗和生产过程的安全性。因此,准 确方便地测量微小颗粒的直径(粒径)并 得到粒径分布函数成为一个非常有意义的 课题。