高等数学教学教案 函数的极值与最大值最小值
函数的最大值与最小值教案

课题:函数的最大值与最小值 教学目的:⒈使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件; ⒉使学生掌握用导数求函数的极值及最值的方法和步骤 教学重点:利用导数求函数的最大值和最小值的方法.教学难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系. 教学过程:一、复习引入:1.极大值: 一般地,设函数f(x)在点x 0附近有定义,如果对x 0附近的所有的点,都有f(x)<f(x 0),就说f(x 0)是函数f(x)的一个极大值,记作y 极大值=f(x 0),x 0是极大值点2.极小值:一般地,设函数f(x)在x 0附近有定义,如果对x 0附近的所有的点,都有f(x)>f(x 0).就说f(x 0)是函数f(x)的一个极小值,记作y 极小值=f(x 0),x 0是极小值点3.极大值与极小值统称为极值注意以下几点:(ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小(ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个(ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点 而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点 二、讲解新课: 1.函数的最大值和最小值观察图中一个定义在闭区间[]b a ,上的函数)(x f 的图象.图中)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x .一般地,在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值. 说明:⑴在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值.如函数xx f 1)(=在),0(+∞内连续,但没有最大值与最小值;⑵函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.⑶函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个⒉利用导数求函数的最值步骤:由上面函数)(x f 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数)(x f 在[]b a ,上连续,在(,)a b 内可导,则求)(x f 在[]b a ,上的最大值与最小值的步骤如下:⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值三、讲解范例:例1求函数5224+-=x x y 在区间[]2,2-例2已知x,y 为正实数,且满足22240x x y -+=,求xy例3.设213a <<,函数323()(11)2f x x ax b x =-+-≤≤的最大值为1,最小值为,求常数a,b 例4已知23()log x ax bf x x++=,x ∈(0,+∞).是否存在实数a b 、,使)(x f 同时满足下列两个条件:(1))(x f )在(0,1)上是减函数,在[1,+∞)上是增函数;(2))(x f 的最小值是1,若存在,求出a b 、,若不存在,说明理由.四、课堂练习:1.下列说法正确的是( )A.函数的极大值就是函数的最大值B.函数的极小值就是函数的最小值C.函数的最值一定是极值D.在闭区间上的连续函数一定存在最值2.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x ) ( ) A.等于0 B.大于0 C.小于0 D.以上都有可能3.函数y =234213141x x x ++,在[-1,1]上的最小值为( )A.0B.-2C.-1D.1213 4.函数y =122+-x x x 的最大值为( )。
高等数学教学教案 函数的极值与最大值最小值

§3. 5 函数的极值与最大值最小值授课次序22极大值和函数在区间端点的函数值中最大者. 同理, 函数在闭区间[a , b ]上的最小值一定是函数的所有极小值和函数在区间端点的函数值中最小者. 最大值和最小值的求法:设f (x )在(a , b )内的驻点和不可导点(它们是可能的极值点)为x 1, x 2, ⋅ ⋅ ⋅ , x n , 则比较f (a ), f (x 1), ⋅ ⋅ ⋅ , f (x n ), f (b )的大小, 其中最大的便是函数f (x )在[a , b ]上的最大值, 最小的便是函数f (x )在[a , b ]上的最小值. 例3求函数f (x )=|x 2-3x +2|在[-3, 4]上的最大值与最小值.解 ⎩⎨⎧∈-+-⋃-∈+-=)2 ,1( 23]4 ,2[]1 ,3[ 23)(22x x x x x x x f , ⎩⎨⎧∈+-⋃-∈-=')2 ,1( 32)4 ,2()1 ,3( 32)(x x x x x f 在(-3, 4)内, f (x )的驻点为23=x ; 不可导点为x =1和x =2.由于f (-3)=20, f (1)=0,41)23(=f , f (2)=0, f (4)=6, 比较可得f (x )在x =-3处取得它在[-3, 4]上的最大值20, 在x =1和x =2处取它在[-3, 4]上的最小值0.例4 工厂铁路线上AB 段的距离为100km . 工厂C 距A 处为20km , AC 垂直于AB . 为了运输需要, 要在AB 线上选定一点D 向工厂修筑一条公路. 已知铁路每公里货运的运费与公路上每公里货运的运费之比3:5. 为了使货物从供应站B 运到工厂C 的运费最省, 问D 点应选在何处?解 设AD =x (km), 则 DB =100-x , 2220x CD +=2400x +=.设从B 点到C 点需要的总运费为y , 那么 y =5k ⋅CD +3k ⋅DB (k 是某个正数), 即 24005x k y +=+3k (100-x ) (0≤x ≤100).现在, 问题就归结为: x 在[0, 100]内取何值时目标函数y 的值最小. 先求y 对x 的导数: )34005(2-+='x x k y . 2400x CD += 解方程y '=0, 得x =15(km).由于y |x =0=400k , y |x =15=380k ,2100511500|+==k y x , 其中以y |x =15=380k 为最小, 因此当AD =x =15km 时, 总运费为最省.例2' 工厂C 与铁路线的垂直距离AC 为20km,A 点到火车站B 的距离为100km. 欲修一条从工厂到铁路的公路CD . 已知铁路与公路每公里运费之比为3:5. 为了使火车站B 与工厂C 间的运费最省, 问D 点应选在何处?解 设AD =x (km), B 与C 间的运费为y , 则y =5k ⋅CD +3k ⋅DB )100(340052x k x k -++=(0≤x ≤100), 其中k 是某一正数. 由)34005(2-+='x x k y =0, 得x =15. 由于y |x =0=400k , y |x =15=380k ,2100511500|+==k y x , 其中以y |x =15=380k 为最小, 因此当AD =x =15km 时, 总运费为最省.DC20km A B 100km。
函数的最大值和最小值教案

函数的最大值和最小值教案一、教学目标1. 理解函数最大值和最小值的概念。
2. 学会使用导数和图像来求解函数的最大值和最小值。
3. 能够应用函数最大值和最小值解决实际问题。
二、教学内容1. 函数最大值和最小值的定义。
2. 利用导数求函数最大值和最小值的方法。
3. 利用图像求函数最大值和最小值的方法。
4. 实际问题中的应用。
三、教学重点与难点1. 教学重点:函数最大值和最小值的概念,求解方法及实际应用。
2. 教学难点:利用导数和图像求解函数最大值和最小值的方法。
四、教学方法1. 采用讲授法讲解函数最大值和最小值的概念及求解方法。
2. 使用案例分析法分析实际问题中的应用。
3. 利用数形结合法讲解利用图像求解函数最大值和最小值的方法。
五、教学准备1. 教学课件:包含函数最大值和最小值的概念、求解方法及实际应用。
2. 案例分析:选取几个实际问题进行分析。
3. 数形结合:准备函数图像,用于讲解求解方法。
六、教学过程1. 引入新课:通过复习导数的概念和性质,引导学生思考如何利用导数求解函数的最值。
2. 讲解函数最大值和最小值的定义,解释其在数学和实际应用中的重要性。
3. 分步讲解利用导数求解函数最值的方法,包括:a. 确定函数的单调区间b. 找到导数为零的点c. 判断极值点是最大值还是最小值4. 通过案例分析,让学生练习利用导数求解函数最值,并讨论解题过程中的关键步骤。
七、案例分析1. 分析案例一:给定函数f(x) = x^2 4x + 5,引导学生利用导数求解最值。
2. 分析案例二:给定函数g(x) = (x 1)^2 + 3,引导学生利用导数求解最值。
3. 学生分组讨论,分享解题过程和结果,教师点评并总结。
八、图像分析1. 利用计算机软件或板书,绘制函数f(x) = x^2 4x + 5和g(x) = (x 1)^2 + 3的图像。
2. 引导学生观察图像,找出函数的局部最大值和最小值。
3. 解释图像分析与导数求解之间的关系,强调数形结合的重要性。
高中数学教案认识函数的极值和最值

高中数学教案认识函数的极值和最值高中数学教案:认识函数的极值和最值函数的极值和最值是数学中重要的概念,它们在解决实际问题和推导数学定理中起着重要的作用。
本教案将引导学生深入理解函数的极值和最值,并通过具体例子和实际应用展示相关概念的应用。
一、引入在学习函数的极值和最值之前,我们需要先了解函数的基本定义。
函数是一种建立变量之间关系的规则,它可以用来描述实际问题中的变化规律。
函数的极值和最值描述了函数在某一区间内的最大值和最小值。
二、函数的极值1. 局部极值函数在某一区间内的取值达到了局部的最大或最小值,我们称之为局部极值。
局部极大值和极小值统称为局部极值。
例如,函数f(x) = x^2在区间[-1, 1]内有一个局部极小值0。
2. 极值点在某一函数中,函数取得极值的点称为极值点。
极值点可以通过求导数或观察图像得到。
例如,函数f(x) = x^3的导函数f'(x) = 3x^2。
当f'(x) = 0时,即3x^2 = 0,解得x = 0。
所以函数f(x) = x^3在x = 0处取得极小值。
3. 极值的判断要确定一个函数的极值,我们可以通过求导数和求导数的零点进行判断。
当函数的导数变号时,极值点就出现了。
例如,函数f(x) = x^2在x < 0和x > 0时,导数f'(x) = 2x的符号分别为负和正。
所以在x < 0时,函数f(x) = x^2取得极大值;在x > 0时,函数f(x) = x^2取得极小值。
三、函数的最值1. 最值定义函数在定义域内能够取得的最大值和最小值,称为函数的最大值和最小值。
最大值和最小值统称为最值。
例如,函数f(x) = x^2在整个实数域内没有最大值,但在闭区间[0,+∞)内取得最小值0。
2. 最值点函数取得最值的点称为最值点。
例如,函数f(x) = -x^2 + 4x - 3在x = 2处取得最大值。
3. 最值的判断要确定一个函数的最值,我们可以通过求导数和求导数的零点进行判断。
函数的最大值和最小值教案

函数的最大值和最小值教案一、教学目标1. 让学生理解函数最大值和最小值的概念。
2. 让学生掌握利用导数求函数最大值和最小值的方法。
3. 培养学生运用数学知识解决实际问题的能力。
二、教学内容1. 函数最大值和最小值的概念。
2. 利用导数求函数最大值和最小值的方法。
三、教学重点与难点1. 教学重点:函数最大值和最小值的概念,利用导数求函数最大值和最小值的方法。
2. 教学难点:利用导数求函数最大值和最小值的方法。
四、教学方法1. 采用讲解法,引导学生理解函数最大值和最小值的概念。
2. 采用案例分析法,让学生通过实际案例掌握利用导数求函数最大值和最小值的方法。
3. 采用练习法,巩固学生对函数最大值和最小值的求解能力。
五、教学准备1. 教学课件。
2. 相关案例题。
3. 粉笔、黑板。
教案内容:一、导入(5分钟)1. 引入函数最大值和最小值的概念。
二、新课讲解(15分钟)1. 讲解函数最大值和最小值的概念。
2. 讲解利用导数求函数最大值和最小值的方法。
3. 通过案例分析,让学生理解并掌握利用导数求函数最大值和最小值的方法。
三、课堂练习(10分钟)1. 让学生独立完成相关案例题,巩固所学知识。
四、课堂小结(5分钟)1. 总结本节课所学内容,强调函数最大值和最小值的概念及求解方法。
五、作业布置(5分钟)1. 布置相关作业,巩固学生对函数最大值和最小值的求解能力。
六、教学拓展(10分钟)1. 讲解函数在区间上的最大值和最小值的存在性定理。
2. 介绍利用拉格朗日中值定理和柯西中值定理证明函数最大值和最小值的存在性。
七、实际应用(10分钟)1. 介绍函数最大值和最小值在实际问题中的应用,如最优化问题、经济管理问题等。
2. 让学生举例说明函数最大值和最小值在实际问题中的应用。
八、课堂互动(10分钟)1. 学生分组讨论:如何求解多元函数的最大值和最小值。
2. 各组汇报讨论成果,教师点评并总结。
九、总结与反思(5分钟)1. 让学生回顾本节课所学内容,总结函数最大值和最小值的求解方法。
有关函数的最大最小值的教学教案

有关函数的最大最小值的教学教案一、教学目标1. 让学生理解函数最大值和最小值的概念,掌握函数取得最大值和最小值的判定条件。
2. 培养学生运用函数最值解决实际问题的能力,提高学生的数学建模素养。
3. 引导学生通过合作、探究、交流,培养学生的团队合作意识和沟通能力。
二、教学内容1. 函数最大值和最小值的概念。
2. 函数取得最大值和最小值的判定条件。
3. 实际问题中函数最值的运用。
三、教学重点与难点1. 教学重点:函数最大值和最小值的概念,函数取得最大值和最小值的判定条件。
2. 教学难点:实际问题中函数最值的运用。
四、教学方法1. 采用问题驱动法,引导学生主动探究函数最值问题。
2. 利用案例分析法,让学生通过实际问题学会运用函数最值解决实际问题。
3. 采用合作学习法,培养学生团队合作和沟通能力。
五、教学过程1. 导入新课:通过生活中的实例,引导学生关注函数最值问题。
2. 知识讲解:讲解函数最大值和最小值的概念,阐述函数取得最大值和最小值的判定条件。
3. 案例分析:分析实际问题,让学生学会运用函数最值解决问题。
4. 课堂练习:布置相关练习题,巩固所学知识。
5. 总结与拓展:总结本节课的主要内容,提出拓展问题,激发学生的学习兴趣。
6. 课后作业:布置课后作业,巩固所学知识。
六、教学活动设计1. 小组讨论:让学生分组讨论函数最值在实际生活中的应用,例如最优化问题、成本问题等。
2. 分享成果:每组选取一名代表分享讨论成果,其他组进行评价和补充。
3. 案例研究:选取几个典型的实际问题,让学生运用函数最值进行解决,并展示解题过程。
4. 互动提问:鼓励学生提问,解答学生在学习过程中遇到的问题。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习态度。
2. 练习题:对学生所做的练习题进行批改,评价学生的掌握程度。
3. 小组讨论:评价学生在小组讨论中的表现,包括合作、沟通、解决问题能力等。
函数的最大值和最小值(教案与课后反思

函数的最大值和最小值一、教学目标:1. 让学生理解函数的最大值和最小值的概念。
2. 让学生掌握求函数最大值和最小值的方法。
3. 培养学生解决实际问题的能力。
二、教学内容:1. 函数的最大值和最小值的定义。
2. 求函数最大值和最小值的方法。
3. 实际问题中的应用。
三、教学重点与难点:1. 教学重点:函数的最大值和最小值的定义,求最大值和最小值的方法。
2. 教学难点:如何运用方法求解实际问题中的最大值和最小值。
四、教学方法:1. 采用讲授法,讲解函数最大值和最小值的概念及求解方法。
2. 利用案例分析,让学生理解最大值和最小值在实际问题中的应用。
3. 开展小组讨论,培养学生合作解决问题的能力。
五、教学过程:1. 引入新课:通过生活中的例子,如购物时如何选择最划算的商品,引出函数的最大值和最小值的概念。
2. 讲解概念:详细讲解函数的最大值和最小值的定义,让学生明确最大值和最小值的意义。
3. 方法讲解:讲解求函数最大值和最小值的方法,并通过示例进行演示。
4. 案例分析:分析实际问题中的最大值和最小值,让学生了解最大值和最小值在生活中的应用。
5. 小组讨论:让学生分组讨论,运用所学方法解决实际问题。
6. 课堂小结:总结本节课的主要内容,强调最大值和最小值的概念及求解方法。
7. 课后作业:布置相关练习题,巩固所学知识。
课后反思:本节课通过生活中的例子引入最大值和最小值的概念,让学生容易理解。
在讲解方法时,结合示例进行演示,有助于学生掌握。
在案例分析和小组讨论环节,学生能够积极参与,运用所学知识解决实际问题。
但部分学生在理解最大值和最小值的应用时仍有一定难度,需要在今后的教学中加强引导和练习。
六、教学评价:1. 通过课堂提问、作业批改和课后访谈等方式,了解学生对函数最大值和最小值概念的理解程度。
2. 评估学生在实际问题中运用最大值和最小值方法的能力。
3. 根据学生的表现,调整教学策略,以提高教学质量。
七、教学拓展:1. 引导学生关注其他类型的函数(如二次函数、指数函数等)的最大值和最小值问题。
函数的极值与最大(小)值(第一课时)(教学设计)

§5.3.2函数的极值与最大(小)值(第一课时)一、内容和内容解析内容:极值的概念,了解函数的极值与导数的关系,运用导数方法求函数极值.内容解析:(1)极值的概念:函数的极值本质反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质.教学时可以用高台跳水实例引入函数极值的讨论,先让学生结合实际经验,通过观察图形直观形象的得到“局部最值"的初步想法,通过对比函数的最值,引发学生的认知冲突,使学生认识到“局部最值”不同于函数最值,是一个全新的概念,从而生成函数极值的概念.(2)函数的极值与导数的关系:学生对函数的极值有了初步的了解后,学生就会面临难题,如何利用导数求函数的极值呢?这一部分主要是探究求极值的算法,虽然没有新知识和新概念的生成,但教师在教学中依然要符合学生的认知规律,要让学生认识到利用导数来求极值是通过探究自然而然形成的.先让学生观察函数极值附近两侧的图像变化,认识到函数极值点左右两侧图像变化趋势是相反的.学生知道图象的上升与下降是用单调性来刻画的,而函数单调性又可以用导数来刻画的.从而,学生自然而然地就明白函数的极值可以借助导数来求解.二、目标和目标解析目标:结合函数图像,了解可导函数在某点取得极值的必要条件和充分条件;理解函数极值的概念,会用导数求函数的极大值与极小值.通过观察具体的函数图像,学生直观感知极值这一概念的生成过程,并积极主动地参与探索函数的极值与导数值变化之间的关系的活动,亲身经历用导数研究极值方法的过程.通过学习,学生体会导数在研究函数性质中的工具性和优越性,掌握极值是函数的局部性质,增强数形结合的意识;通过体会成功,形成学习数学知识、了解数学文化的积极态度;通过规范地表达求函数极值的过程,养成缜密的思维习惯.目标解析:达成上述目标的标志是:能够通过函数图象判断函数的极值点和极值.能够通过导函数的图象判断函数的极值点.能够利用导数研究解一元三次函数的极值.三、教学问题诊断分析1.教学问题一:为何可以利用导数直接判断极值是第一个教学问题,也是教学难点,在没有教师的引导下,导数介入函数的极值中是很难理解.因此,探究的起点应从学生熟悉的公式或概念开始.学生对函数的极值有了初步的了解后,那么困惑产生了:如何求函数的极值呢?2.教学问题二:函数在某点处的导数值为0是可导函数取得极值的必要条件,而非充分条件.这个第二个教学问题,也是教学难点.基于以上分析,确定本节课的教学重难点:函数在某点取得极值的必要条件与充分条件,求可导函数的极值的步骤.四、教学策略分析t a =时,运动员距水面的高度h t=a 附近函数导数值的正负性变化,教学时可以采用信息技术工具,放大函数在t a =t=a 的左侧某点处的切线,当切点沿函数图象从t a =的左侧移动至右侧时,切线斜率由正数变到为0,再由0变到负数. 五、教学过程与设计教学环节问题或任务师生活动设计意图情景 引入观察庐山连绵起伏的图片,思考庐山的山势有什么特点?师生活动:学生间激烈地争论着这个问题,教师再给出这节课要研究的角度,结合苏轼在《题西林壁》中的诗句“横看成岭侧成峰,远近高低各不同”,描述的是庐山的连绵起伏.由此联想庐山的连绵起伏形成好多的"峰点" 与''谷点",这就象数学上要研究的函数的极值.将学生从"要我学"被动学习情绪激发到“我要学”的积极主动的学习欲望上来,学生能够自觉地参与课堂教学的过程中来.探究新知[问题1]观察下图,图1和图2,函数在点x a =处的函数值与它附近的函数值之间有什么关系?ayxO[问题2] 观察图像,找出图中的极值点,并说明哪些为极大值点,哪些为极小值点?教师1:提出问题1. 学生1:学生观察分析后发表自己的见解.师生共同总结:函数()y f x =在点x a =的函数值()f a 比它在点x a =附近其他点的函数值都大,它是一个局部的概念,不同于函数的最值,为了区分函数的最值,我们要加以新的定义.教师引导学生,给出极大值的概念:函数()y f x =在点x a =的函数值()f a 比它在点x a =附近其他点的函数值都大,我们把a 叫做函数()y f x =的极大值点,()f a 叫做函数()y f x =的极大值.学生通过类比,给出极小值的概念:函数()y f x =在点x a =的函数值()f a 比它在点x a =附近其他点的函数值都小,我们把a 叫做函数()y f x =的极小值点,()f a 叫做函数()y f x =的极小值. 教师再强调:让学生将观察分析得到的结论用科学严谨的数学语言表达出来,有利于学生思维从感性层面提升到理性层面,培养归纳概括能力.fed cb O xyay=f'(x )O a b x 1x 2x 3x 4x 5x 6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3. 5 函数的极值与最大值最小值
授课次序22
极大值和函数在区间端点的函数值中最大者. 同理, 函数在闭区间[a , b ]上的最小值一定是函数的所有极小值和函数在区间端点的函数值中最小者. 最大值和最小值的求法:
设f (x )在(a , b )内的驻点和不可导点(它们是可能的极值点)为x 1, x 2, ⋅ ⋅ ⋅ , x n , 则比较
f (a ), f (x 1), ⋅ ⋅ ⋅ , f (x n ), f (b )
的大小, 其中最大的便是函数f (x )在[a , b ]上的最大值, 最小的便是函数f (x )在[a , b ]上的最小值. 例3求函数f (x )=|x 2-3x +2|在[-3, 4]上的最大值与最小值.
解 ⎩⎨⎧∈-+-⋃-∈+-=)2 ,1( 23]4 ,2[]1 ,3[ 23)(22x x x x x x x f , ⎩⎨⎧∈+-⋃-∈-=')2 ,1( 32)4 ,2()1 ,3( 32)(x x x x x f 在(-3, 4)内, f (x )的驻点为2
3=x ; 不可导点为x =1和x =2.
由于f (-3)=20, f (1)=0,41)23(=f , f (2)=0, f (4)=6, 比较可得f (x )在x =-3处取得它在[-3, 4]上的最
大值20, 在x =1和x =2处取它在[-3, 4]上的最小值0.
例4 工厂铁路线上AB 段的距离为100km . 工厂C 距A 处为20km , AC 垂直于AB . 为了运输需要, 要在AB 线上选定一点D 向工厂修筑一条公路. 已知铁路每公里货运的运费与公路上每公里货运的运费之比3:5. 为了使货物从供应站B 运到工厂C 的运费最省, 问D 点应选在何处?
解 设AD =x (km), 则 DB =100-x , 2220x CD +=2400x +=.
设从B 点到C 点需要的总运费为y , 那么 y =5k ⋅CD +3k ⋅DB (k 是某个正数), 即 24005x k y +=+3k (100-x ) (0≤x ≤100).
现在, 问题就归结为: x 在[0, 100]内取何值时目标函数y 的值最小. 先求y 对x 的导数: )34005(2
-+='x x k y . 2400x CD += 解方程y '=0, 得x =15(km).
由于y |x =0=400k , y |x =15=380k ,21005
1
1500|+
==k y x , 其中以y |x =15=380k 为最小, 因此当AD =x =15km 时, 总运费为最省.
例2' 工厂C 与铁路线的垂直距离AC 为20km,A 点到火车站B 的距离为100km. 欲修一条从工厂到铁路的公路CD . 已知铁路与公路每公里运费之比为3:5. 为了使火车站B 与工厂C 间的运费最省, 问D 点应选在何处?
解 设AD =x (km), B 与C 间的运费为y , 则
y =5k ⋅CD +3k ⋅DB )100(340052x k x k -++=(0≤x ≤100), 其中k 是某一正数. 由)34005(
2
-+='x x k y =0, 得x =15. 由于y |x =0=400k , y |x =15=380k ,21005
1
1500|+==k y x , 其中以y |x =15=380k 为最小, 因此当
AD =x =15km 时, 总运费为最省.
D
C
20km A B 100km。