集合之间的关系(子集

合集下载

中职数学集合之间的关系

中职数学集合之间的关系
中职数学 集合之间的关系
12月25号
【知识回顾】
1.子集:如果集合A中任一个元素都是集合B的元素,则称集合 A是集合B的子集.记作:A⊆B或B⊇A,读作“A包含于B”或“B包含 A”.
【说明】 (1)当集合A不包含于B或集合B不包含A时,则记 作:A⊈ B或B⊉ A.
(2)子集性质: ①任何一个集合A是它本身的子集,即A⊆A; ②空集是任何一个集合A的子集,即∅ ⊆A; ③传递性:若A⊆B,B⊆C,则A⊆C; ④子集个数:一个集合A的子集个数为2n,其中n是指集合A中 的元素个数.
(8)∅ {x|x2+1=0,x∈R}.
【点评】 正确理解∈,∉ ,⊆,⊇,⊈, 的涵义:元素与集合的关 系是“从属关系”:“属于”或“不属于”,集合与集合的关系是“包含
关系”:“包含”或“不包含”;正确区分子集与真子集.
【例2】 (1)集合A={-2,2},B={-2,0,2},则下列关系正确的是( )
【答案】 A
8.已知集合M={x|x≥10},则下列关系正确的是
A.10∉ M
B.{10}⊈ M
C.{10}⊆M
D.10≠M
( )
【答案】 C
9.若集合M={x|x≤4},a= 15 ,则下列关系正确的是
A.a∉ M
B.{a}∈M
C.{a}⊆M
D.a⊆M
【答案】 C
( )
10.若集合A={x|ax2+2x+a=0,a∈R}中有且只有一个元素,则a的取
A.A⊈ B
B.A B
C.A=B
D.A∈B
【点评】 由真子集、集合相等的概念,集合与集合的关系很快 排除A、C、D.
(2)已知集合M={x|x2=4}与集合N={-2,2},则下列关系正确的是 (

集合的关系及其基本运算

集合的关系及其基本运算

集合的关系及其基本运算知识精要1. (1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A 。

记作:A B B A ⊇⊆或,A ⊂B 或B ⊃A当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作:A ⊆/B 或B ⊇/A 注:B A ⊆有两种可能:(1)A 是B 的一部分;(2)A 与B 是同一集合。

(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A =B 。

(3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集。

记作:A B 或B A ,读作A 真包含于B 或B 真包含A 。

注:空集是任何集合的子集。

Φ⊆A空集是任何非空集合的真子集。

Φ A若A ≠Φ,则Φ A任何一个集合是它本身的子集。

A A ⊆易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系。

如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合。

如Φ⊆{0}。

不能写成Φ={0},Φ∈{0}2. 全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U 表示。

3. 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集),记作A C S ,即C S A =},|{A x S x x ∉∈且4. 交集:一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A ,B 的交集。

记作A B (读作“A 交B ”),即A B ={x|x ∈A ,且x ∈B }。

集合之间的关系

集合之间的关系

集合间的基本关系⒈子集:对于两个集合A ,B ,如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集。

记作:()A B B A ⊆⊇或 读作:A 包含于B ,或B 包含A 当集合A 不包含于集合B 时,记作A ⊈B(或B ⊉A) 用Venn 图表示两个集合间的“包含”关系: ⒉集合相等定义:如果A 是集合B 的子集,且集合B 是集合A 的子集,则集合A 与集合B 中的元素是一样的,因此集合A 与集合B 相等,即若A B B A ⊆⊆且,则A B =。

⒊真子集定义:若集合A B ⊆,但存在元素,x B x A ∈∉且,则称集合A 是集合B 的真子集。

记作:A B (或B A ) 读作:A 真包含于B (或B 真包含A )4.空集定义:不含有任何元素的集合称为空集。

记作:φ几个重要的结论:⑴空集是任何集合的子集;对于任意一个集合A 都有φ⊆A 。

⑵空集是任何非空集合的真子集;⑶任何一个集合是它本身的子集;⑷对于集合A ,B ,C ,如果A B ⊆,且B C ⊆,那么A C ⊆。

例1:已知集合A ={x|x 2-3x +2=0},B ={1,2},C ={x|x<8,x ∈N},则A B ; A C ; {2} C ; 2 C说明:⑴注意集合与元素是“属于”“不属于”的关系,集合与集合是“包含于”“不包含于”的关系;⑵在分析有关集合问题时,要注意空集的地位。

⑶结论:一般地,一个集合元素若为n 个,则其子集数为2n 个,其真子集数为2n -1个,非空子集为2n -1,非空真子集2n -2 特别地,空集的子集个数为1,真子集个数为0。

例2:已知集合{}{}25,121A x x B x m x m =-<≤=-+≤≤-且A B ⊆,求实数m 的取值范围。

(3m ≥)练习:1、有三个元素的集合A ,B ,已知A={2,x ,y},B={2x ,2,2y},且A=B ,求x ,y 的值。

1.2 集合之间的关系

1.2 集合之间的关系

1.子集对于两个集合A和B,如果集合A中任何一个元素都属于集合B,那么集合A叫做集合B的子集,记作A⊆B或(B⊇A),读作“A包含于B”或“B包含A”.我们规定,空集包含于任何一个集合,空集是任何集合的子集.2.相等的集合对于两个集合A和B,如果A⊆B且B⊆A,那么叫做集合A与集合B相等,记作A=B,读作“集合A等于集合B”.因此,如果两个集合所含的元素完全相同,那么这两个集合相等.3.真子集对于两个集合A、B,如果A⊆B,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作A⫋B,读作“A真包含于B”.4.子集的个数5.韦恩图(文氏图)【例题】判断下列说法是否正确,并说明理由.(1)A⊆A;(2)若A⊆B,B⊆C,则A⊆C;(3)∅⊆A;(4)A⫋B,B⫋C,则A⫋C.【例题】在下面写法中,错误写法的个数是()①{0}∈{0,1};②∅⫋{0};③{0,-1,1}={1,-1,0};④0∈∅;⑤{(0,0)}={0}.A.2B.3C.4D.5【判别】a与{a},{0}与∅之间有何区别?【例题】已知a为给定的实数,那么集合M={x|x2-3x-a2+2=0}的子集个数为 . 【例题】设集合A={1,2,3},B={x|x⊆A},求集合B.【例题】设集合A={1,2,3},B={x|x∈A},求集合B.【例题】已知A={x|x2-2x-3=0},B={x|ax-1=0},若B⫋A,试求a的值.【例题】已知集合A={x|x2-3x+2=0},B={x|0<x<5,x∈N},则满足A⫋C⫋B的集合的个数是()A.1B.2C.3D.4【例题】已知集合A={x|-2≤x≤5},B={x|a+1≤x≤2a-1}.(1)若B⊆A,求实数a的取值范围;(2)若A⫋B,求a的范围.。

集合的子集与真子集的关系

集合的子集与真子集的关系

集合的子集与真子集的关系集合是数学中一个基础的概念,它用于描述具有共同属性的对象的聚集。

在集合论中,集合之间有着多种关系,其中包括子集和真子集的关系。

本文将详细讨论集合的子集与真子集的含义及它们之间的区别。

一、子集的定义在集合论中,若集合A中的所有元素都包含在集合B中,则称集合A为集合B的子集,表示为A⊆B。

简而言之,如果A中的任何元素也是B中的元素,那么A就是B的子集。

同时,集合A也可以等于集合B,这样的关系称为自身子集。

例如,若集合A={1, 2, 3},集合B={1, 2, 3, 4},可以发现A中的所有元素都包含在B中,因此A是B的子集。

二、真子集的定义在集合论中,若集合A是集合B的子集,且A不等于B,则称A 为B的真子集,表示为A⊂B。

真子集是一种比子集更为严格的关系,即A只是B的一部分。

与子集不同的是,真子集不能与原集合B有相同的元素。

当集合A 除去所有与集合B的元素相同的元素后,A中仍有元素存在,则A为B的真子集。

仍以前述例子为例,若集合A={1, 2, 3},集合B={1, 2, 3, 4},可以发现A是B的子集,但它们并不相等,因此A为B的真子集。

三、子集与真子集的区别子集与真子集在概念上存在一定的差异。

子集可以与原集合相等,即A可以等于B;而真子集必须严格小于原集合,即A不等于B。

另外,从数量上看,对于集合A的元素个数n,集合A的所有子集的数量为2^n,其中包括了集合A本身和空集;而集合A的所有真子集的数量为2^n - 1,不包括集合A本身。

这是由于真子集与原集合不相等,故应剔除集合A本身。

四、示例分析为了更好地理解子集和真子集的概念,下面通过一些示例进行具体分析。

1. 示例1:集合A={1, 2},集合B={1, 2, 3}。

由于集合A中的所有元素(1和2)都包含在集合B中,且A不等于B,所以A为B的子集,也是B的真子集。

2. 示例2:集合A={1, 2, 3},集合B={1, 2, 3}。

集合:子集

集合:子集

例3.已知集合A={a,a+b,a+2b}, B={a,ac,ac2},若A=B,求c的值.
解:
【例题】
例4 :已知A {x | 2 x 5},B {x | a 1 x 2a 1}, B A,求实数a的取值范围.
解: A, 当B ,有 a 1 2a 1, 即a 2 2 a 1 a 1 当B 时,有 a 1 -2 2 a 3 2 a 1 5 综上所述, a的取值范围 a 3.
记作 (或 )
B A
一个特殊而又重要的集合:
规定: 空集是任何集合的子集,即
空集---不含有任何元素的集合,记作:


⊆A
问: 空集是任何集合的真子集吗? 空集是任何非空集合的真子集
4、子集的性质:
①A A ②
A
③对集合A,B,C,若 A B ,且 B C , 则 AC
元素 和______ 集合 之间. 注: 与 用在_____ 集合 和______ 集合 之间. ()与 ( )用在_____
思考 :已知集合A { x | y ( x 1)( x 2)}, B { y | y 2 x a , a R, x A}, C { z | z x , x A}.是否存在a , 使C B ?
2
若存在, 求出a的范围; 若不存在, 说明理由.
【课堂小结】
【例题】
例1⑴写出集合{a,b}的所有子集; ⑵写出所有{a,b,c}的所有子集; ⑶写出所有{a,b,c,d}的所有子集.
一般地,集合A含有n个元素, 则A的子集共有2n个,A的真子集 共有2n-1个.
【例题】

1.1.2集合之间的关系子集真子集

1.1.2集合之间的关系子集真子集
设 U 是一个集合,A是U的子集,则由U 中所有不属于A的元素组成的集合,叫做U中 子集A的补集。U 称为全集 记为
U
CU A
CU A { x | x U , x A }
例: 1、设U=R,A={ x│x-3 > 2}, 求 CU A
2、若A={x|1<x<2} , B={x|x>0} , 求 C R A ,C R B , CBA.
1.1.2 集合的包含关系
子集:如果集合 A 的任何一个元素都是集合 B 的 元素,那么集合 A 叫做集合 B 的子集.
记作 A B(或 B A ),
读作 “A 包含于 B”(或“B 包含 A”). 用Venn图表示两个集 合间的“包含”关系
B
A
规定:空集是任意一个集合的子集,也就是说, 对任意集合A,都有 A.
{ 1,2 ,3 };
B 的真子集是 上述子集中,去掉{ 1,2 ,3 }.
思考:你能找出一般的规律吗?
设 U = {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 }
A = {1 , 3 , 5 , 7 } B = { 2 , 4 , 6 , 8 }
A B 用 Venn 图表示的关系是________
小结: 1. 子集、真子集 2. A=B(集合相等)
3.全集与补集
相等的定义:如果两个集合的元素完全相同,那么就 说这两个集合相等 记作 A=B
相等的定义:如果集合A是集合B的子集,且集合B 是集合A的子集,则集合A与集合B相等.
如果 A B 且 BA 则 A=B
A
B
新课
真子集:如果集合 A 是集合 B 的子集,并且集 合 B 中至少有一个元素不属于 A,那么集合 A 是集合 B 的真子集.

集合之间的关系(子集

集合之间的关系(子集

集合之间的关系(子集篇一:集合之间的关系教案1.2集合之间的关系与运算1.2.1 集合之间的关系【学习要求】1.理解子集、真子集、两个集合相等的概念.2.掌握有关子集、真子集的符号及表示方法,能利用Venn图表达集合间的关系.3.会求已知集合的子集、真子集.4.能判断两集合间的包含、相等关系,并会用符号准确地表示出来.【学法指导】通过使用基本的集合语言表示有关的数学对象,感受集合语言在描述客观现实和数学问题中的意义;培养用集合的观点分析问题、解决问题的能力;学习用数学的思维方式解决问题、认识世界.填一填:知识要点、记下疑难点1.子集:一般地,如果集合A中的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集,记作A?B或B?A,读作“A包含于B”,或“B包含A”.2.子集的性质:①A?A(任意一个集合A都是它本身的子集);②??A(空集是任意一个集合的子集).3.真子集:如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作A B (或BA),读作“A真包含于B ”,或“B真包含A ”.4.维恩图:我们常用平面内一条封闭曲线的内部表示一个集合,这种图形通常叫做维恩(Venn)图.5.集合相等:一般地,如果集合A的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,我们就说集合A等于集合B ,记作A=B .用数学语言表示为:如果A?B ,且B?A ,那么A=B .6.一般地,设A={x|p(x)},B={x|q(x)},如果A?B,则x∈A?x∈B,即p(x)?q(x) .反之,如果p(x)?q(x),则A?B研一研:问题探究、课堂更高效[问题情境] 已知任意两个实数a,b,则它们的大小关系可能是ab,那么对任意的两个集合A,B,它们之间有什么关系?今天我们就来研究这个问题.探究点一子集与真子集的概念导引前面我们学习了集合、集合元素的概念以及集合的表示方法.下面我们来看这样三组集合:(1)A={1,3},B={1,3,5,6};(2)C={x|x是长方形},D={x|x是平行四边形};(3)P={x|x是菱形},Q={x|x是正方形}.问题1 哪些集合表示方法是列举法?哪些集合表示方法是描述法?答:集合A,B的表示是用列举法;集合C,D,P,Q的表示是用描述法.问题2 这三组集合每组彼此之间有何关系?答:集合A中的任意一个元素都是集合B的元素,集合C中的任意一个元素都是集合D的元素,集合Q中的任意一个元素都是集合P的元素.小结:一般地,如果集合A中的任意一个元素都是集合B中的元素,那么集合A叫做集合B的子集.记作:A?B或B?A,读作:A 包含于B或B包含A.问题3 类比表示两集合间子集关系的符号与表示两个实数大小关系的等号之间有什么类似之处?答:在实数中如果a大于或等于b,则a,b的关系可表示为a ≥b或b≤a;在集合中如果集合A是集合B的子集,则A,B的关系可表示为A?B(或B?A).所以这是它们的相似之处.问题4 在导引中集合P与集合Q之间的关系如何表示?答:集合P不包含于Q,或Q不包含P,分别记作P Q或QP.问题5 空集与任意一个集合A有什么关系,集合A与它本身有什么关系?答:(1)空集是任意一个集合的子集;(2)任何一个集合A是它本身的子集.问题6 对于集合A,B,C,如果A?B,B?C,那么集合A与C 有什么关系?答:A与C的关系为A?C.问题7 “导引”中集合A中的元素都是集合B的元素,集合B 中的元素不都是集合A的元素,我们说集合A是集合B的真子集,那么如何定义集合A是集合B的真子集?答:如果说集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作:A B(或B A),读作“A真包含于B”或“B真包含A”.问题8 集合A,B的关系能不能用图直观形象的表示出来?1 / 3答:能.我们常用平面内一条封闭曲线的内部表示一个集合,这种图形通常叫做维恩(Venn)图.问题9 如何用维恩(Venn)图表示集合A是集合B的真子集?答:如图所示:例1 写出集合A={1,2,3}的所有子集和真子集.分析:为了一个不漏地写出集合A={1,2,3}的所有子集,可以分类写,即空集,含一个元素的子集,含两个元素的子集,含三个元素的子集.解:集合A的所有子集是:?,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.在上述子集中,除去集合A本身,即{1,2,3},剩下的都是A的真子集.3小结:集合A={1,2,3}中有三个元素,其子集的个数为8个,即2个,事实上,如果一个集合含有n个元素,则它的子集个数为2个.跟踪训练1 写出满足{3,4}P?{0,1,2,3,4}的所有集合P.解:由题意知,集合P中一定含有元素3,4并且是至少含有三个元素的集合.此所有满足题意的集合P为{0,3,4},{1,3,4},{2,3,4},{0,1,3,4},{0,2,3,4},{1,2,3,4},{0,1,2,3,4}.探究点二集合的相等问题1 观察下面几个例子,你能发现两个集合间有什么关系吗?(1)集合C={x|x是两条边相等的三角形},D={x|x是等腰三角形};(2)集合C={2,4,6},D={6,4,2};(3)集合A={x|(x+1)(x+2)=0},B={-1,-2}.答:可以看出每组的两个集合的元素完全相同,只是表达形式不同.问题2 与实数中的结论“若a≥b,且b≥a,则a=b”相类比,在集合中,你能得出什么结论?答:若A?B,且B?A,则A=B.小结:一般地,对于两个集合A与B,如果集合A的每一个元素都是集合B的元素,同时集合B的每一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B.即:如果A?B,且B?A,那么A=B.例2 说出下列每对集合之间的关系:(1)A={1,2,3,4,5},B={1,3,5};2(2)P={x|x=1},Q={x||x|=1};(3)C={x|x是奇数},D={x|x是整数}.解(1)B A;(2)P=Q;(3)C D.小结:在两个集合A,B的关系中,有一个集合是另一个集合的“子集”;或一个集合是另一个集合的“真子集”;或两个集合“相等”;另外还可能有“集合A不包含于B”或“集合B不包含于A”.跟踪训练2 用适当的符号(∈,?)填空:(1)0______{0};0______?;?______{0};22(2)?______{x|x+1=0,x∈R};{0}______{x|x+1=0,x∈R};(3)设A={x|x=2n-1,n∈Z},B={x|x=2m+1,m∈Z},C={x|x =4k±1,k∈Z},则A______B______C. 解析(1)0∈{0},0??,?{0};22(2)?={x|x+1=0,x∈R},{0}{x|x+1=0,x∈R};(3)A,B,C均表示所有奇数组成的集合,∴A=B=C.探究点三集合关系与其特征性质之间的关系问题1 已知集合A的特征性质为p(x),集合B的特征性质为q(x).“如果p(x),那么q(x)”是正确命题,试问集合A和B的关系如何?并举例说明.答:集合A是集合B的子集,例如Q={x|x是有理数},P={x|x 是实数},易知Q?P,也容易判断命题“如果x是有理数,则x是实数”是正确命题.这个命题还可以表述为:x是有理数?x是实数,符号“?”表示推出.小结:一般地,设A={x|p(x)},B={x|q(x)},如果A?B,则x∈A?x∈B,即p(x)?q(x).反之,如果p(x)?q(x),则A?B.问题2 如果命题“p(x)?q(x)”和命题“q(x)?p(x)”都是正确的命题,那么怎样表示p(x),q(x)的关系?答:p(x)?q(x),符号“?”表示相互推出.例3 判定下列集合A与集合B的关系:(1)A={x|x是12的约数},B={x|x是36的约数};(2)A={x|x>3},B={x|x>5};(3)A={x|x是矩形},B={x|x是有一个角为直角的平行四边形}.解:(1)因为x是12的约数?x是36的约数,所以A?B;2 / 3n(2)因为x>5?x>3,所以B?A;(3)因为x是矩形?x是有一个角为直角的平行四边形,所以A=B.小结:当判定用特征性质描述法表示的两个集合关系时,一是可用赋值法,二是从两集合元素的特征性质p(x)入手,通过整理化简,看是否是一类元素.跟踪训练3 确定下列每组两个集合的包含关系或相等关系:(1)A={n|n=2k+1,k∈Z}和B={m|m=2l-1,l∈Z};**(2)C={n|n=2k+1,k∈N}和D={m|m=2l-1,l∈N}.解(1)当k∈Z,l∈Z时,n=2k+1?m=2l-1,所以A=B;**(2)当k∈N,l∈N时,n=2k+1?m=2l-1,所以C?D.练一练:当堂检测、目标达成落实处1.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若?A,则A≠?.其中正确的个数是( )A.0B.1C.2D.3解析:由于任何集合都是它本身的子集,故①错;空集只有一个子集就是它本身,故②错;空集是任何非空集合的真子集,故③错;2.满足条件{1,2}M?{1,2,3,4,5}的集合M的个数是( )A.3 B.6C.7 D.8解析:M中含三个元素的个数为3,M中含四个元素的个数也是3,M中含5个元素的个数只有1个,因此符合题意的共7个.3.若集合{2x,x+y}={7,4},则整数x,y分别等于__________.???2x=7?2x=4?解:由集合相等的定义得或?,?x+y=4?x+y =7??7x=??2∴?1y=??2舍?x=2?或???y=5 .∴x,y的值分别是2,5.4.观察下面几组集合,集合A与集合B具有什么关系?(1)A={1,2,3},B={1,2,3,4,5}.(2)A={x|x>3},B={x|3x-6>0}.(3)A={正方形},B={四边形}.(4)A={育才中学高一(11)班的女生},B={育才中学高一(11)班的学生}.解:通过观察就会发现,这四组集合中,集合A都是集合B的一部分,从而有A?B.课堂小结:1.能判断存在子集关系的两个集合,谁是谁的子集,进一步确定其是否为真子集;注意:子集并不是由原来集合中的部分元素组成的集合.2.空集是任何集合的子集,是任何非空集合的真子集.3.注意区别“包含于”,“包含”,“真包含”.4.注意区分“∈”与“?”的不同涵义.3 / 3篇二:集合间的基本关系知识点集合间的基本关系1.“包含”关系—子集注意:A?B有两种可能(1)A是B的一部分,(2)A与B是同一集合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合之间的关系(子集
篇一:集合之间的关系教案
1.2集合之间的关系与运算
1.2.1 集合之间的关系
【学习要求】
1.理解子集、真子集、两个集合相等的概念.
2.掌握有关子集、真子集的符号及表示方法,能利用Venn图表达集合间的关系.
3.会求已知集合的子集、真子集.
4.能判断两集合间的包含、相等关系,并会用符号准确地表示出来.
【学法指导】
通过使用基本的集合语言表示有关的数学对象,感受集合语言在描述客观现实和数学问题中的意义;培养用集合的观点分析问题、解决问题的能力;学习用数学的思维方式解决问题、认识世界.
填一填:知识要点、记下疑难点
1.子集:一般地,如果集合A中的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集,记作A?B或B?A,读作“A包含于B”,或“B包含A”.
2.子集的性质:①A?A(任意一个集合A都是它本身的子集);
②??A(空集是任意一个集合的子集).
3.真子集:如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作A B (或B
A),读作“A真包含于B ”,或“B真包含A ”.
4.维恩图:我们常用平面内一条封闭曲线的内部表示一个集合,这种图形通常叫做维恩(Venn)图.
5.集合相等:一般地,如果集合A的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,我们就说集合A等于集合B ,记作A=B .用数学语言表示为:如果A?B ,且B?A ,那么A=B .
6.一般地,设A={x|p(x)},B={x|q(x)},如果A?B,则x∈A?x∈B,即p(x)?q(x) .反之,如果p(x)?q(x),则A?B
研一研:问题探究、课堂更高效
[问题情境] 已知任意两个实数a,b,则它们的大小关系可能是ab,那么对任意的两个集合A,B,它们之间有什么关系?今天我们就来研究这个问题.
探究点一子集与真子集的概念
导引前面我们学习了集合、集合元素的概念以及集合的表示方法.下面我们来看这样三组集合:
(1)A={1,3},B={1,3,5,6};(2)C={x|x是长方形},D={x|x是平行四边形};(3)P={x|x是菱形},Q={x|x是正方形}.
问题1 哪些集合表示方法是列举法?哪些集合表示方法是描述。

相关文档
最新文档