棱柱、棱锥、棱台的结构特征

合集下载

棱柱、棱锥和棱台的结构特征 PPT课件 1 人教课标版

棱柱、棱锥和棱台的结构特征 PPT课件 1 人教课标版

理解棱柱的定义
问题
⑤棱柱除底面以外的面都是平行四 边形吗? 答:是.
E′ F′ A′ B′
D′
C′
⑥为什么定义中要说“其余各面都 是四边形,并且相邻两个四边形的公共 边都互相平行,”而不简单的只说“其 余各面是平行四边形呢”?
答:满足“有两个面互相平行,其 余各面都是平行四边形的几何体”这样 说法的还有右图情况,如图所示.所以 定义中不能简单描述成“其余各面都是 平行四边形”.
E
F A
D
C B
棱锥的结构特征
如何描述下图的几何结构特征?
S 顶点
棱锥
几何画板—棱锥
侧面
有一个面是多边形,其余 各面都是有一个公共顶点的三 角形,由这些面所围成的多面 体叫棱锥.
侧棱
D
C 底面
B
A
S A
B
D C

2、棱锥的分类: 按底面多边形的边数,可以分为三 棱锥、四棱锥、五棱锥、……
3、棱锥的表示方法:用表示顶点和底面 的字母表示,如四棱锥S-ABCD。

几何画板—球
以半圆的直径所在直线为旋 转轴,半圆面旋转一周形成的旋 转体叫做球体,简称球.
半径
O
球心
几何体的分类
柱体
锥体
台体

多面体
旋转体
练习 1、下列命题是真命题的是( A ) A 以直角三角形的一直角边所在的直线为轴 旋转所得的几何体为圆锥; B 以直角梯形的一腰所在的直线为轴旋转所 得的旋转体为圆台; C 圆柱、圆锥、棱锥的底面都是圆; D 有一个面为多边形,其他各面都是三角形 的几何体是棱锥。 2、过球面上的两点作球的大圆,可以作 ( 1或无数多 )个。
例题 长方体AC1中,AB=3,BC=2,BB1=1, 由A到C1在长方体表面上的最短距离是多少?

棱柱、棱锥、棱台的结构特征

棱柱、棱锥、棱台的结构特征

棱锥也用表示顶 点和底面各顶点 的字母表示,左图 可表示为棱锥 S -ABCD
第1课时
目标导航
棱柱、棱锥、棱台的结构特征
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
预习导引
续表 名 称 结构特征 用一个平行于棱锥底面的平面去截 棱锥,底面与截面之间的部分叫做棱 台.原棱锥的底面和截面分别叫做棱 台的下底面、上底面.棱台也有侧面、 侧棱、顶点.由三棱锥、四棱锥、五棱 锥……截得的棱台分别叫做三棱台、 四棱台、五棱台…… 图形 表示 棱台与棱柱 的表示一样, 左图棱台可 表示为棱台 ABCD A'B'C'D'
第1课时
问题导学
棱柱、棱锥、棱台的结构特征
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
当堂检测
例 3(1)请画出如图所示的几何体的表面展开图.
(2)根据下面所给的平面图形,画出立体图形.
思路分析:由题意首先弄清几何体的侧面各是什么形状 ,然后再通 过空间想象或动手实践进行展开或折叠.
第1课时
问题导学
棱柱、棱锥、棱台的结构特征
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
当堂检测
三、简单几何体的表面展开与折叠问题
活动与探究 棱柱、棱锥、棱台的侧面展开图分别是什么形状? 提示:棱柱的侧面展开图是多个平行四边形相连,棱锥的侧面展开 图是多个共顶点的三角形相连,棱台的侧面展开图是多个梯形相连.
第一章
空间几何体

【课件】棱柱、棱锥、棱台的结构特征

【课件】棱柱、棱锥、棱台的结构特征

棱柱的表示:
用表示底面各顶点的字母表示 棱柱ABC- A'B'C'
C'
A'
B'
D' A'
C' B'
D'
E'
C'
A' B'
A
C
D
BA
C B
三棱柱
四棱柱
E DC
A五棱柱B
棱柱的结构特征
思考:对于棱柱,
1.侧棱长相等吗? 相等
侧面是什么四边形?
平行四边形
E' F'
A'
D' C'
B'
2.两个底面多边形是什么关系? E D
C’ B’
有两个面互相平行,
其余各面都是四边形,

并且每相邻两个四边形

的公共边都互相平行。
ED
侧棱 F
C
A
B
侧面
顶点
棱柱的结构特征
1.棱柱的概念:
棱柱的底面:两个互相平行的面. 底面
简称底.
E' D'
F'
C'
棱柱的侧面:其余各面.
A'
B' 侧
棱柱的侧棱:


棱 ED
相邻侧面的公共边. F
棱柱的顶点:
【解析】面最少的棱柱是三棱柱,它有 5 个面;顶点最少的一个棱台 是三棱台,它有 3 条侧棱.
5.画一个三棱台,再把它分成: (1)一个三棱柱和另一个多面体; (2)三个三棱锥,并用字母表示.
【解析】画三棱台一定要利用三棱锥. (1)如图①所示,三棱柱是棱柱 A′B′C′-AB″C″,另一个多

棱柱、棱锥、棱台的结构特征

棱柱、棱锥、棱台的结构特征
C
棱锥的底面
思考:你能将下面的棱锥分类吗?
三棱锥
四棱锥
五棱锥
六棱锥
探究3:棱锥的侧面是什么样的多边形?有什么特征?
答:根据棱锥的定义,棱锥的侧面一定是 三角形,且各个三角形有公共顶点.
多面体3——棱台
棱台的定义: 用一个平行于棱锥底面的平面去截棱锥,底面和截面 之间的部分叫做棱台。
A1
D1 B1C1
D1 A1
C1
B1
A1
C1 A1 B1 B1
E1 D1
C1
D C
A
BA
C A
B B
E
D C
观察下面的棱柱的区别,你能将它们分类吗?
根据底面分:底面是三角形、四边形、五边 形……的棱柱 分别叫做三棱柱、四棱柱、五棱柱…… E’
A’
D’
C’
B’
E D
A BC
思考:倾斜后的几何体还是棱柱吗? 它和原来的棱柱有什么区别呢?
1.1.1 棱柱、棱锥、棱台的结构特征
多面体1——棱柱
1.棱柱的概念: 一个多面体有两个面 互相平行,其余各面
都是四边形 ,每相邻两个四边形的公共边
都 互相平行 ,这样的多面体叫做 棱柱
2.棱柱各部分名称
底面 侧面 侧棱
顶点
3.棱柱的表示 可以用两底面多边形的字母表示棱柱, 如:棱柱ABCDE- A1B1C1D1E1
E’ F’ A’
D’
C’ B’
E
F A
D C
B
侧棱不
垂直于 底面
斜棱柱
棱柱
侧棱垂直 于底面
直棱柱
探究1:棱柱的各侧棱是什么关系?各侧面 是什么样的多边形?两个底面的关系是怎样 的?

棱柱棱锥棱台的结构特征

棱柱棱锥棱台的结构特征
03
棱锥的性质
1
棱锥的侧面和底面之间的夹角叫做侧面角。
2
如果棱锥的侧面是平行的,那么侧面角是相等的 。
3
如果棱锥的侧面是不平行的,那么侧面角是不相 等的。
03 棱台的结构特征
定义与特点
定义
棱台是由平行于棱锥底面的平面截棱锥得到的,其中截面和 底面相似。
特点
棱台有两个平行面,且其平行面的面积比等于其相似比的平 方。
棱柱棱锥棱台的结构特征
汇报人: 日期:
目录
• 棱柱的结构特征 • 棱锥的结构特征 • 棱台的结构特征 • 三种立体图形的异同点 • 应用与实例
01 棱柱的结构特征
定义与特点
定义
棱柱是指一个几何体,其中两个 平行的多边形面是底面和顶面, 侧面是矩形或平行四边形。
特点
棱柱具有两个平行的底面和侧面 ,侧面与底面之间通过共用边连 接。
相同点:它们都是三 维图形,具有多边形 面和顶点。
异同点比较
棱柱与棱台的异同点
相同点:它们都是三维图形,具有多边形面和 顶点。
不同点:棱柱的侧面是平行四边形,而棱台的 侧面是梯形。
异同点比较
棱锥与棱台的异同点
相同点:它们都是三维图形,具有多边形面和顶 点。
不同点:棱锥的侧面是三角形,而棱台的侧面是 梯形。
棱台的分类
根据截面形状
分为正棱台和斜棱台。
根据侧面形状
分为直棱台和曲棱台。
棱台的性质
相似性
棱台的两个平行面的面积比等于其相似比的平方。
平行性
棱台的侧面与底面平行。
直棱台的性质
直棱台的侧面是矩形或等腰梯形。
04 三种立体图形的异同点
异同点比较
棱柱与棱锥的异同点

棱柱、棱锥、棱台的结构特征 课件

棱柱、棱锥、棱台的结构特征 课件
答案 (2)(3)(4)
规律方法 判断棱锥、棱台形状的两个方法 (1)举反例法: 结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构 特征的某些说法不正确. (2)直接法:
棱锥
棱台
定底 只有一个面是多边形,此 两个互 相 平行的 面 ,
面 面即为底面
看侧 棱
相交于一点
即为底面 延长后相交于一点
类型三 多面体的表面展开图(互动探究) 【例3】 画出如图所示的几何体的表面展开图.

[课堂小结] 1.棱柱、棱锥、棱台的关系 在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用 下图表示出来(以三棱柱、三棱锥、三棱台为例).
2.(1)各种棱柱之间的关系 ①棱柱的分类
棱柱直棱柱正 一棱 般柱 的直棱柱 斜棱柱
②常见的几种四棱柱之间的转化关系
(2)棱柱、棱锥、棱台在结构上既有区别又有联系,具体见下表:
规律方法 棱柱的结构特征: (1)两个面互相平行; (2)其余各面是四边形; (3)相邻两个四边形的公共边互相平行.求解时,首先看是否有 两个平行的面作为底面,再看是否满足其他特征.
类型二 棱锥、棱台的结构特征 【例2】 下列关于棱锥、棱台的说法:
(1)用一个平面去截棱锥,底面和截面之间的部分组成的几何 体叫棱台; (2)棱台的侧面一定不会是平行四边形; (3)棱锥的侧面只能是三角形; (4)由四个面围成的封闭图形只能是三棱锥; (5)棱锥被平面截成的两部分不可能都是棱锥. 其中正确说法的序号是________.
解析 (1)错误,若平面不与棱锥底面平行,用这个平面去截 棱锥,棱锥底面和截面之间的部分不是棱台; (2)正确,棱台的侧面一定是梯形,而不是平行四边形; (3)正确,由棱锥的定义知棱锥的侧面只能是三角形; (4)正确,由四个面围成的封闭图形只能是三棱锥; (5)错误,如图所示四棱锥被平面截成的两部分都是棱锥.

课件9:1.1.2 棱柱、棱锥和棱台的结构特征

课件9:1.1.2 棱柱、棱锥和棱台的结构特征

题型二:简单几何体中的计算问题 [典例] 正三棱锥的底面边长为 3,侧棱长为 2 3,求正三棱锥的高.
[解] 作出正三棱锥如图,SO 为其高,连接 AO,作 OD⊥AB 于 点 D,则点 D 为 AB 的中点. 在 Rt△ADO 中,AD=32,∠OAD=30°,
3 故 AO=cos∠2OAD= 3. 在 Rt△SAO 中,SA=2 3,AO= 3, 故 SO= SA2-AO2=3,其高为 3.
延长线交于一点;④有两个面互相平行,其余各面都是梯形,则此几何体是棱台.
A.①
B.②
C.③
D.④
(2)下列命题:
①各侧面为矩形的棱柱是长方体;②直四棱柱是长方体;
③侧棱与底面垂直的棱柱是直棱柱;④各侧面是矩形的直四棱柱为正四棱
柱.其中正确的是________(填序号).
[解析] (1)棱锥的侧面是有公共顶点的三角形,但是各侧棱不一定相等,故 ①②不正确;棱台是由平行于棱锥底面的平面截棱锥底面得到的,故各个侧 棱的延长线一定交于一点,③正确;棱台的各条侧棱必须交于一点故④错误. (2)①中一定为直棱柱但不一定是长方体;②直四棱柱的底面可以是任意的四 边形不一定是矩形;③符合直棱柱的定义;④中的棱柱为一般直棱柱,它的 底面不一定为正方形. [答案] (1) C (2) ③
(3) 凸 多 面 体 : 把 一 个 多 面 体 的 任 意 一 个 面 延 展 为 平 面 , 如 果 其 余 的 各
面 都在这个平面的同一侧 ,则这样的多面体就叫做凸多面体.
2.棱柱、棱锥、棱台
名称
棱柱
棱锥
棱台
定义
条件:①有两个
互相平行 的面;
条件:①有一个 棱锥被 平行于
面是 多边形 ;

1.1.1棱柱、棱锥、棱台的结构特征

1.1.1棱柱、棱锥、棱台的结构特征

(二)棱柱,棱锥,棱台 棱柱,棱锥,
1.棱柱:有两个面互相平行,其余各面都是四 .棱柱:有两个面互相平行, 边形, 边形,并且每相邻两个四边形的公共边都互相 平行, 平行,由这些面所围成的几何体叫做棱柱.
顶点 侧面 底面
用表示底面各顶点表示棱柱. 用表示底面各顶点表示棱柱.
侧棱 按底面多边形的边数分为三棱柱,四棱柱,五棱柱… 按底面多边形的边数分为三棱柱,四棱柱,五棱柱
3.棱台:用一个平行于棱锥底面的平面去截棱锥, 棱台:用一个平行于棱锥底面的平面去截棱锥, 底面与截面之间的部分叫做棱台. 底面与截面之间的部分叫做棱台.
上底面
棱台用表示底 面各顶点的字 母表示. 母表示.
按底面多边形的边 数为三棱台, 数为三棱台,四棱 五棱台…. 台,五棱台
下底面
棱柱,棱锥, 棱柱,棱锥,棱台的结构特征比较
上底面
下底面Biblioteka 棱台和圆台统称为台体. 棱台和圆台统称为台体. 台体
球的结构特征
球:以半圆的直径所在的直线为旋转轴,半圆 以半圆的直径所在的直线为旋转轴, 面旋转一周形成的几何体叫做球体 球体. 面旋转一周形成的几何体叫做球体.
球心
A
直径
O
C
大圆
B
圆柱,圆锥,圆台, 圆柱,圆锥,圆台,球的结构特征比较
问题2 与其他多面体相比,图片中的多面体 问题2:与其他多面体相比,图片中的多面体(14), , (15)有什么样的共同特征? 有什么样的共同特征? 有什么样的共同特征
思考:长方体被截去一部分, 思考:长方体被截去一部分,剩下的部分 是棱柱吗? 是棱柱吗?
A D E H G C F B
2.棱锥:有一个面是多边形,其余各面都 .棱锥:有一个面是多边形, 是有一个公共顶点的三角形, 是有一个公共顶点的三角形,由这些面所围 成的几何体叫做棱锥.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

环县第五中学新生态课堂导学案
科目:数学 年级:高一级 备课人: 授课人:
课型:新授课
第 课时 授课日期: 第 周 星期 教研组长签字:
课题:棱柱、棱锥、棱台的结构特征
学习目标
1. 感受空间实物及模型,增强学生的直观感知;
2. 能根据几何结构特征对空间物体进行分类;
3. 理解多面体的有关概念;
4. 会用语言概述棱柱、棱锥、棱台的结构特征.
学习过程
一、课前准备(预习教材P 2~ P 4,,找出疑惑之处)
二、学习探究
探究1:多面体的相关概念
问题:观察下面的物体,注意它们每个面的特点,以及面与面之间的关系.你能说出它们相同点吗?
新知1:由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,如面ABCD ;相邻两个面的公共边叫多面体的棱,如棱AB ;棱与棱的公共点叫多面体的顶点,如顶点A .具体如下图所示:
探究2:旋转体的相关概念 问题:仔细观察下列物体的相同点是什么?
新知2:由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫旋转体, 这条定直线叫旋转体的轴.如下图的旋转体: 探究3:棱柱的结构特征 问题:你能归纳下列图形共同的几何特征吗?
新知3:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公 共边都互相平行,由这些面所围成的几何体叫做棱柱(prism ).棱柱中,两个互相平行的 面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧 棱;侧面与底面的公共顶点叫做棱柱的顶点.(两底面之间的距离叫棱柱的高)
棱 A
B '
C '
D 'A 'C
B
O '/
O A
/A

试试1:你能指出探究3中的几何体它们各自的底、侧面、侧棱和顶点吗?你能试着按照某种标准将探究3中的棱柱分类吗?
新知4:①按底面多边形的边数来分,底面是三角形、四边形、五边形…的棱柱分别叫做
三棱柱、四棱柱、五棱柱…②按照侧棱是否和底面垂直,棱柱可分为斜棱柱(不垂直)和直棱柱(垂直).
试试2:探究3中有几个直棱柱?几个斜棱柱?棱柱怎么表示呢?
新知5:我们用表示底面各顶点的字母表示棱柱,如图(1)中这个棱柱表示为棱柱ABCD—''''.
A B C D
探究4:棱锥的结构特征
问题:探究1中的埃及金字塔是人类建筑的奇迹之一,它具有什么样的几何特征呢?
新知6:有一个面是多边形,其余各个面都是有一个公共顶点的三角形,由这些面所围
成的几何体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个
三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做
棱锥的侧棱.顶点到底面的距离叫做棱锥的高;棱锥也可以按照
底面的边数分为三棱锥(四面体)、四棱锥…等等,棱锥可以
用顶点和底面各顶点的字母表示,如下图中的棱锥S ABCDE
-.
探究5:棱台的结构特征
问题:假设用一把大刀能把金字塔的上部分平行地切掉,则切掉的部分是什么形状?剩余的部分呢?新知7:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分形成的几何体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面.其余各面是棱台的侧面,相邻侧面的公共边叫侧棱,侧面与两底面的公共点叫顶点.两底面间的距离叫棱台的高.棱台可以用上、下底面的字母表示,分类类似于棱锥.
试试3:请在下图中标出棱台的底面、侧面、侧棱、顶点,并指出其类型和用字母表示出来.
反思:根据结构特征,从变化的角度想一想,棱柱、棱台、棱锥三者之间有什么关系?
※典型例题
例由棱柱的定义你能得到棱柱下列的几何性质吗?①侧棱都相等,侧面都是平行四边形;
②两个底面与平行于底面的截面是全等的多边形;③过不相邻的两条侧棱的截面是平行四边形.仿照棱柱,棱锥、棱台有哪些几何性质呢?
三、总结提升
※学习小结
1. 多面体、旋转体的有关概念;
2. 棱柱、棱锥、棱台的结构特征及简单的几何性质.
※知识拓展
1. 平行六面体:底面是平行四边形的四棱柱;
2. 正棱柱:底面是正多边形的直棱柱;
3. 正棱锥:底面是正多边形并且顶点在底面的射影是底面正多边形中心的棱锥;
4. 正棱台:由正棱锥截得的棱台叫做正棱台.
课后作业
课后反思。

相关文档
最新文档