电信业务数据仓库平台中接口的设计与ETL开发
ETL设计过程

本文将介绍设计和实现仓库ETL 过程,并了解仓库的性能和安全问题。
简介数据集成是数据仓库中的关键概念。
ETL(数据的提取、转换和加载)过程的设计和实现是数据仓库解决方案中极其重要的一部分。
ETL 过程用于从多个源提取业务数据,清理数据,然后集成这些数据,并将它们装入数据仓库数据库中,为数据分析做好准备。
ETL 过程设计尽管实际的ETL 设计和实现在很大程度上取决于为数据仓库项目选择的ETL 工具,但是高级的系统化ETL 设计将有助于构建高效灵活的ETL 过程。
在深入研究数据仓库ETL 过程的设计之前,请记住ETL 的经验法则:―ETL 过程不应修改数据,而应该优化数据。
‖如果您发现需要对业务数据进行修改,但不确定这些修改是否会更改数据本身的含义,那么请在开始ETL 过程之前咨询您的客户。
调制的ETL 过程设计由于其过程化特性以及进行数百或数千个操作的可能性,所以以精确方式设计ETL 过程,从而使它们变得高效、可伸缩并且可维护就极为重要。
ETL 数据转换操作大致可以分为 6 个组或模块:数据的提取、验证、清理、集成、聚集和装入。
要安排好这些组,按照使这一过程获得最大简化、具有最佳性能和易于修改的逻辑次序来执行操作。
下图中展示了执行的次序。
图 1. ETL 数据转换过程的功能模块设计在项目的业务需求和数据分析阶段,我们创建了数据映射信息。
有许多中记录数据映射的方式;ETL 数据映射表是指导ETL 过程设计的最佳方式。
您还可以将该表用作与业务客户就数据映射和ETL 过程问题进行交流的方式。
ETL 数据映射表有不同的级别,如实体级别和属性级别。
每个级别中都具有不同级别的详细数据映射信息。
下表是一个实体级别的ETL 数据映射表的简化例子。
该表中的每个―X‖表示到操作细节或较低级数据映射文档的链接。
表 1. ETL 实体映射表源验证清理转换集成聚集目标账户客户X X ? X X 客户信贷客户X X X借贷客户X ? X支票账户X X ? X X 账户储蓄账户X ? X信贷账户X ? X借贷账户X X ?在DB2 数据仓库中实现ETL 过程DB2? Universal Database? Data Warehouse Editions 为数据仓库功能提供了改进的性能和可用性。
数据库的数据集成与ETL实施方案说明书

数据库的数据集成与ETL实施方案说明书1. 引言数据库的数据集成与ETL(Extract, Transform, Load)实施方案是现代企业数据管理的重要组成部分。
本文将介绍数据集成以及ETL实施的相关概念、原则和步骤,并提供一套完整的方案说明书供参考。
2. 数据集成概述数据集成是指将来自不同数据源、格式和位置的数据整合到一个集中的数据库中。
其目的是为了实现数据的一致性、完整性和易用性。
在数据集成过程中,需要解决数据标准化、数据冲突处理和数据质量等问题,以确保最终整合的数据能够满足业务需求。
3. ETL实施概述ETL是指将数据从原始数据源中抽取出来,经过转换和清洗后加载到目标数据库中的过程。
ETL实施的目标是提取准确、全面的数据,并对数据进行转换和清洗以满足业务需求。
通常包括以下步骤:抽取(Extract)、转换(Transform)和加载(Load)。
4. 数据集成与ETL实施方案步骤4.1 需求分析和数据源评估在开始数据集成和ETL实施之前,需要对业务需求进行详细分析,并评估各数据源的可用性和数据质量。
根据需求和评估结果,确定数据集成和ETL的整体方案。
4.2 数据抽取数据抽取是将数据从原始数据源中提取出来的过程。
选择合适的抽取方式,如全量抽取或增量抽取,并确保抽取的数据准确、完整。
4.3 数据转换数据转换是将抽取的数据进行格式转换、数据清洗、字段映射和合并等操作的过程。
确保转换后的数据符合目标数据库的结构,并满足业务需求。
4.4 数据加载数据加载是将经过转换的数据加载到目标数据库中的过程。
根据目标数据库的结构和规范,选择合适的加载方式,如批量加载或逐条加载,并确保加载的数据准确、完整。
4.5 数据验证和测试在数据加载完成后,需要对加载后的数据进行验证和测试,以确保数据的一致性和正确性。
可以使用数据分析工具和测试脚本进行数据验证和测试,发现并修复数据问题。
4.6 监控和维护数据集成和ETL实施完成后,需要建立监控和维护机制,及时发现和修复数据集成和ETL过程中出现的问题,保证数据的可靠性和准确性。
etl开发流程

etl开发流程ETL开发流程。
ETL(Extract, Transform, Load)是指从数据源中抽取数据,然后对数据进行转换,最终加载到目标数据库中的一种数据处理过程。
在现代数据分析和商业智能领域,ETL流程扮演着至关重要的角色。
本文将介绍ETL开发的流程,帮助读者更好地理解和应用ETL技术。
1. 需求分析。
ETL开发的第一步是需求分析。
在这个阶段,我们需要与业务部门和数据分析师沟通,了解他们的需求和期望。
通过与业务人员深入交流,我们可以明确数据的来源、格式、质量要求,以及最终数据处理后的展现形式。
需求分析阶段的重要性不言而喻,它直接影响后续的数据抽取、转换和加载工作。
2. 数据抽取。
一旦需求分析完成,接下来就是数据抽取阶段。
在这个阶段,我们需要从各种数据源中抽取数据,这可能涉及到关系型数据库、非关系型数据库、日志文件、API接口等。
数据抽取的方式多种多样,可以通过SQL查询、调用API接口、文件传输等方式来实现。
在数据抽取过程中,我们需要考虑数据的完整性、一致性和性能等方面的问题。
3. 数据转换。
数据抽取后,接下来是数据转换阶段。
在这个阶段,我们需要对抽取的数据进行清洗、处理、合并等操作,以满足最终的数据分析和报表展现需求。
数据转换可能涉及到数据清洗、数据格式转换、数据合并、计算衍生指标等工作。
数据转换的质量直接影响到最终数据的可用性和准确性。
4. 数据加载。
最后一个阶段是数据加载。
在这个阶段,我们需要将经过抽取和转换的数据加载到目标数据库中,以供后续的数据分析和报表展现。
数据加载可能涉及到全量加载、增量加载、定时加载等不同方式。
在数据加载过程中,我们需要注意数据的完整性、一致性和性能等方面的问题。
5. 测试和维护。
除了上述的ETL开发流程,测试和维护也是非常重要的环节。
在ETL开发完成后,我们需要进行各种测试,包括单元测试、集成测试、性能测试等,以确保ETL流程的稳定性和可靠性。
同时,我们还需要建立监控和报警机制,及时发现和解决ETL流程中的问题,保证数据的及时性和准确性。
etl方案

etl方案ETL方案ETL(Extract, Transform, Load)是一种常用的数据处理方式,用于从不同的数据源抽取数据、进行转换处理,最终加载到目标数据库中。
ETL方案是指根据具体的业务需求和数据处理要求,设计和实施ETL过程的一套方法和流程。
1. ETL概述ETL过程是将数据从不同的源头(如文件、数据库、API等)抽取出来,进行各种转换处理,然后加载到目标数据库中。
ETL方案的目标是实现数据的清洗、整合和转换,以便后续的数据分析和业务应用。
ETL方案通常由以下三个步骤组成:1. **抽取(Extract):** 数据从源头抽取出来,可以是从数据库中查询、从文件中读取、通过API调用等方式获取原始数据。
2. **转换(Transform):** 对抽取的数据进行清洗、处理和转换。
这一步包括数据清洗、数据筛选、数据格式转换等操作。
3. **加载(Load):** 将经过转换处理后的数据加载到目标数据库中,以便后续的数据分析和应用。
ETL方案的重点是在数据转换过程中的数据质量和数据准确性的保证。
ETL的目标是将数据从不同的源头整合到一起,以便进行深度分析和业务应用。
因此,可靠的ETL方案是建立高质量、准确的数据基础的重要一环。
2. 设计ETL方案的关键要素设计一个可靠、高效的ETL方案需要考虑以下几个关键要素:2.1 数据源和目标首先需要确定数据源和目标数据库的类型和结构。
数据源可以是多个不同的数据库、文件,甚至是API接口。
目标数据库可以是关系型数据库(如MySQL、SQL Server),也可以是非关系型数据库(如MongoDB、Elasticsearch)等。
在确定数据源和目标时,需要考虑数据源的数据结构、数据量以及数据质量等因素。
同时需要考虑目标数据库的性能、可扩展性和数据模型等方面的要求。
2.2 数据转换和处理数据转换和处理是ETL方案的核心环节,通过数据转换和处理可以实现数据清洗、数据整合、数据筛选、数据格式转换等功能。
ETL开发规范设计

ETL开发规范设计目录1ETL简介 (2)2ETL平台集群架构图 (3)3KETTLE开发与调度平台架构图 (4)4控制台规划 (4)5K ETTLE集群设计 (4)6命名规划 (5)6.1集群配置命名 (5)6.2TABLE 命名 (5)6.3维度规范 (6)6.4EDW表规定添加字段 (6)6.5TRANSFORMATION、JOB命名 (6)6.6控件命名 (7)7开发规范 (7)7.1T RANSFORMATION开发 (7)7.2J OB (10)7.3CONNECTION (10)7.4版本控制 (10)7.5字符定义 (10)8资料库管理 (11)8.1用户管理 (11)8.2文件夹管理 (11)8.2.1创建用户 (12)1 ETL简介ETL是指数据的抽取(Extract),转换(Transform)和加载(Loading),是数据仓库系统实施的一个非常重要的环节,在项目实施的第一阶段中是项目实施的工作重点,建立一套完整、正确、高效的数据抽取、转换和加载机制,是数据仓库的基础性目标。
在ETL的设计中,ETL的模式可以是ETL,ELT,ETLT,现在比较基本的是ETLT。
➢ETL是指先从源系统中将数据抽取出来,然后通过使用高级语言编写的应用程序进行文件级的转换(一般是指码制、格式等转换,不需要使用数据库的表关联方式),然后进行加载。
➢ELT是指先从源系统中将数据抽取出来,然后加载到数据仓库中,然后在数据仓库中实现数据的转换,一般通过SQL来实现。
➢ETLT是指先从源系统中将数据抽取出来,经过一定的转换再加载到数据仓库中,然后再按照最终PDM的要求再次进行一次转换。
广义的ETL,还包括产生数据集市的数据、产生OLAP数据等。
即从用户的源系统准备数据开始,直到数据仓库的最终用户可用的数据的过程,都属于ETL23ODSETL 服务器EDWODS4SpoonKitchenPan Client 图形化操作Transformation●资料库命名UCSETL_DEV_{数据层} →开发环境 UCSETL_TST_{数据层} →测试环境 UCSETL_PRD_{数据层} →生产环境 ●字符目前开发环境是采用UTF8(包括资料库,数据存储和集成服务) ●数据仓库主要分层:SRC,ODS,EDS,DWKettle 是一款开源的ETL 工具,以其高效和可扩展性而闻名于业内。
etl开发案例

etl开发案例ETL(Extract-Transform-Load)是一种常见的数据处理方式,用于从不同的数据源中提取数据、进行转换和清洗,最后加载到目标系统中。
下面是一些符合要求的ETL开发案例,每个案例都展示了不同的情景和技术。
1. 数据仓库构建:某公司决定构建一个数据仓库,用于存储和分析销售、客户和供应链等数据。
ETL开发团队将从各个业务系统中提取数据,进行必要的转换和清洗,然后将数据加载到数据仓库中。
这样,公司可以更好地了解业务状况,做出更明智的决策。
2. 实时数据集成:某电商平台需要将各个供应商的商品信息实时同步到自己的数据库中。
ETL开发团队通过定时抓取供应商的API接口,提取商品信息,然后进行转换和清洗,最后将数据加载到电商平台的数据库中。
这样,平台可以及时更新商品信息,保持与供应商的同步。
3. 数据质量检查:一家银行每天从各个分支机构收集大量的贷款申请数据。
为了确保数据的准确性和完整性,ETL开发团队编写了一套规则,对每条数据进行检查。
例如,检查客户的年龄是否合法,检查贷款金额是否超出范围等。
如果数据不符合规则,将进行修复或标记,以便后续处理。
4. 数据迁移:某公司决定将其现有的CRM系统迁移到新的系统中。
为了保证数据的完整性和一致性,ETL开发团队编写了一套程序,从旧系统中提取数据,进行必要的转换和清洗,然后将数据加载到新系统中。
在迁移过程中,还需要进行数据验证和对比,确保新系统与旧系统的数据一致。
5. 数据合并:一家跨国企业收购了几家其他公司,现在需要将它们的数据合并到自己的系统中。
ETL开发团队从每家公司的数据库中提取数据,进行转换和清洗,然后将数据加载到总部的数据中心中。
在合并过程中,需要处理不同公司之间的数据格式和标准的差异。
6. 数据分发:某电信公司每天收集大量的网络设备日志,需要将这些日志数据分发给不同的部门和团队进行分析。
ETL开发团队编写了一套程序,从日志服务器中提取数据,进行必要的转换和清洗,然后按照事先设定的规则将数据分发给各个部门和团队。
etl开发流程和规范 (3)

etl开发流程和规范ETL(Extract, Transform, Load)是一种常见的数据处理方式,用于将数据从原始数据源提取、转换和加载到目标数据仓库或目标系统中。
下面是一般的ETL开发流程和规范:1. 需求分析阶段:- 确定数据源:确定原始数据的来源和格式,包括数据库、文件、API等。
- 确定需求:明确提取、转换和加载的具体需求,包括数据清洗、数据转换和数据加载的步骤。
2. 数据提取阶段:- 选择合适的提取工具:例如使用SQL语句、使用ETL工具(如Informatica、SSIS等)或使用编程语言(如Python、Java等)来提取数据。
- 提取数据:根据需求从数据源中提取数据,并进行必要的数据过滤和排序。
3. 数据转换阶段:- 数据清洗和预处理:清洗和处理数据中的异常值、缺失值、重复值等。
- 数据转换:将数据进行必要的转换和映射,包括数据类型转换、数据格式转换和数据字段补充等。
- 属性计算和聚合:根据需求进行属性计算和数据聚合,生成目标数据。
4. 数据加载阶段:- 目标表设计和创建:根据需求设计目标表结构,并在数据库中创建目标表。
- 数据加载:将转换后的数据加载到目标表中,可以使用插入语句、更新语句或者使用ETL工具来加载数据。
5. 数据验证和测试阶段:- 运行数据验证脚本:编写数据验证脚本,检查目标表中的数据是否符合预期。
- 进行测试:对ETL流程进行测试,包括单元测试、集成测试和性能测试等。
6. 调度和监控阶段:- 调度ETL作业:使用调度工具(如Control-M、rflow 等)配置ETL作业的调度时间和频率。
- 监控ETL作业:监控ETL作业的运行情况,包括运行状态、运行时间和错误日志等。
7. 文档和维护阶段:- 编写文档:记录ETL开发的流程、规范和配置信息,并编写相关的用户手册。
- 维护ETL作业:定期检查和维护ETL作业,包括数据字典的更新、作业调度的调整和性能的优化等。
ETL设计实现

ETL设计实现ETL(Extract, Transform, Load)是一种数据仓库建设过程中常用的数据集成技术。
它的主要目标是从多个不同的数据源中抽取数据,经过一系列的转换操作之后,将数据加载到数据仓库中,以便进行数据分析和报告生成。
在ETL设计实现中,首先需要明确的是数据源和目标数据仓库,同时要了解数据源的结构和格式,以便进行后续的抽取和转换操作。
接下来,可以根据具体需求来设计ETL流程,并选择合适的工具和技术来实现。
ETL的设计实现主要包括以下几个步骤:1. 数据抽取(Extract):这是ETL过程的第一步,主要是从数据源中抽取需要的数据。
数据源可以是数据库、文件、Web服务等各种数据存储系统。
在抽取数据时,通常需要考虑数据源的连接、查询条件、字段选择等因素。
2. 数据转换(Transform):在数据抽取之后,需要对数据进行一系列的转换操作,以便满足目标数据仓库的需求。
数据转换可以包括数据清洗、数据整合、数据规范化、数据格式转换等。
在这一步中,可以使用一些ETL工具或编程语言来实现数据转换操作。
3. 数据加载(Load):数据加载是ETL过程的最后一步,即将转换后的数据加载到目标数据仓库中。
数据加载可以分为全量加载和增量加载两种方式。
全量加载是将所有转换后的数据一次性加载到目标数据仓库中,而增量加载是只将增量数据加载到目标数据仓库中,以提高数据加载效率。
在ETL设计实现过程中,还需要考虑以下几个方面:1.数据质量:在数据转换过程中,需要考虑数据的质量问题。
常见的数据质量问题包括缺失值、重复值、格式错误等。
可以通过数据清洗、数据验证等方式来提高数据质量。
2.并发和性能:在大规模数据加载情况下,需要考虑并发和性能问题。
可以采用多线程或分布式计算等方式来提高ETL的性能,并减少数据加载的时间。
3.错误处理与日志记录:在ETL过程中,可能会出现各种错误,如数据源连接错误、数据转换错误等。
需要对这些错误进行及时处理,并记录错误信息以便后续排查和修复。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
收稿 日期 :0 80 -0 20 -63 作者简介 : 谷赫( 9 6 17 一
)女 , , 吉林辽源人 , 长春大学讲师 , 主要从事数据挖掘研究 ,T 18 -340 80 ( — i g h6 @sh. o ( e)619 3 98 8 Emal u e6 o uem。 )
预先定 义好 的数 据仓库 模型 ,将数 据加 载到 数据仓 库 中去 。
电信企业的数据源来 自 各业务系统 ,且各业务系统采用省集中方式 。电信数据仓库平台提取的外部 源数据 ,根据各省情况会有部分差异,以吉林省为例,吉林省通信公司多年累计存储数据超过 6T y 。 Bt e 主要数据来源于企业内部的各种类型数据 ,汇集各地市的计费帐务系统 、网间结算 系统 、智能网系统, 综合受理系统 ,统一客户资料系统 ,其他增值业务平台的数据等 。针对这些业务数据 ,接 口设计将 J 从外部源系统的数据 集 中程度 、数据 库存储特 征、提 供给数据 仓库 的数据 清单等 角度进 行详 细描
累的事务型数据重新进行组织 ,建立新 的数据存储 ,专 门用于支持数据分析及企业决策 。数据仓库 技术在电信行业 的应用。可对各业务系统的数据库加以整合 ,并在此基础上对数据做出统一规范 ,对相 关数据做必要的转换 ,从而消除由于数据无时基 、数据算法差异而造成的数据缺乏可信性的问题 。
1 设 计 规 划
第2 6卷 第 6期 20 0 8年 1 1月
吉 林 大 学 学 报 ( 息 科 学 版) 信
Junl f inU i rt If m t nSineE io ) ora o Ji nv sy(n r ai c c dtn l ei o o e i
Vo J 6 No 6 l2 . NO .2 o V 08
成数 据获取 、存储及访问。该 平台的建立能对各生产 系统的数据加 以统 一 ,为前 台的展示 开发提 供强有力 的 后 台支持 ,便于决策层对企业 发展状况更为准确的把握 。 关键 词 :数据仓库 ;E L T ;数据分析 ;接 口设计 ;规范
中图分类号: P9 T 3 文 献 标 识码 : A
述 , 。
电信业 务数 据仓库 由数 据仓 库平 台和 统计分 析平 台组 成 ,构建这 两个 平 台可 以使用 B O的 D ei ID s — g
nr( e 简称 D )和 B E I O 。这两个平台不仅满足数据仓库项 目的需要 ,而且为将来其他应用提供 了平 台服
务。
数据仓库平 台在构建时由两个子平台——数据整合平台和数据管理平台组成 ,数据整合平台的主要 功能是整合企业 内部和外部 的数据 ,然后将整合 的数据加载到数据仓库 中 。数据管理平台的主要功 能是对数据仓库 中的数据进行有效的组织和管理 ,为综合统计分析平台或其他业务系统提供数据服务。 其中数据整合平台由3 个子层面组成 , 其功能框架如图 1 所示 。
引 — 口
中国电信的改革和重组使 中国电信业的市场环境发生 了根本性的变化 ,电信业务市场由局部竞争向
全面开放式竞争转移 ,由以话音为主的通信服务向以数据为主的信息服务转移;由单一媒体信息服务形
态向多媒体服务转移。电信市场竞争更加激烈 ,电信公司现有 的数据库系统已经影响了公司的发展速 度 ,各个业务系统的数据库系统之间没有很好地关联起来 ,形成了很多 的信息孤岛… ,使决策层对公
pe o edt cus i , t ae adv ib T ( xr t nT as r a o odn ) h s bi m n l i t a aq it n s rg , n i t yE L E t ci rnf t nL a ig .T eet l h e t tn h a io o s a o o i m a s
文章编号 :6 159 (0 8 0 -620 17 -8 6 2 0 )60 5 -5
电信业务数据仓 库平 台中接 口的设计与 E L开发 T
谷 赫
( 长春大学 计算机科学与技术学院 ,长春 10 2 ) 3 0 2
摘要 : 针对当前 电信业务 中各业务系统的数据库 之间没有很好 地连接而 形成信息孤 岛的 问题 ,利 用数据仓库 这一新型 的数据组织及存储方 法 ,对 电信业务进行有效的数据分析 和企业决策 。针对业 务数据 ,构建 数据仓 库平 台 ,对功能框架和软件进行部署 。通过接 口设计对数 据进行必要 的规范和组织 ,依 据该 规范 和约定进行 环境 配置 ,将预处理后的数据经 D ei e 加 载到数据库 中,通过 E L ( x at nTas r ai od g I s nr D g T E t ci r f t nL ai )完 r o no m o n
c n e to e d n o a s u fi fr to sa d, u i go h aa wa e o s o n c in la i g t n is e o n o mai n il n sn ft e d t r h u e, t e n w a a og n z t n a d h e d t r a ia i n o so a e meh d ,t fe t ey d a t a a a ay i n e iin— k n o h ee o tr g t o s o efc i l e lwi d t n lssa d d cso ma ig frt e tl c mmu i ain u i s . v h n c to s b sne s Ac odig t usn s a a,t e d t rh u e p afr ,t e f n t n lfa wo k a d s fwa e a e d v l p d. c r n o b ie sd t h a a wa e o s l t m o h u c i a r me r n ot r r e eo e o Thru h t e i tra e d sg o n r s a d o g nia in aa s n c sa y,c ry o o fg a in e vr n n o g h n ef c e in t o m n r a z t s d t s i e e s r o ar n c n ur t n io me t i o
图 l 数 据整合 平 台功 能框 架 图
Fg 1 i . Da a i tg ai n plt r u cina r me r t ne r t afm f n to lfa wo k o o
数据整合过程从接 口 文件开始,因此需要对接 口 文件进行一定的管理 ,以保证接 口文件的质量和数
I tra e De in a d De eo me to nef c sg n v lp n fETL i ee o n T lc mmu iain nc t s o Bu ie s Daa W a e o s afIn sn s t r h u e Pltcl r
GU He
( o eeo C m ue c n eadT cnlg ,C agh nUn e i ,C agh n10 2 ,C ia C l g f o p t Si c n eh ooy h ncu i rt l r e v s y hnc u 3 0 2 hn )
Ab t a t F rc re t e d t b s f u i e s s s m l c mmu iai n u i e sd d n t a e av r o d s r c : o u r n l t aa a e o s s y t i t e o y h b n e n e n c t sb sn s i o v ey g o o h
第 6期
谷赫 : 电信业务数据仓库平台 中接 口的设计与 E L开发 T
63 5
这些问题的长期积累,往往会造成决策层在对公 司的发展做出部署时,产生决策失误 ,造成不可估
量 的损 失 ,解 决这 种 问题 最有 效可 行 的办 法是 建立 企业级 的统 一数据 仓库 平 台 。 数 据仓库 (a aeos)是一 种新 型 的数 据 组织 及 存储 方 法 ,它 以多维 数 据 建 模方 式 对 企业 积 dt w rhue a
o e p afr a et n td t ed t f h a h p o u t n s se , n r v d t n a k r u d s p o t ft lt m c n b o u i aa o e e c r d ci y tm a d p o i e a s o g b c g o n u p r h o e h t o r frd v lp n n ip a o e f n , b n f h o iy ma i g lv l r c u a e g a p d v l p n i a o e eo me ta d d s ly ft o t e e t e p l — k n e e e a c r t r s e eo me t t - h r i t c mo su t n o e e t r r e i f h nep i . o t s
b s d o e r g l t a d o g n z t n ,t e d t l b rte td la i g t e OD h o g e in r o a e n t e ae n r a i i s h aa wi e p er a e o d n S t r u h DID sg e ,e m— h u a o l h
Ke o d : a ae os ; x at nt nfr ai aig ( T ) aa n l i;it fc ei ;nr s yw r s dt w rhue et c o a s m t nl dn E L ;d t a a s a r i r o o o y s ne aed s r n g o m
据 抽取流 程 的正确 。接 口文 件处 理层就 是完 成这些 工作 的 。 数据整 合层按 照 E L设计 规 范和规 则 顺 序地 或并 行 地 从接 口文 件 中抽 取 数据 。然 后 将 数据 进 行 清 T