公开课《有理数的乘法》说课稿

合集下载

北师大版数学七年级上册2.7《有理数的乘法》(第2课时)说课稿

北师大版数学七年级上册2.7《有理数的乘法》(第2课时)说课稿

北师大版数学七年级上册2.7《有理数的乘法》(第2课时)说课稿一. 教材分析《有理数的乘法》是北师大版数学七年级上册第2.7节的内容,本节课的主要内容是有理数的乘法法则,以及如何运用这些法则进行计算。

在教材中,学生已经学习了有理数的加法、减法、乘法和除法,这些知识为本节课的学习打下了基础。

二. 学情分析面对七年级的学生,他们对有理数的加减乘除已经有了一定的了解,但对有理数的乘法法则可能还不是很熟悉。

因此,在教学过程中,我需要引导学生通过观察、思考、讨论,从而发现并掌握有理数的乘法法则。

三. 说教学目标1.知识与技能:让学生掌握有理数的乘法法则,能熟练地进行有理数的乘法计算。

2.过程与方法:通过观察、思考、讨论,培养学生发现问题、分析问题、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。

四. 说教学重难点1.教学重点:有理数的乘法法则及其运用。

2.教学难点:理解有理数乘法法则的推导过程,以及如何运用这些法则进行计算。

五.说教学方法与手段在本节课的教学过程中,我将采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题,引导学生思考;通过案例分析,让学生理解并掌握有理数的乘法法则;通过小组合作学习,培养学生的团队合作意识。

六. 说教学过程1.导入:通过复习有理数的加减乘除,引导学生进入本节课的主题——有理数的乘法。

2.新课讲解:讲解有理数的乘法法则,并通过案例进行分析。

3.课堂练习:让学生进行有理数的乘法计算,巩固所学知识。

4.小组讨论:让学生分组讨论,发现并总结有理数乘法法则的推导过程。

5.总结:对本节课的内容进行总结,强调重点知识点。

6.课后作业:布置相关的课后练习,巩固所学知识。

七. 说板书设计板书设计如下:有理数的乘法法则:1.同号相乘,取相同符号,并把绝对值相乘。

2.异号相乘,取相反符号,并把绝对值相乘。

3.任何数乘以0,结果都是0。

八. 说教学评价本节课的教学评价主要从学生的课堂表现、课后作业和小组合作学习三个方面进行。

人教版数学七年级上册《有理数的乘法》说课稿

人教版数学七年级上册《有理数的乘法》说课稿

《有理数的乘法》教案一、教材:本节课的内容是人教版数学七年级上册第一章第四节第二课时,是建立在学生对有理数乘法法则已经掌握的情况下的多因数相乘,同时也是为后面有理数的混合运算做铺垫,是本章节的重要知识点。

二、学生:七年级学生刚接触有理数,与小学时的计算有着很大的区别。

当数的范围扩大到有理数时,运算进程中的符号是一个重点,也是一个难点,只有让学生在学习的过程中不断的归纳总结,才能较好的掌握有理数的相关运算。

三、教学目标1、掌握有理数乘法的符号法则2、能熟练的进行有理数的乘法运算3、掌握数学计算规范格式四、教学重点和难点重点:有理数乘法的符号法则.难点:有理数的乘法运算和基本的数学计算的格式规范。

五、教法和学法教法:任务驱动和示范教学学法:自主探究与合作交流在整个教学活动里边,结合实际,充分的利用电子白板的功能,为教和学提供服务,从而真正提高课堂效率。

六、教学环节1、复习引入利用两位数的乘法进行抢答,以回顾有理数乘法法则。

2、新课讲授探究1:让学生根据有理数乘法法则计算四组式子,然后归纳总结多个因数相乘时,积的符号规律。

在这个环节,我利用白板的标注功能以及探照灯功能,让学生能够直观的感受有理数乘法中的积的正、负与负因数个数两者之间的关系,为学生找出规律、做出归纳提供有效的帮助。

探究2:学生通过两组有因数为0式子进行归纳,得出结论:几个不为0的数相乘,负因数的个数为偶数时,积为正,负因数的个数为奇数时,积为负。

例题讲解:在例题讲解这个环节,我准备了负因数不同的两个题。

在讲解板书的过程中,我充分利用白板的书写功能。

因为在数学这个学科里边,计算是一个很重要的过程,很多时候,两张黑板根本不能满足板书、练习的需要,这时候电子白板的页面功能会起到很大的帮助。

同时、利用背景功能里边的作业薄格子作为背景,能够为学生做好解题格式的示范,更能够帮助学生培养良好的解题规范。

练习及点评:学生可以通过白板演示练习,在点评过程中利用不同的色彩标注,更加突出的、明显的方式纠正学生练习中出现的错误或者容易出现的错误地方。

有理数的乘法说课稿

有理数的乘法说课稿

有理数的乘法说课稿第七小组一、教材分析:1、教材的地位和作用有理数的乘法是在学生学完有理数的加法后学习的,它与有理数的加法运算一样,也是建立在小学算术的基础上。

因此,有理数的乘法运算,在确定“积”的符号后,实质上是小学算术数的乘法运算,思维过程就是如何把中学有理数的乘法运算化归为小学算术数的乘法运算。

由于有理数的乘法是有理数最基本的运算之一,因而它是进一步学习有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识的基础。

学好这部分内容,对增强学习代数的信心具有十分重要的意义。

2、教学目标(三维目标)知识与技能:回顾下学数的乘法,掌握有理数的乘法法则。

了解倒数的概念。

过程与方法:经历乘法法则的发生过程,学习利用乘法法则计算数的乘法,及三个有理数相乘的积。

情感、态度、价值观:在探究和解决问题的过程中,认识数的乘法法则,体验数的乘法法则的意义。

3、教学重点、难点重点:有理数的乘法法则及其运用难点:探索有理数的乘法法则的发生过程二、教学方法本节课的教学是以启发式教学为主,通过教师的引导,启发调动学生学习积极性,让学生在课堂上多活动,多观察、主动参与到整个教学的全过程,通过自己的努力,发现规律,总结出法则。

它符合教学论中的自觉性和积极性。

并有利于培养学生勇于探索新知的创新精神。

反思:教学方法上,还是缺乏一定的技巧,引导、启发不够,学生的活动还是偏少,全体学生的参与度不够。

三、教学过程(一)、通过算一算,想一想,回顾小学数的乘法3+3=3×2=63+3+3=3×3=93+3+3+3=3×4=123+3+3+3+3=3×5=153+3+3+3+3+3=3×6=18(二)、创设情景,引入课题水库水位的变化问题(1)A水库的水位每天升高3cm ,4 天后,A水库水位的总变化量是多少?(如果用正号表示水位的上升,几天后用正号表示)3+3+3+3 = 3×4 = 12(2) B水库的水位每天下降 3cm ,4 天后,B水库水位的总变化量是多少?(如果用负号表示水位的下降,几天后用正号表示)(−3)+(−3)+(−3)+(−3) = (−3)×4 = −12(3)A水库的水位每天升高3cm ,4 天前,A水库水位的总变化量是多少?(如果用正号表示水位的上升,几天前用负号表示)(−4)+(−4)+(−4)=3×(-4)=-12从而得出有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,0 乘任何数得 0 计算:(1) (−4)×5 (2) (−4)×(−7)(3) (−9)×0 (4) (−5)×(−1.6)第一步是确定积的符号,第二步是绝对值相乘通过练一练,体会新知,出现三个有理数相乘的情况,导出新问题三个都不为零有理数相乘怎么确定积的符号?有一因数为 0 时,几个有理数相乘的积是多少?反思:对于3个以上都不为零有理数相乘,积的符号怎样确定?让学生课后思考,主要是考虑到部分学生的学习程度不均,学习力强的学生可以思考,得到思维的提升通过看一看,说一说得出倒数的概念观察(1)、(2)两式有什么共同点?如果两个有理数的乘积为 1,我们就称这两个有理数互为倒数注意:0没有倒数。

有理数的乘法说课稿2篇

有理数的乘法说课稿2篇

有理数的乘法说课稿有理数的乘法说课稿精选2篇(一)Title: Introduction to Rational Number MultiplicationTopic: Rational Number MultiplicationGrade Level: Middle school (7th grade)Objective:By the end of this lesson, students will be able to:1. Apply the rules of rational number multiplication to solve problems.2. Multiply rational numbers both mentally and using the traditional method.3. Understand the concept of multiplying two rational numbers and its relationship to the product of their numerators and denominators.Materials:- Whiteboard or chalkboard- Dry erase markers or chalk- Chart paper or a projector- Worksheets or practice problems- Exle problems and solutionsIntroduction (5 minutes):1. Greet the students and briefly review the concept of rational numbers, emphasizing that they are numbers that can be expressed as a fraction with a numerator and denominator.2. Ask the students if they remember how to add, subtract, and divide rational numbers. Establish that multiplying rational numbers is the focus of today's lesson.Development (15 minutes):1. Review the rules for multiplying positive and negative numbers:- A positive number multiplied by a positive number equals a positive number.- A negative number multiplied by a positive number equals a negative number. - A positive number multiplied by a negative number equals a negative number. - A negative number multiplied by a negative number equals a positive number.2. Present the concept of multiplying two rational numbers.- Explain that when we multiply two rational numbers, we multiply the numerators and the denominators separately.- Emphasize the importance of simplifying fractions after multiplication by canceling mon factors between the numerator and the denominator.3. Model the multiplication of rational numbers using exle problems:Exle 1: -3/4 x 2/5 = (-3 x 2) / (4 x 5) = -6/20 = -3/10 (Emphasize the importance of simplifying the fraction)Exle 2: 8/3 x 5/4 = (8 x 5) / (3 x 4) = 40/12 = 10/3 (Emphasize the importance of simplifying the fraction)4. Demonstrate mental multiplication of rational numbers:- Teach the students mental strategies such as canceling mon factors, cross-cancelling, and estimating.- Provide exles to practice mental multiplication, encouraging students to share their mental steps with the class.5. Engage the students in an interactive activity:- Divide the class into pairs or small groups.- Provide each group with a worksheet containing rational number multiplication problems.- Allow the groups to work collaboratively to solve the problems.- Walk around the classroom, observing and providing guidance as needed.Conclusion (5 minutes):1. Recap the rules for multiplying rational numbers.2. Encourage students to use mental strategies whenever possible to multiply rational numbers.3. Summarize the main points covered in the lesson and highlight the importance of simplifying fractions after multiplication.4. Assign practice problems for homework to reinforce understanding.Assessment:- Monitor student engagement and participation during class discussions and group activities.- Review pleted worksheets or practice problems to assess individual understanding. - Provide individual support and re-teaching as needed.有理数的乘法说课稿精选2篇(二)说课稿:有理数的加法【一、说教材】本节课我们将学习有理数的加法。

有理数的乘法说课稿

有理数的乘法说课稿

有理数的乘法说课稿一、教学目标1. 知识目标:理解有理数乘法的概念和性质,掌握有理数乘法的运算法则。

2. 能力目标:能够运用有理数乘法解决实际问题,培养学生的逻辑思维和运算能力。

3. 情感目标:培养学生对数学的兴趣,激发他们的研究动力。

二、教学重点和难点1. 教学重点:有理数乘法的概念、性质和运算法则。

2. 教学难点:有理数乘法的应用问题解决。

三、教学过程本节课的教学过程分为以下几个环节:1. 导入新知识(5分钟)- 引入有理数乘法的概念,提示学生有理数相乘的例子,如两个正数的相乘、两个负数的相乘等。

- 提问学生:你认为有理数相乘的结果是正数还是负数?为什么?2. 理论研究(15分钟)- 总结有理数乘法的基本性质:正数乘正数为正,负数乘负数为正,正数乘负数为负。

- 通过具体例子和练题,让学生掌握有理数乘法的运算法则。

3. 拓展应用(20分钟)- 给学生提供一些实际问题,让他们应用有理数乘法解决问题。

- 引导学生分析问题,提供解决思路,鼓励他们自主思考和探索。

4. 归纳总结(10分钟)- 总结有理数乘法的要点和规律。

- 提醒学生注意有理数乘法在实际中的应用场景。

5. 练巩固(10分钟)- 给学生分发相关练册,让他们进行题练。

- 鼓励学生互相合作,共同解决问题。

6. 课堂小结(5分钟)- 随堂检测学生掌握情况,并对学生的表现给予肯定和指导。

四、教学资源1. 教学课件:包含有理数乘法的概念、性质和应用等内容。

2. 教辅材料:题册和练题。

五、教学评价1. 教师观察法:观察学生在课堂上的表现,包括思维能力、应用能力等。

2. 练巩固:通过练题的完成情况评价学生对有理数乘法的掌握程度。

3. 课堂互动:评估学生在课堂上的积极参与程度和合作能力。

六、教学反思本节课通过导入新知识、理论学习、拓展应用等环节,全方位培养学生对有理数乘法的理解和运用能力。

针对学生不同的学习特点,我们提供了多种教学资源和评价方式,以满足不同学生的需求。

《有理数的乘法》说课稿

《有理数的乘法》说课稿

《有理数的乘法》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《有理数的乘法》。

首先,咱们来聊聊为啥要学有理数的乘法。

这就好比我们去超市买东西,价格有正数也有负数,数量也有正有负,比如买多了是正数,退货就是负数。

要算出最终花了多少钱,就得会有理数的乘法。

咱们教材里对于有理数的乘法,那可是安排得明明白白。

从简单的正数乘法开始,逐步引入负数,让咱们的同学们一步一个脚印,稳稳地掌握。

在教学目标上,我希望同学们通过这节课,能够熟练掌握有理数乘法的法则,并且能准确地进行计算。

更重要的是,培养他们的数学思维,让他们在遇到问题时,能有条有理地去分析和解决。

教学重难点嘛,重点当然是有理数乘法法则的推导和应用。

难点呢,就是对法则中符号确定的理解。

为了让同学们学好这一课,我可是准备了不少“法宝”。

比如说,通过一些实际的例子,像温度的升降、买卖东西的收支,让他们直观地感受有理数乘法的意义。

我还记得有一次,我在课堂上讲这个知识点的时候,有个同学就提出了一个特别有意思的问题。

他说:“老师,要是我有 3 个零下 5 度的冰块,那总的温度是多少?”这一下可把大家都逗乐了,但也让我意识到,同学们对于负数的乘法理解起来确实需要更多的实际例子。

于是我就从这个问题入手,一步一步地引导大家,最后大家都明白了。

接下来,咱们说说教学过程。

一开始,我会通过复习之前学过的正数乘法和相反数的知识,为新知识做好铺垫。

然后,引入实际问题,比如“某天,气温从早上的 3 摄氏度,每小时下降 2 摄氏度,5 小时后气温是多少?”让同学们自己列式计算,从而引出有理数的乘法。

在法则推导这一块,我会让同学们分组讨论,通过观察、比较不同算式的结果,总结出规律。

比如说,3×2 = 6,(-3)×2 =-6,3×(-2)=-6,(-3)×(-2)=6。

让他们发现两个有理数相乘,同号得正,异号得负,并把绝对值相乘。

有了法则,那不得练练手?我会安排一些练习题,从简单的整数乘法,到含有小数、分数的乘法,逐步提高难度。

人教版七年级上册第一章《1.4有理数的乘除法》说课稿

人教版七年级上册第一章《1.4有理数的乘除法》说课稿
2.生生互动:小组合作、竞赛、讨论等,鼓励学生相互交流、协作,共同完成学习任务,提高团队协作能力和沟通能力。
3.课堂评价:采用学生自评、互评等方式,让学生在评价中反思自己的学习过程和方法,促进自我管理和自我提升。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
(二)学习障碍
学生在学习本节课之前,已经具备了有理数的基本知识和加减法运算技能。然而,可能存在以下学习障碍:
1.对有理数乘除法则的理解不够深入,容易混淆同号异号的乘除结果;
2.在进行混合运算时,对运算顺序和符号处理不够熟练,导致运算错误;
3.将实际问题抽象为有理数乘除运算的能力较弱,难以建立数学模型。
-在混合运算中,正确区分乘除运算的优先级,避免运算错误;
-将实际问题转化为有理数乘除运算,培养学生的数学建模能力。
二、学情分析导
(一)学生特点
本节课面向的是七年级学生,这个年龄段的学生正处于青春期初期,好奇心强,求知欲旺盛,具备一定的抽象思维能力,但仍然依赖具体形象思维。在认知水平上,他们已经掌握了有理数的基本概念和加减法运算,但对于乘除法则的理解和应用还较为生疏。学习兴趣方面,学生对新鲜有趣的数学问题表现出较高的兴趣,但对于理论性较强的内容可能会感到枯燥。在学习习惯上,部分学生可能缺乏自主学习能力,依赖教师引导,且在解题过程中容易忽视细节,导致错误。
本节课的主要知识点包括:
1.有理数的乘法法则:同号得正,异号得负,并将绝对值相乘。
2.有理数的除法法则:除以一个不等于0的数等于乘这个数的倒数。
3.有理数的乘除混合运算。
(二)教学目标
1.知识与技能目标:
-掌握有理数乘除法的法则,能够正确进行有理数的乘除运算;

公开课《有理数的乘法》说课稿

公开课《有理数的乘法》说课稿

《1.5.1有理数的乘法》说课稿我今天说课的内容是沪科版《数学》,七年级上册1.5节《有理数的乘除》第1课时有理数的乘法。

下面我将从教材分析,学情分析、教法与学法、教学过程,板书设计等5个方面对本课时的教学设计进行说明。

一、教材分析 1、教材的地位有理数的乘法在初中数学中占有十分重要的地位。

(1)它是前面有理数加法的延伸与拓展。

(2)它是后面有理数除法运算的基础。

(3)它也为今后学习有理数四则混合运算及其它知识奠定了基础。

2、教学目标(1)了解有理数乘法的意义和倒数的概念,掌握有理数乘法法则,会进行有理数乘法运算。

(2)经历探索有理数乘法法则的过程,发展观察、归纳、猜测、概括等能力,体会从特殊到一般的思想方法。

(3)激发学生学习数学的兴趣,树立勇于探索新知的精神。

3、教学重点(1)教学重点:有理数的乘法运算。

(2)教学难点:有理数乘法法则的理解。

(3)二、学情分析学生在小学里已经接触过正数和零的乘法,前面学习了有理数的加减法运算,对负数参与运算有了一定的认识。

经过前一阶段的学习,同学们也具有一定的观察、归纳、猜想、验证等能力,为本节课的学习内容打好了基础。

三、教法与学法1.教法:探究式教学法2.学法:合作学习法四、教学过程(一)引入问题1:小学已经学过的乘法运算,属于有理数中哪些数的运算?回答:属于正有理数和零的乘法运算.或答:属于正整数、正分数和零的乘法运算.计算下列各题;(1)3×5= (2)3×9=以上这些题,都是对正有理数与正有理数、正有理数与零、零与零的乘法,方法与小学学过的相同,今天我们要研究的有理数的乘法运算,重点就是要解决引入负有理数之后,怎样进行乘法运算的问题.如:怎样计算(1)(—5)×6= (2)(—4)×(—8)=(二)讲授新课问题2:如图,一只蜗牛沿直线L 爬行,它现在的位置恰好是L 上的点O,求:(1)若蜗牛一直以每分2cm 的速度向右爬行,3 分后它在什么位置?(2)若蜗牛一直以每分2cm 的速度向左爬行,3 分后它在什么位置?(3)若蜗牛一直以每分2cm 的速度向右爬行,3 分前它在什么位置?(4)若蜗牛一直以每分2cm 的速度向左爬行,3 分前它在什么位置?规定:向左为负,向右为正,同样规定:现在前为负,现在后为正。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《1.5.1有理数的乘法》说课稿
我今天说课的内容是沪科版《数学》,七年级上册1.5节《有理数的乘除》第1课时有理数的乘法。

下面我将从教材分析,学情分析、教法与学法、教学过程,板书设计等5个方面对本课时的教学设计进行说明。

一、教材分析 1、教材的地位
有理数的乘法在初中数学中占有十分重要的地位。

(1)它是前面有理数加法的延伸与拓展。

(2)它是后面有理数除法运算的基础。

(3)它也为今后学习有理数四则混合运算及其它知识奠定了基础。

2、教学目标
(1)了解有理数乘法的意义和倒数的概念,掌握有理数乘法法则,会进行有理数乘法运算。

(2)经历探索有理数乘法法则的过程,发展观察、归纳、猜测、概括等能力,体会从特殊到一般的思想方法。

(3)激发学生学习数学的兴趣,树立勇于探索新知的精神。

3、教学重点
(1)教学重点:有理数的乘法运算。

(2)教学难点:有理数乘法法则的理解。

(3)二、学情分析
学生在小学里已经接触过正数和零的乘法,前面学习了有理数的加减法运算,对负数参与运算有了一定的认识。

经过前一阶段的学习,同学们也具有一定的观察、归纳、猜想、验证等能力,为本节课的学习内容打好了基础。

三、教法与学法
1.教法:探究式教学法
2.学法:合作学习法
四、教学过程
(一)引入
问题1:小学已经学过的乘法运算,属于有理数中哪些数的运算?
回答:属于正有理数和零的乘法运算.或答:属于正整数、正分数和零的乘法运算.计算下列各题;
(1)3×5= (2)3×9=
以上这些题,都是对正有理数与正有理数、正有理数与零、零与零的乘法,方法与小学学过的相同,今天我们要研究的有理数的乘法运算,重点就是要解决引入负有理数之后,怎样进行乘法运算的问题.
如:怎样计算(1)(—5)×6= (2)(—4)×(—8)=
(二)讲授新课
问题2:如图,一只蜗牛沿直线L 爬行,它现在的位置恰好是L 上的点O,求:
(1)若蜗牛一直以每分2cm 的速度向右爬行,3 分后它在什么位置?
(2)若蜗牛一直以每分2cm 的速度向左爬行,3 分后它在什么位置?
(3)若蜗牛一直以每分2cm 的速度向右爬行,3 分前它在什么位置?
(4)若蜗牛一直以每分2cm 的速度向左爬行,3 分前它在什么位置?
规定:向左为负,向右为正,同样规定:现在前为负,现在后为正。

学生回答
(1)3分钟后蜗牛应在O 点的右边6cm 处。

可以表示为:(+2)×(+3) =+6
(2) 3 分钟后蜗牛应在O 点的左边6cm 处。

可以表示为:(-2)×(+3) =-6
(3) 3 分钟前蜗牛应在O 点的左边6cm 处。

可以表示为:(+2)×(-3) =-6
(4) 3 分钟前蜗牛应在O 点的右边6cm 处。

可以表示为:(-2)×(-3) =+6
可以得出什么结论?
根据对有理数乘法的思考,总结填空:
正乘乘正数积为正数负数乘正数积为负数正数乘负数积为负数负数乘负数积为正数乘积的绝对值等于各乘数绝对值的积
问题3:当一个因数为0时,积是多少?学生回答:积为0
师生归纳:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0 相乘,都得0。

注意:1、上面的法则是对于只有两个因子相乘而言的。

2、做乘法的步骤是:先确定积的符号,再确定积的绝对值。

(三)法则应用见ppt
(四)课堂练习1 见ppt
(五)倒数的概念和求法
教师:像上题中提到的两个数3 与1/3它们的乘积为1,那么这两个数就可以说互为倒数
倒数的定义:乘积为1 的两个数互为倒数,0 没有倒数,比如说,2 与1/2,-3 与-1/3,-0.3 与-10/3……
例:求下列各数的倒数:1,-1,1/3,-1/3, 5,-5, 2/3,-2/3
思考:如何求一个数的倒数?两个数互为倒数有何特点?
总结:1、求倒数的办法,把作任何一个非0 有理数看成是分数,然后颠倒其分子分母即可
2、两个数互为倒数,这两个数同号
(六)随堂练习
P31练习1、2、3
(七)、教学总结
本节课主要学习了有理数的乘法法则以及如何利用乘法法则进行运算,学习了有理数的倒数定义,如何求一个数的倒数。

(八)、布置作业见ppt。

相关文档
最新文档