优化设计与有限元法.
机械结构热应力分析与优化设计

机械结构热应力分析与优化设计引言:在日常生活和工程设计中,我们常常会面临机械结构在热应力下的变形和破坏问题。
热应力是由于温度变化引起的结构内部应力,可能会导致结构失效。
因此,对机械结构的热应力进行分析和优化设计是非常重要的。
一、热应力的形成原因:热应力的形成主要是由于温度的变化所引起的材料膨胀或收缩不一致。
当材料受热时,其分子内部的热运动加剧,分子间的作用力减弱,导致材料膨胀。
相反,当材料被冷却时,分子内部的热运动减弱,分子间的作用力增强,导致材料收缩。
而不同部分的材料在受热或冷却过程中的膨胀或收缩程度可能不一致,从而使机械结构产生内部应力。
二、热应力对机械结构的影响:热应力对机械结构的影响主要表现在以下几个方面:1. 变形和位移:热应力可能导致机械结构发生变形和位移,使得结构失去稳定性和准确性。
2. 结构破坏:高温下的热应力可能会使材料的耐力下降,导致结构局部变形、损坏甚至破坏。
3. 功能受限:热应力的存在可能限制机械结构的工作温度范围和使用寿命,影响其正常运行。
三、热应力分析的方法:为了准确地分析机械结构中的热应力,我们可以借助计算机辅助工程(CAE)技术进行模拟。
以下是常用的热应力分析方法:1. 有限元法:有限元法是一种基于物理模型的数值分析方法,通过将结构离散为有限个小元素,计算每个元素的热应力,进而推导出整个结构的热应力分布。
2. 温度场分析:首先确定结构在热载荷作用下的温度分布,然后通过热弹性理论计算结构在各个温度下的应力和应变,最终得到热应力的分布情况。
3. 材料特性参考:对于已知材料特性的结构,可以通过查询相关的材料手册或实验数据,获得材料的热膨胀系数等参数,进而计算热应力。
四、热应力优化设计的思路:在进行热应力优化设计时,我们可以采取以下几个思路:1. 材料选择:选择具有较小热膨胀系数的材料,以减小由温度变化引起的热应力。
例如,在高温环境下,优先选择具有低热膨胀系数的陶瓷材料。
机械设计的有限元分析及结构优化

机械设计的有限元分析及结构优化摘要:有限元分析是机械设计中重要的工具,能够模拟材料和结构,通过将复杂的实际结构,离散成有限数量的元素,并利用数值计算方法,评估结构的各方面性能。
但是,进行有限元分析,并不能保证最优的设计,因此需要进行结构优化。
通过调整设计参数,寻找最佳的几何形状或材料分布,以满足给定的性能指标和约束条件。
基于此,探讨有限元分析和结构优化的相关内容,提出了以下观点,仅供参考。
关键词:机械设计;有限元分析;结构优化引言:有限元分析是一种重要的数值仿真方法,通过将复杂结构,离散为有限数量的小单元,可以对其进行力学行为和性能的模拟与评估。
结构优化则旨在通过调整材料、形状和布局等参数,以最大限度地提高结构的性能和效率。
有限元分析技术,在机械设计中的应用,涵盖材料力学、热力学、流体力学等方面的问题,因此需要进行深入的研究,以促进机械设计的发展和创新。
一、项目概况某公司是一家制造工程设备的企业,正在开发一种新型的机械设计。
为了确保该机械设计在使用过程中的安全性、可靠性和效率,最后决定利用有限元分析和结构优化,来进行设计验证和改进。
通过有限元分析软件对新型的机械设计,进行模拟和分析,以评估其在不同情况下的变化数据。
这可以帮助确定机械设计构中的薄弱点和缺陷,并指导后续的优化工作。
二、机械结构静力学分析(一)有限元方法运用有限元方法通过将结构离散化为许多小的单元,对每个单元进行分析,并将其连接起来形成整体结构,来研究机械结构的力学行为。
有限元方法的关键步骤包括以下几个方面:第一,将机械结构离散化为许多小的单元,以便更好地进行分析。
这些单元可以是三角形、四边形或其他形状的网格单元。
第二,在进行离散化后,需要选择适当的位移插值函数,来描述每个单元内部的位移变化。
常见的插值函数有线性插值函数和二次插值函数等。
第三,利用所选的位移插值函数,可以通过解决每个单元内部的应力方程,来计算单元的力学特性,如应力、应变和变形等。
基于ANSYS的汽车传动轴有限元分析与优化设计

摘要ANSYS 有限元软件包是一个多用途的有限元法计算机设计程序,可以用来求解结构、流体、电力、电磁场及碰撞等问题。
因此它可应用于以下工业领域:航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。
传动轴是最常件的零件,该零件结构较为简单,操作方便,加工精度高,价格低廉,因此得到了广泛的使用。
目前很多传动轴都做了适当的改进,使其适用性得到了更大的提高。
.本设计是基于ANSYS 软件来汽车传动轴行分析。
与传统的计算相比,借助于计算机有限元分析方法能更加快捷和精确的得到结果。
设置正确的模型、划分合适的网格,并合理设置求解过程,能够准确的获得分析模型各个部位的应力、变形等结果。
对零件的设计和优化有很大的参考作用。
正是因为上述优点,我在本设计中运用UG 来建立三维模型。
再将此模型导入ANSYS 软件来对其进行分析。
关键词:传动轴,三维建模,ANSYS,动静态分析A b st r ac tANSYS (f i n i t e e l e m e n t) package i s a m u l t i-p ur po s e f i n i t e e l e m e n t method for computer des i gn program that can be used to s o l ve the structure, fluid, e l ec tr i c i ty,e l ec tr o m ag n et i cf i e l ds and co lli s i on problems. So it can be applied to the followingi ndus tr i es: aerospace, au tom o t i v e,bi o m ed i ca l,b r i dge s,c on s tr uc t i on,e l ec tr o ni cs,h ea vy machinery, mi cro-el e ct r o m echa ni ca l systems, sports equipment and so on.Tr an s mi ss i on s h a f t i s the most common a r egu l a r part, the part structure i s s i m p l e, convenient o pera t i on, high pr ec i s i on, low pr i c es, it has been w i d e l y used. At pr ese n t, many have made the appro pr i at e Tr an s mi ss i on s h a f t i mpr o v e m e n t s,it has been gr ea t l y enhanced app li c a bi li ty.The des i gn i s based on ANSYS s o f t ware to Tr an s m i ss i on s ha f t by the line of s p i nd l e. Compared with the tr adi t i on a l c a l cu l at i on,computer-based f i n i t e e l e m e n t an a l y s i s method can be f a s t er and more accurate r es u l t s.Set the correct m o de l,dividing the right grid, and set a reasonable s o l ut i on process, an a ly t i ca l m o de l can ac curat e l y access t h e various parts of the stress and de f o r m at i on r es u l t s. On the part of the des i gn a ndop t i mi za t i on has great r ef ere n c e.It i s because of these advantages, the use of this des i gn in my UG to crea t et h r ee-di m e ns i on a l model Tr a ns m i ss i on s h a f t. Then this model was i n tr o duce d by t h e ANSYS s o f t wa r e to i t s line of a n a ly s i s.Key Words: Tr an smiss i on s h af t,t h r ee-d i me n si on al mo d e li ng,ANSYS,d y n am i c and s t a t i c a n al y s i s目录摘要.............................................................................................................................. - 1 -Abs tr ac t ............................................................................................................................. -2 -目录.............................................................................................................................. - 2 -第1 章绪论..................................................................................................................... - 4 -1.1 选题的目的和意义............................................................................................. - 4 -- 2 -1.2 选题的研究现状及发展趋势.............................................................................. - 4 -1.3 传动轴知识........................................................................................................ - 5 -1.4 传动轴的结构特点............................................................................................. - 5 -1.5 传动轴重要部件................................................................................................. - 6 -1.6 传动轴常用类型................................................................................................ - 7 -第2 章本课题任务和研究方法...................................................................................... - 8 -2.1 课题任务............................................................................................................ - 8 -2.2 分析方法............................................................................................................. - 8 -3.3 本课题的研究方法............................................................................................. - 9 -3.4 有限元方法介绍................................................................................................ - 9 -3.4.1 概述.................................................................................................................. - 9 -3.4.2 基本思想......................................................................................................... - 9 -3.4.3 特点................................................................................................................ -10 -3.5 ANSYS 软件简介............................................................................................. -11 -第4 章确定汽车传动轴研究对象和UG 建模............................................................. -12 -4.1 确定汽车传动轴研究对象概述........................................................................ -12 -4.2 汽车传动轴(变速箱第二轴)的3D 建模设计............................................. -14 -4.2.1 进入UG 的操作界面............................................................................ -14 -第5 章汽车传动轴的有限元分析................................................................................ -21 -5.1 有限元分析的基本步骤............................................................................ -21 -5.2 有限元分析过程与步骤........................................................................... -22 -5.2.1 转换模型格式........................................................................................ -22 -第六章总结和传动轴的优化设计分析........................................................................ -41 -结论................................................................................................................................ -41 -参考文献........................................................................................................................ -42 -致谢.............................................................................................................................. -43 -第1 章绪论1.1 选题的目的和意义随着计算机技术的日益普及和FEA 技术的蓬勃发展,人们已经广泛采用计算机有限元仿真分析来作为传动轴强度校核的方法。
基于有限元法的机械系统结构分析与优化设计研究

基于有限元法的机械系统结构分析与优化设计研究在现代工程领域中,机械系统的结构分析与优化设计是非常重要的研究方向之一。
其中,有限元法作为一种重要的数值计算方法,被广泛应用于机械系统的结构分析与优化设计中,具有较高的准确性和可靠性,为工程师们提供了一种有效的工具。
有限元法最早由美国航天局在20世纪50年代初提出,并迅速在工程界得到应用。
它通过将连续体划分为有限个单元,并在每个单元上进行计算,再通过单元之间的连接关系,得到整个体系的计算结果。
相对于传统的解析方法,有限元法的应用范围更广泛,可以处理复杂的几何形状和边界条件,可以模拟真实工作环境下的应力和变形情况。
在机械系统结构分析方面,有限元法可以用来计算结构的应力、变形、振动等多种物理场。
以一台发动机为例,通过有限元法可以计算发动机的受力情况,包括各个零部件的应力分布、刚度和变形等。
这对于发动机的设计和优化非常重要,可以帮助工程师们改进结构参数,提高发动机的工作效率和可靠性。
在机械系统结构优化设计方面,有限元法的应用也非常广泛。
通过对系统的结构进行分析,可以得到机械系统的强度、刚度、自然频率等关键参数。
然后,可以通过对这些参数进行优化,达到最佳设计。
例如,在飞机的设计中,可以使用有限元法分析飞机结构的强度和刚度,并通过对材料和结构的优化设计,降低飞机的重量,提高其载荷能力。
当然,有限元法在机械系统结构分析与优化设计中也有一些局限性。
首先,有限元法所建立的模型是基于一定的假设,对模型的准确性有一定影响。
其次,有限元法的计算量较大,需要使用计算机进行计算,对计算能力要求较高。
此外,有限元法也需要理论和实践经验的支持,以正确地应用于实际工程问题。
综上所述,基于有限元法的机械系统结构分析与优化设计是一项重要且挑战性的研究课题。
它可以帮助工程师们了解机械系统的强度、刚度、变形等性能指标,并通过优化设计,改进机械系统的结构,提高其工作效率和可靠性。
当然,有限元法的应用也需要注意其局限性,以确保分析结果的准确性和可靠性。
利用有限元分析法对阀座进行优化设计

利用有限元分析法对阀座进行优化设计运用有限元分析法对重要受力零件进行应力和变形分析,不仅使设计工作更快捷、更直观,而且也大大保证了设计的完整性、可靠性。
针对油田阀门CAD、CAE技术的现状和发展趋势,应用SolidWorks和COSMOS软件的无缝连接,对平板阀阀座进行受力分析。
根据分析结果,优化设计参数,并提出基于理论分析的改进方案,为阀门的结构优化设计与性能改进提供数据支持。
标签:阀座;阀板;建模;有限元分析0 引言菏泽龙泵车辆有限公司是专门生产石油机械的厂家,生产制造平板阀多年,如图1。
生产的平板阀,结构形式非常简单,是油田上最常见的。
密封原理也是大家所熟悉的,就是靠镶装在阀体里的一对波形弹簧分别在阀板的两侧推动阀座,使其密封端面始终贴合在阀板的密封侧面上,从而实现密封,如图2。
而且阀板还可以在两个阀座之间自由挪动,从而实现开启和关闭的功能如图3。
在对平板阀进行设计时,按照以往的类比方法,只要根据老产品对主要零件进行比例放大就可以了。
这是一种非常快捷的设计方法。
在对PFF78-70进行初步试制时就是简单地运用了这种方法。
本想缩短制造周期,但试制结果却证明这是一个不可靠的策略。
由于阀座尾部受力截面太小,局部应力大,产生了危险截面如图4a,试制平板阀阀座承受不了来自阀板的压力,致使阀座尾部由于局部应力过大而变形扩张成喇叭状,造成阀座与阀体配合孔过盈卡死,使波形回位弹簧失效,进而造成阀板与阀座之间的密封面无法贴合而产生缝隙,最终使得密封失效,型式试验失败。
找到了密封失效的原因,更加认识到对受力零件进行全面受力分析的重要性。
但只凭传统的计算方法对形状不规则零件进行分析计算很难做到面面俱到。
如对阀体进行应力校核计算也只是把阀体结构由一个复杂的四通结构简化为一个直通的厚壁筒体,对结构本身的复杂特点未能充分考虑,造成模型与实际受力偏差较大,给设计计算带来较大的误差。
幸好掌握了以SolidWorks和COSMOS 为平台的有限元分析法,这就使设计和验证工作变得快捷、全面,而且可靠。
工程结构优化设计与分析

工程结构优化设计与分析一、简介工程结构优化设计与分析是通过对结构进行综合评价和分析,优化设计和修改,提高结构的技术性能、经济性能和可靠性能,从而使结构更加安全、经济、美观和环保的工程技术方法。
它是现代工程设计的一项重要内容,对于建造保证高质量、高效率的工程具有重要意义。
二、优化设计的方法和步骤1.结构形式优化:通过对结构形式的创新,可以在不增加材料消耗的情况下提高结构强度和稳定性。
2.结构模拟:通过计算机模拟等数学方法,预测结构在不同载荷下的受力情况,以此为依据进行优化设计。
3.结构参数调整:通过对结构的材料、截面形状和尺寸等参数进行调整,使其在承受相同荷载的情况下更加合理和经济。
4.多重协同:通过结构、材料、施工工艺、设备等多方面的协同作用,提高结构质量,从而达到优化设计的目的。
三、分析方法1.有限元分析法:在结构力学中,有限元是一种处理大而复杂的结构问题的数值分析方法。
它利用计算机模拟大量离散物理元件,将其连接在一起形成整个结构,再通过计算机求解方法得到结构的应力应变分布和变形等相关参数的分析方法。
2.最优化设计方法:通过寻找结构的最优化组合方式,从而实现对结构性能和经济性的全面考虑。
这种方法一般是在给定的质量标准和经济预算下,确定结构的最优解。
3.材料试验:通过材料试验对材料进行分析,了解材料的性能和机械性质,利用这些数据作为设计的参考依据。
四、优化设计的重点1.结构强度和刚度的分析和提高。
2.结构的稳定性和可靠性的分析和优化。
3.结构的经济性和美观性等因素的考虑。
4.结构的环保性和施工的可行性的分析和优化。
五、优化设计的效果1.显著提高结构质量,使其更加安全可靠。
2.降低工程投资成本,提高经济效益。
3.优化结构形式和材料选用,减少环境污染。
4.提高施工工艺和效率,缩短建造周期。
六、结语在现代工程建设中,结构优化设计与分析已成为一项不可或缺的技术手段。
通过与其他领域的协调和共同创新,将有助于实现工程建设的高品质、高效率、低成本和可持续发展。
有限元法的工程领域应用

有限元法的工程领域应用
有限元法(Finite Element Method,简称FEM)是一种工程领域常用的数值计算方法,广泛应用于结构力学、固体力学、流体力学等领域。
以下是一些有限元法在工程领域常见的应用:
1. 结构分析:有限元法可用于分析各种结构的受力性能,如建筑物、桥梁、飞机、汽车等。
通过将结构离散成有限数量的单元,可以计算出每个单元的应力、应变以及整个结构的位移、变形等信息。
2. 热传导分析:有限元法可用于模拟材料或结构的热传导过程。
通过对材料的热传导系数、边界条件等进行建模,可以预测温度分布、热流量等相关参数。
3. 流体力学分析:有限元法在流体力学领域的应用非常广泛,例如空气动力学、水动力学等。
通过建立流体的速度场、压力场等参数的数学模型,可以分析流体在不同条件下的运动特性。
4. 电磁场分析:有限元法可以应用于计算电磁场的分布和特性,如电磁感应、电磁波传播等。
通过建立电磁场的数学模型,可以预测电场、磁场强度以及电磁力等。
5. 振动分析:有限元法可用于模拟结构的振动特性,如自由振动、强迫振动等。
通过建立结构的质量、刚度和阻尼等参数的数学模型,可以计算出结构在不同频率下的振动响应。
6. 优化设计:有限元法可以与优化算法结合,应用于工程设计中的结构优化。
通过对结构的材料、几何形状等进行参数化建模,并设置目标函数和约束条件,可以通过有限元分析来寻找最佳设计方案。
以上只是有限元法在工程领域的一些应用,实际上有限元法在各个领域都有广泛的应用,为工程师提供了一种精确、高效的数值计算方法,用于解决各种实际工程问题。
现代设计方法

绿色设计
在产品整个生命周期内,着重考虑产品环境属性(可 拆卸性,可回收性、可维护性、可重复利用性等)并将其 作为设计目标,在满足环境目标要求的同时,保证产品应 有的功能、使用寿命、质量等要求。
并行设计
并行设计是一种对产品及其相关过程(包括设计制造过 程和相关的支持过程)进行并行和集成设计的系统化工作模 式。 Nhomakorabea 虚拟设计
虚拟设计技术是由多学科先进知识形成的综合系统技 术,其本质是以计算机支持的仿真技术为前提,在产品设 计阶段,实时地并行地模拟出产品开发全过程及其对产品 设计的影响,预测产品性能、产品制造成本、产品的可制 造性、产品的可维护性和可拆卸性等,从而提高产品设计 的一次成功率。
相似性设计
人们在长期探索自然规律的过程中,逐渐形成了研究 自然界和工程中各种相似现象的“相似方法”、“模化设 计方法”和相应的相似理论、模拟理论。相似方法就是把 个别现象的研究结果推广到所有相似现象上去的方法。
模块化设计
模块化设计(Block-based design)就是将产品的某些 要素组合在一起,构成一个具有特定功能的子系统,将这 个子系统作为通用性的模块与其他产品要素进行多种组合, 构成新的系统,产生多种不同功能或相同功能、不同性能 的系列产品。
三次设计
三次设计即三阶段设计,所谓三阶段设计,是建立在 试验设计技术基础之上的一种在新产品开发设计过程中进 行三阶段设计的设计方法。
优化设计
优化设计(Optimal Design)是把最优化数学原理应 用于工程设计问题,在所有可行方案中寻求最佳设计方案 的一种现代设计方法。
可靠性设计
可靠性设计(Reliability Design)是以概率论和数理统 计为理论基础,是以失效分析、失效预测及各种可靠性试 验为依据,以保证产品的可靠性为目标的现代设计方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
形状优化设计是指结构的拓扑关系不发生变化,结构 的边界形状发生改变; 形状优化设计需要实现有限元网格的重构; 形状优化设计的底层优化算法依然采用参数优化设计 的方法,不同的是形状的改变可能会改变设计变量的 个数; 设计变量改变后寻优思想类似于序列优化算法。
齿轮齿根过渡曲线的优化设计
4. 结构优化设计的分类
三、拓扑优化优化设计
拓扑优化设计是指改变了结构的连接关系; 拓扑优化设计常用于杆系结构的设计; 拓扑优化设计是离散型优化设计,反映拓扑 连接的设计变量取值为0或1。
雷达天线的优化设计
4. 结构优化设计的分类
四、布局优化设计
布局优化设计是拓扑优化设计+形状优化设计。
4. 结构优化设计的分类
三、模态综合法中的固定界面子结构连接法
将整体结构划分为若干个子结构
子结构划分中遵循以下原则 1 尽量分割联系较少处; 2 便于对子结构进行分析和测试; 3 尽量使每个子结构频率接近; 4 避免出现悬浮子结构; 5 充分利用结构的对称性。
5. 结构优化设计的有限元分析方法
三、模态综合法中的固定界面子结构连接法
热压机机架的优化设计
雷达天线的优化设计
2. 结构优化设计与机械优化设计
四、结构优化设计的特点
精密、复杂及重、大的机器零件用一般力学的解析方 法计算其静、动态特性已难于满足工程需求; 结构优化通常需要对多种可行方案进行分析,需要运 用计算机进行有限元——优化设计的自动或半自动的 迭代计算,需要应用单元重构技术予以支持; 结构的形状、拓扑及布局优化,需要进行设计变量对 单元特性的求导计算或物质导数计算,即结构的灵明 度分析灵明度分析给出了优化中状态变量的变化趋势。
设计变量用函数描述
2. 结构优化设计与机械优化设计
三、机械和结构优化设计典型应用
汽车悬挂系统的优化设计
希望汽车能在不同的速度和道路条件下,司机座位的最大加 速度最小 设计变量是系统的弹簧常数和足尼系数 希望在给定的空间(安装)限制下,热压机能够承受最大的 外载荷 设计变量为机架的几何形状 希望在给定的外载荷情况下,天线具有最小重量 设计变量为梁的拓扑连接
计算各个子结构的模态,包括
1 刚体模态 2 约束模态 3 固定约束弹性模态
5. 结构优化设计的有限元分析方法
三、模态综合法中的固定界面子结构连接法
第一次坐标变换
1 将子结构位移用模态广义坐标表示; 2 用模态坐标表示子结构的动能和势能; 3 计算在模态坐标下的广义质量矩阵和广义刚度矩 阵。
一、结构参数优化设计
参数优化设计是指结构的形状拓扑关系不发 生变化,结构的长、宽或厚度等参数发生改 变; 参数优化设计一般不需要有限元网格的重构; 参数优化设计所采用的几何模型应该是B-Rep 模式(边界表示),所以参数优化设计的模型 更新不能采用布尔运算获得。
4. 结构优化设计的分类
二、结构形状优化设计
5. 结构优化设计的有限元分析方法
三、模态综合法中的固定界面子结构连接法
3. 结构优化设计的基本概念
三、设计速度场
设计速度场计算是计算灵敏度的重要内容; 设计速度场和必须具有和位移场同样的规则性; 设计速度场必须线性依赖于设计参数的变化; 必须保持有限元网格的拓扑关系; 与定义在CAD模型上的设计参数自动相连; 必须准许数学规划的再利用。
4. 结构优化设计的分类
现代机械设计方法 ——优 机械制造及其自动化系
1 有限元分析的目的
分析
确定影响系统性能的主要因素 对于给定的设计评价系统能否满足性能要求 寻求改善设计和降低成本的途径
评价
综合
2. 结构优化设计与机械优化设计
一、机械优化设计
四、结构布局优化设计
悬臂梁的优化设计
12 12 7.7608 3
8.9185
11.3131
14
3 a) x=0mm b)
3 x=50mm
3 c) x=100mm d) x=150mm
5. 结构优化设计的有限元分析方法
一、设计变量的描述与转换
与机械优化设计不同:当设计变量为形状或离散变量 时(取值为1或0)无法直接对设计变量求出函数的梯 度; 没有成熟的直接结构优化算法; 当变量为形状时,一般用参数曲线来描述形状,将函 数(形状)的优化转换为参数优化; 离散变量优化采用遗传算法或准则算法。
5. 结构优化设计的有限元分析方法
三、采用模态综合法降低有限元分析的计算 量
结构优化设计中往往不需要对结构的全部进 行优化,而仅对结构的某一部分进行优化; 对于结构动态性能,可以采用模态综合法减 小重分析的计算量; 模态综合法也可以理解为“超级单元法”。
5. 结构优化设计的有限元分析方法
3. 结构优化设计的基本概念
一、状态变量
状态变量不是设计变量; 状态变量的变化是设计变量引起的; 状态变量多数情况下是结构的应力和位移; 通常用函数的筛选性质由状态变量给出设计 的约束。
3. 结构优化设计的基本概念
二、灵敏度分析
灵敏度是位移型泛函和应力型范函与区域边 界之间的数学关系,类似于机械优化设计中的 梯度; 灵敏度是变分,梯度是微分; 灵敏度分析方法一般采用物质导数方法推导。
5. 结构优化设计的有限元分析方法
二、采用摄动理论降低有限元分析的计算量
结构优化设计中计算量最大的部分是敏度分 析 计算敏度是与一般数学规划中计算梯度的数 值方法类似,均为给设计变量一个小的步长。 为降低计算量,结构优化中通常不进行新的 有限元分析,而是通过解析推导,得到结构 新的状态变量(应力和位移),这种方法称 为摄动,理论依据为矩阵摄动理论。
机械优化设计的目标
寻求合理的参数得到最佳设计
机械优化设计的设计变量是离散的 机械优化设计是有限维问题
2. 结构优化设计与机械优化设计
二、结构优化设计
结构优化设计的目标
寻求合理的结构形状或拓扑关系得到最佳设计
结构优化设计的设计变量是连续或离散的 机械优化设计多数是无限维问题