弧度制教学设计

合集下载

弧度制教学设计【优秀4篇】

弧度制教学设计【优秀4篇】

弧度制教学设计【优秀4篇】高一数学必修四教案篇一一、教学目标掌握用向量方法建立两角差的余弦公式。

通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础。

二、教学重、难点1.教学重点:通过探索得到两角差的余弦公式;2.教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等。

三、学法与教学用具1.学法:启发式教学2.教学用具:多媒体四、教学设想:(一)导入:我们在初中时就知道?,,由此我们能否得到大家可以猜想,是不是等于呢?根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式(二)探讨过程:在第一章三角函数的学习当中我们知道,在设角的终边与单位圆的交点为,等于角与单位圆交点的横坐标,也可以用角的余弦线来表示,大家思考:怎样构造角和角?(注意:要与它们的正弦线、余弦线联系起来。

)展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索与xx之间的关系,由此得到,认识两角差余弦公式的结构。

思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的'知识来证明?提示:1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?2、怎样利用向量的数量积的概念的计算公式得到探索结果?展示多媒体课件比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处。

思考:再利用两角差的余弦公式得出(三)例题讲解例1、利用和、差角余弦公式求、的值。

解:分析:把、构造成两个特殊角的和、差。

点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:,要学会灵活运用。

例2、已知,是第三象限角,求的值。

解:因为,由此得又因为是第三象限角,所以所以点评:注意角、的象限,也就是符号问题。

(四)小结:本节我们学习了两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式。

弧度制教案及教学设计

弧度制教案及教学设计

弧度制教案及教学设计一、教学目标1.知识目标(1)了解弧度的定义及计算方法。

(2)掌握角度与弧度的转换方法。

(3)熟练运用弧度制进行角度计算。

2.技能目标(1)能正确地将角度转换为弧度。

(2)能够运用弧度制进行角度计算。

(3)能够解决与弧度相关的问题。

3.情感目标(1)培养学生的数学思维,提高学生的数学解决问题的能力。

(2)让学生体验到数学知识的应用,增强对数学的兴趣。

二、教学重点与难点1.教学重点(1)弧度的定义及计算方法。

(2)角度与弧度的转换方法。

(3)运用弧度制进行角度计算。

2.教学难点(1)角度与弧度的转换方法。

(2)实际问题中的弧度计算。

三、教学过程设计1.情境引入(1)引导学生观察钟表上的时针、分针、秒针的运动。

(2)引导学生发现钟表上的角度变化与弧度的关系。

(3)导入问题:若钟表的时针向前走10分钟,分针向前走150度,秒针向前走300度,问它们所走的弧度分别是多少?2.知识讲解(1)通过实际钟表运动的情境,引入角度的概念。

(2)讲解角度的转换:1圆周角=2π弧度,1度=π/180弧度。

(3)讲解弧度的计算公式:弧长=弧度×半径。

3.分组探究(1)将学生分为小组,每个小组分配一部分问题:如若钟表的秒针向前走300度,它所走的弧度是多少?(2)让学生利用所学知识进行探究,并展示结果。

4.知识总结(1)让学生就弧度的定义、计算方法和角度、弧度的转化方法进行总结归纳。

(2)板书总结的要点,并提示学生记下并复习。

5.拓展应用(1)将学生分为小组,给定不同的实际问题,要求学生将角度转换为弧度,并计算相关的长度。

(2)小组展示结果,并进行讨论和解答。

6.总结反思(1)师生共同总结本节课所学的知识内容。

(2)评价学生的掌握程度,并对下节课的学习进行引导和安排。

四、教学反思在教学过程中,通过情境引入,让学生主动参与角度与弧度的探究,培养了学生的数学思维,增强了他们的学习兴趣。

在小组探究环节,让学生通过讨论、合作解决问题,激发了他们的学习动力,并增强了沟通能力和团队合作能力。

弧度制 课程设计

弧度制 课程设计

弧度制 课程设计一、课程目标知识目标:1. 理解弧度制的概念,掌握角度与弧度的互化方法;2. 能够运用弧度制进行三角函数的计算;3. 了解弧度制在几何及物理中的应用。

技能目标:1. 能够准确地将在角度制下的角转换为弧度制;2. 能够运用弧度制进行简单的三角函数运算;3. 能够运用所学知识解决实际问题,提高解决问题的能力。

情感态度价值观目标:1. 培养学生对数学学科的兴趣,增强学习数学的自信心;2. 培养学生的团队合作意识,学会与他人交流、分享学习经验;3. 激发学生探索精神,使学生认识到弧度制在科学研究和实际生活中的重要性。

分析课程性质、学生特点和教学要求,本课程旨在让学生掌握弧度制的基本概念和计算方法,提高学生的数学运用能力。

课程目标具体、可衡量,便于学生和教师在教学过程中了解预期成果,也为后续的教学设计和评估提供了明确的方向。

通过本课程的学习,使学生能够更好地理解和运用弧度制,为后续学习打下坚实基础。

二、教学内容1. 弧度制概念引入:通过比较角度制与弧度制的区别,引导学生理解弧度制的定义及意义。

- 教材章节:第一章第三节“角的度量”2. 弧度与角度的互化:讲解弧度与角度之间的转换方法,举例说明。

- 教材章节:第一章第三节“角的度量”3. 弧度制下的三角函数计算:教授在弧度制下如何进行三角函数的计算,并分析其与角度制下的区别。

- 教材章节:第二章第六节“三角函数的定义与计算”4. 弧度制在实际问题中的应用:举例说明弧度制在几何、物理等领域的应用。

- 教材章节:第三章第九节“弧度制在实际问题中的应用”5. 课堂练习与讨论:设置相关习题,巩固所学知识,培养学生的实际应用能力。

教学内容按照以上五个部分进行安排,确保科学性和系统性。

在教学过程中,教师需关注学生对弧度制概念的理解,对弧度与角度互化方法的掌握,以及对弧度制下三角函数计算的应用。

通过课堂练习与讨论,使学生将所学知识内化为自身能力,提高解决问题的实际运用水平。

_弧度制教学设计与反思

_弧度制教学设计与反思

_弧度制教学设计与反思弧度制教学设计与反思引言概述:弧度制是一种用于度量圆周角大小的单位制,与传统的度制相比,弧度制更加直观和准确。

在教学中,如何设计合理的弧度制教学方案,让学生更好地掌握弧度制的概念和运用,是每位教师都需要思考和改进的问题。

本文将从教学设计与反思的角度,探讨弧度制教学的重要性和方法。

一、教学目标的设定1.1 确定学生的学习目标:在教学设计中,首先要明确学生应该达到的学习目标,包括掌握弧度制的概念、能够进行弧度制与度制之间的转换、能够应用弧度制解决实际问题等。

1.2 分阶段设定目标:根据学生的学习能力和掌握程度,将学习目标分为不同的阶段,逐步深入,确保每个学生都能够达到目标。

1.3 设定评估标准:设定清晰的评估标准,包括考试、作业、课堂表现等方面,以便及时发现学生的学习情况并进行调整。

二、教学内容的设计2.1 弧度制的基本概念:在教学中要重点讲解弧度的定义、弧度与圆周角的关系、弧度与度的换算等基本概念,让学生建立起对弧度制的理解。

2.2 弧度制的运用:通过实例和练习,引导学生掌握弧度制在几何、物理等领域的具体应用,培养学生的解决问题的能力。

2.3 弧度制与度制的比较:通过比较弧度制和度制的优缺点,让学生理解弧度制的优越性,提高学生对弧度制的认识和接受度。

三、教学方法的选择3.1 多媒体辅助教学:利用多媒体技术,展示图像、动画等形式,生动直观地呈现弧度制的概念和运用,提高学生的学习兴趣和理解能力。

3.2 互动式教学:采用互动式教学方法,引导学生思考和讨论,促进学生之间的交流和合作,激发学生学习的积极性。

3.3 实践性教学:组织实验、实践活动,让学生亲自动手操作、观察、实践,加深对弧度制的理解和应用能力。

四、教学过程的反思4.1 定期评估学生学习情况:定期进行课堂测验、作业评定等,及时了解学生的学习情况,发现问题并进行调整。

4.2 收集学生反馈意见:定期收集学生对教学内容、教学方法的反馈意见,根据学生的建议进行改进,提高教学效果。

弧度制教案人教版

弧度制教案人教版

弧度制教案人教版一、教学目标1、知识与技能目标理解弧度制的概念,能熟练地进行角度与弧度的换算。

掌握弧度制下的弧长公式和扇形面积公式,并能运用这些公式解决相关问题。

2、过程与方法目标通过类比角度制,引导学生自主探究弧度制的定义和相关公式,培养学生的观察、分析和归纳能力。

通过弧度制与角度制的换算练习,提高学生的运算能力和逻辑推理能力。

3、情感态度与价值观目标让学生感受数学知识的内在联系,体会数学的简洁美和统一美。

激发学生学习数学的兴趣,培养学生勇于探索、创新的精神。

二、教学重难点1、教学重点弧度制的概念及与角度制的换算。

弧度制下弧长公式和扇形面积公式的应用。

2、教学难点理解弧度制的定义,体会弧度制引入的必要性。

三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课回顾角度制:我们在初中已经学习了角度制,知道一个周角等于360°,平角等于 180°,直角等于 90°。

提出问题:在实际应用中,角度制是否存在一些不便之处?比如在计算圆的弧长和扇形面积时。

2、讲授新课弧度制的定义:长度等于半径长的圆弧所对的圆心角叫做 1 弧度的角,用符号 rad 表示,读作弧度。

引导学生思考:为什么要用这样的定义来引入弧度制?以半径为 r 的圆为例,若圆心角α所对的弧长为 l,则α的弧度数为α = l / r 。

特别地,当弧长等于半径时,圆心角的弧度数为 1 rad 。

角度与弧度的换算:因为一个周角所对的弧长为2πr,而圆的半径为 r,所以一个周角的弧度数为2π rad 。

又因为一个周角等于 360°,所以 360°=2π rad ,180°=π ra d 。

由此可得,1°=π / 180 rad ,1 rad =(180 /π)° 。

进行角度与弧度的换算练习,如 60°= 60 ×(π / 180) rad =π /3 rad ;π / 6 rad =(π / 6) ×(180 /π)° = 30°。

数学教案高中弧度制

数学教案高中弧度制

数学教案高中弧度制
教学目标:
1. 了解弧度制的定义和基本概念;
2. 掌握弧度和角度的换算方法;
3. 熟练运用弧度制解决相关数学问题。

教学重点:
1. 弧度制的定义和基本概念;
2. 弧度和角度的换算;
3. 弧度制的运用。

教学难点:
1. 弧度和角度的换算方法;
2. 弧度制与角度制的转换;
3. 弧度制在解决问题中的应用。

教学准备:
1. 教案、教材、课件;
2. 黑板、彩色粉笔、橡皮;
3. 学生练习册。

教学过程:
一、导入(5分钟)
教师介绍弧度制的概念,引导学生思考角度和弧度之间的关系。

二、讲解(15分钟)
1. 弧度的定义和性质;
2. 弧度和角度的换算方法;
3. 弧度制在三角函数中的应用。

三、示范(10分钟)
教师通过例题演示如何将角度转换为弧度,以及如何运用弧度制解决三角函数问题。

四、练习(15分钟)
学生进行练习,巩固弧度制的相关知识。

五、梳理(5分钟)
教师梳理本节课的重点和难点,给予学生反馈。

六、作业(5分钟)
布置相关作业,要求学生独立完成,以巩固弧度制的知识。

教学延伸:
教师可以通过讲解弧长公式、扇形面积计算等内容,进一步拓展学生对弧度制的理解和运用。

教学反思:
本节课教学难点在于学生对弧度和角度的换算容易混淆,需要通过实例演示和练习巩固。

教师在教学过程中应引导学生思考,激发他们对数学知识的兴趣和探索欲望。

_弧度制教学设计与反思

_弧度制教学设计与反思

_弧度制教学设计与反思弧度制教学设计与反思一、引言弧度制是一种用于度量角度的单位制,它在数学、物理和工程等领域具有重要的应用价值。

本文将针对弧度制的教学设计和反思进行详细讨论,以提高学生对弧度制的理解和运用能力。

二、教学设计1. 教学目标- 理解弧度制的概念和定义;- 掌握弧度制与度数制之间的转换方法;- 能够运用弧度制解决实际问题。

2. 教学内容- 弧度制的概念和定义;- 弧度制与度数制的转换方法;- 弧度制在三角函数中的应用。

3. 教学步骤步骤一:导入- 引入弧度制的概念,与学生讨论角度的度量单位,并引发学生对弧度制的思考。

步骤二:讲解- 介绍弧度制的定义和计算方法,通过实例演示如何将角度转换为弧度,并与学生一起完成练习。

步骤三:练习- 提供一些练习题,让学生独立或小组合作解决,以巩固对弧度制的理解和运用能力。

步骤四:拓展- 引导学生探究弧度制在三角函数中的应用,如正弦、余弦和正切等,并与学生一起解决相关问题。

步骤五:总结- 对本节课的学习内容进行总结,并提出可能存在的问题和困惑,鼓励学生提出自己的思考和建议。

4. 教学资源- 教科书、白板、投影仪、计算器等。

5. 教学评估- 课堂练习的成绩;- 学生的参与度和表现;- 学生对弧度制的理解程度。

三、教学反思本节课的教学设计主要围绕弧度制展开,通过引入概念、讲解定义、进行练习和拓展应用等环节,提高学生对弧度制的理解和运用能力。

教学设计的步骤合理,能够引发学生的兴趣和思考,但仍需注意以下几点:1. 教学方法选择- 在讲解弧度制的定义和计算方法时,可以结合具体的图形和实例,帮助学生更好地理解和运用弧度制。

2. 课堂互动与引导- 在导入环节和拓展应用环节,可以通过提问、小组讨论等方式增加学生的参与度,培养他们的思维能力和合作精神。

3. 评估方式多样化- 除了课堂练习的成绩外,可以设计一些实际问题,让学生运用弧度制解决,以评估他们的应用能力和创新思维。

《弧度制》示范课教学设计【高中数学】

《弧度制》示范课教学设计【高中数学】

《弧度制》教学设计1.根据函数概念中强调函数必须是实数集到实数集的对应,体会弧度制引入的背景及必要性,明白同一个量可以用不同的单位制来度量.2.在半径不同但圆心角相同的的扇形中,利用初中所学的扇形的弧长公式能够发现弧长与半径之比不变,从而体会用该比值作为弧度制定义的合理性,加深弧度制概念的理解.在此过程中,学生可以感悟数学抽象的层次性及逻辑推理的严谨性.3.体会弧度制是度量角的一种方式,并能利用180°=π rad进行弧度制与角度制的互化,利用单位圆中弧长等于半径的圆心角,直观感受用长度度量1弧度的大小,能证明并灵活运用一些关于扇形的公式,同时能理解角与实数之间的一一对应关系.教学重点:在了解弧度制引入的背景下,理解弧度制的概念,能进行角度制与弧度制的互化.教学难点:弧度制概念的理解.Geogebra、计算器、PPT课件.用Geogebra作动画来反映扇形的弧长、半径、圆心角之间的关系;在角度制与弧度制换算时,计算器可以解决近似值问题.(一)创设情境问题1:我们知道:篮球明星姚明的身高是2.26米,但在NBA官方数据中却是7.5英尺,为什么?你还知道哪些量有不同的度量制?举例说明.预设的师生活动:学生针对老师提出的问题进行思考与回答.预设答案:因为用了不同的单位.再如,度量重量可以用千克、斤、磅等不同的单位制,度量体积可以用立方米、升等不同的单位制.设计意图:通过生活中的发现,度量长度可以用米、尺、码等不同的单位制,让学生体会度量一样东西可以有多种度量制.(二)新知探究1.弧度制问题2:度量角除了角度制,还有什么单位制呢? 追问1:如图1,射线OA 绕端点O 旋转到OB 形成角α.在旋转过程中,射线OA 上的点P (不同于点O )的轨迹是一条圆弧,这条圆弧对应于圆心角α.设α=n °,OP =r ,点P 所形成的圆弧1PP 的长为l .回忆初中所学知识,弧长l 如何用圆心角α来表示?预设的师生活动:学生经过观察、讨论得出结论. 预设答案:180πrn l =. 追问2:如图2,在射线OA 上任取一点Q (不同于点O 和P ),OQ =r 1.在旋转过程中,点Q 所形成的的圆弧1QQ 的长为l 1,那么l 1与r 1的比值是多少?你能得出什么结论?预设的师生活动:学生经过观察、讨论得出结论. 预设答案:180π11nr l =;圆心角α所对的弧长与半径的比值,与半径的大小无关,只与α的大小有关,也就是说,这个比值随α的确定而唯一确定.因此可以用弧长和半径的比值表示圆心角.设计意图:通过复习初中所学知识可知,使学生得到弧长与半径的比只与角的大小有关,推广到一般也成立,因此我们可以利用这个比值来度量角,引出新概念,使学生明白新概念的由来和定义的合理性.追问3:结合上面的探索过程,你能试着说一说什么是1弧度角吗?预设的师生活动:学生用自己的语言表述清楚即可,教师在学生表述的基础上进行完善. 预设答案:我们规定:长度等于半径的圆弧所对的圆心角叫做1弧度的角,弧度单位用符号rad 表示,读作弧度.设计意图:引导学生得出定义,体会定义产生的背景、原由及过程.追问4:(1)我们把半径为1的圆叫做单位圆.既然角的大小与半径无关,那么在单位圆中如何确定1 rad 的角呢?(2)在半径为r 的圆中,弧长为l 的弧所对的圆心角α的弧度数是多少? (3)角有正、负、零角之分,它的弧度数呢?图1图2预设的师生活动:学生思考后回答.预设答案:得出单位圆中长度为1的弧所对的圆心角就是1 rad (如图3);在半径为r 的圆中rl=α;类比角度制,α的正负由角α的终边的旋转方向决定.设计意图:深化理解弧度的定义.在单位圆中,直观感受1 rad 的角的大小,体会1 rad 角的几何表示;进一步能在一般圆中求得角的弧度数,使学生通过图形获取对新概念的直观印象,培养学生数形结合的能力.追问5:请你说说弧度制与角度制有哪些不同? 预设的师生活动:学生展开讨论之后总结提炼.预设答案:第一,弧度制以线段长度来度量角,角度制是“以角量角”; 第二,弧度制是十进制,角度制是六十进制;第三,1弧度是等于半径长的弧所对的圆心角的大小,而1°的角是周角的3601; 第四,无论是以“弧度”还是以“度”为单位,角的大小都是一个与半径大小无关的定值,等等.设计意图:概念辨析,深化理解. 2.角度制与弧度制的换算问题3 既然角度制、弧度制都是角的度量制,那么,它们之间如何换算?你认为在换算的过程中最为关键的是什么?预设的师生活动:学生思考后回答,得出答案.预设答案:这两种角度度量制之间的关系是:360°=2π rad .其中,最为基础也是最为关键的是180°=π rad ,即1°=180π rad ,1 rad =°180π⎪⎭⎫ ⎝⎛≈57.30°. 设计意图:通过思考,让学生掌握弧度和角度换算的方法.体会同一个数学对象用不同方式表示时,它们之间的内在联系.认识这种联系性是数学研究的重要内容之一.例1 按照下列要求,把67°30′化成弧度: (1)精确值; (2)精确到0.001的近似值. 预设的师生活动:学生自行完成并回答问题.预设答案:(1)因为67°30′=°2135⎪⎭⎫ ⎝⎛,所以67°30′=2135×⎪⎭⎫ ⎝⎛180π rad =83π rad .(2)利用计算器有图31.178097245.因此,67°30′≈1.178rad.设计意图:在换算中学会根据要求的精度不同,选择不同的计算方式.例2将3.14 rad换算成角度(用度数表示,精确到0.001).预设的师生活动:使用计算器完成.预设答案:利用计算器有179.9087477.因此,3.14rad≈179.909°.设计意图:学会利用计算器完成这种繁杂的计算问题.追问:(1)67°30′能直接化成弧度吗?你是怎么做的?应该注意什么问题?(2)相互交流一下,如何使用计算机完成弧度制与角度制的换算?预设的师生活动:学生独立完成角度制与弧度制的换算的精确值,之后交流展示用计算机完成弧度制与角度制换算的近似值.设计意图:通过简单应用,熟悉弧度制、熟悉弧度制与角度制的换算.学生可能出现的问题:第一,进行角度制与弧度制的换算不够熟练;第二,角度转化弧度时需要把含分或秒的角度统一为度的单位;第三,计算机完成弧度制与角度制换算的近似值时,操作需要一个熟悉的过程.练习填写特殊角的角度数与弧度数的对应表(课本174页).预设的师生活动:快问快答,进行训练.预设答案:设计意图:这些角是今后常用的特殊角,不仅要求学生会换算,而且要让学生记住这些特殊角的度数与弧度数的对应值.另外,熟练角度和弧度的换算,进一步加深对180°=π rad 的理解和掌握.同时进一步体会角的概念推广后,无论用角度制还是弧度制,都能在角的集合与实数集R 之间建立一一对应关系.例3 利用弧度制证明下列关于扇形的公式: (1)l =αR ;(2)S =21αR 2;(3)S =21lR . 其中R 是圆的半径,α(0<α<π)为圆心角,l 是扇形的弧长,S 是扇形的面积. 预设的师生活动:学生学生利用弧度制证明关于扇形的公式,教师进行点评及板书. 预设答案:(1)由公式|α|=rl可得l =αR . 下面证明(2)(3).由于半径为R ,圆心角为n °的扇形的弧长公式和面积公式分别是l =180πRn ,S =360π2R n ,将n °转换为弧度,得α=180πn ,于是S =21αR 2.将l =αR 代入上式,即得S =21lR .设计意图:体会弧度制下的扇形弧长、面积公式的简洁美,这是引入弧度制的一个理由. (三)归纳小结问题4 通过本节课的学习,你学会用弧度制度量角了吗?追问:你觉得这样定义弧度制合理吗?在度量角的时候你觉得需要注意哪些问题?你现在觉得用弧度制度量角有什么好处?为什么会出现这种情况?你能画一个知识结构图来反映本节课的研究内容与路径吗?预设的师生活动:学生自主总结,并作出回答.预设答案:圆心角α所对的弧长与半径的比值随α的确定而唯一确定,因此,利用圆的弧长与半径的关系度量圆心角的是合理的;在度量角的时候需要注意:联系两种度量制的桥梁是360°=2 rad ;要注意防止出现角的两种度量制混用的现象,等等;用弧度制度量角的好处:弧度制下的扇形弧长、面积公式非常简单,这是引入弧度制带来的一个便利.实际上,角度制下角的度量制是六十进制,与长度、面积的度量进位制不一样,于是在公式中要有“换算因子”180π.而弧度制下角度与长度、面积一样,都是十进制,就可以去掉这个“换算因子”了.设计意图:帮助学生梳理所学知识,并让学生清楚引入弧度制的必要性,以及这样定义的合理性,逐步提升学生逻辑推理的核心素养.(四)布置作业: 教科书习题. (五)目标检测设计 1.把下列角度化成弧度:(1)22°30′; (2)-210°; (3)1 200°. 2.把下列弧度化成角度: (1)12π; (2)-3π4; (3)10π3. 3.已知半径为120 mm 的圆上,有一条弧的长是144 mm ,求该弧所对的圆心角(正角)的弧度数.预设答案: 1.(1)8π;(2)―6π7;(3)3π20.2.(1)15°;(2)-240°;(3)54°. 3.弧度数为1.2. 设计意图:巩固所学知识.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r
3时,I
n r
60
3
r
180
180
I 3
r
4时,I
n r
60
4
4
r
180
180
3
I 3
发现什么规律 结论:圆心角不变则比值不变。
因此比值的大小只与角的大小有关,我们可以利用这个比值来度量角,这就是度量角的另外一
种单位制弧度制。
知识建构
1.定义:长度等于半径长的弧所对的圆心角叫做1弧度的角。它的单位符号是rad,读
重点:
理解弧度的意义,正确进行弧度与角度的换算 难点:
弧度的概念,弧度制与角度制之间的关系
教学方法:目标式教学 课时:1课时 教学过程:
一、复习引入和预习准备
1.角分为几类
2•什么是象限角什么是轴线角
3.与角终边相同的角的集合第一象限角如何表示
4•请大家回忆什么是角度制
将圆周等分成360份,每一份所对的圆心角的大小叫做,这种描述角的方式叫做一一角度制
作弧度。这种用“弧度”做单位来度量角的制度叫做弧度制。
如下图,依次是1rad,2rad,3rad,rad
问题二:(1)若弧是一个半圆,圆心角所对的弧度数是多少若是一个圆呢
(2)正角的弧度数是什么数负角呢零角呢(从正数,负数,零方面去引导)
(3) 在弧度制下弧长的计算公式应该怎么写呢I| |r(I为弧长,r为半径)
二、创设情境,设置疑问
初中几何研究过角的度量,当时是用度来做单位度量角的。那么1°的角是如何定义的
我们把用度做单位来度量角的制度叫做角度制,有了它就可以计算弧长,公式为丨
180
角度制是度量角的一种单位制。单位制这个概念我们并不陌生,比如说测量长度的单位制,古 代常以人体的一部分作为长度的单位。 例如我国三国时期(公元三世纪初)王肃编的《孔子家语》一
n/2
2n/3
3n/4
5n/6
n
角度
210°
225°
240°
270°
300°
315°
330°
360°
弧度
7n/6
5n/4
4n/3
3n/2
5n/3
7n/4
11n
/6
2n
3•应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集 合之间建立一种对应的关系
任意角的集合~^数实数集R
四、落实目标 角度制与弧度制之间怎样换算呢
弧度制与角度制之间的互化
■/ 360=2rad二180=rad
•1=rad 0.01745rad180
_这个角的弧度数
180这个叫的角度数
五、例题讲解与知识的巩固
例1把6730'化成弧度
1
解:6730'67
2
二6730'
rad
671
3rad
180
2
8
例2把3
rad化成度
5
解:
3
rad3
180
108
5
5
注意几点:
1•今后在具体运算时,“弧度”二字和单位符号“rad”可以省略 女口:3表示3rad,
sin表示rad角的正弦;
2•一些特殊角的度数与弧度数的对应值应该记住:
角度

30°
45°
60°
90°
120°
135°
150°
180°
弧度
0
n/6
n/4
n/3
弧度制
教学目标:
知识目标
1)理解1弧度的角的意义。
2)理解弧度制的定义,建立弧度制的概念。
能力目标
1)掌握角度制与弧度制的换算公式并能熟练地进行角度制与弧度制的换算。
2)牢记特殊角的弧度数与角度数的互化。
情感目标
通过弧度制一弧度角及弧度制定义的探索过程,培养学生主动探索、勇于发现的精神,渗透 由特殊到一般的思想方法。通过弧度制与角度制之间的联系及转化,渗透广泛联系,透过本 质看问题的辨证唯物主义的思想。
(从熟悉的单位制出发,让学生意识到给出角度新定义的必要性。意识到单位制的普遍性。)
三、分组讨论,探索研究
跟上面类似,长度制的选择都是要选定一个不变量来作为基本量。如“米”,“度”,那么 我们要找到一种新的度量角度的角度制,则必须也找到相应的不变量。
问题一:角度为30。,
60。的圆心角,
当半径
r 123,4时,分别计算对应的弧长1,再计算弧
书中记载有:
“布指知寸,布手知尺,舒肘知寻。”两臂伸开长八尺,就是一寻。还有记载说:“十
尺为丈,人长八尺,故曰丈夫。”可见,古时量物,寸与指、尺与手、寻与身有一一对应的关系。 现在国际上通用的是国际单位制中的“米制”,“米制”教之“尺、寸……”应用起来要方便得
多。
在角度制下,当两个带着度、分、秒各单位的角相加、相减时,由于运算进制非十进制,总给 我们带来不少困难。那么我们能否重新选择角单位,使在该单位制下两角的加减运算与十进制下的 加减法运算一样呢今天我们就来常识研究这种新单位制。
能力拓展,课堂练习l」二零丿
长与半径的比。
30。,r
1时,I
n r
30
1
r
180
180
6
I 6
r
2时,I
n r
30
2
r
180
180
3
I6
r
3时,I
n r
30
3
r
180
180
2,
I 6
rபைடு நூலகம்
4时,I
n r
30
4
2
r
180
180
3
'I 6
60。,r
1时,I
n r
60 1
r
180
180
3
I 3
r
2时,I
n r
60
2
2
r
180
180
3
I 3
相关文档
最新文档