(完整word版)弧度制教学设计方案

合集下载

5.1.2弧度制教学设计-2024-2025学年高一上学期数学人教A版(2019)必修第一册

5.1.2弧度制教学设计-2024-2025学年高一上学期数学人教A版(2019)必修第一册
- 计算弧长、扇形面积等几何问题时,需要根据弧度制进行计算。
- 在实际问题中,如机械制造、建筑设计等领域,弧度制有着广泛的应用。
7. 弧度制的练习题
- 练习题应涵盖弧度制的定义、互换方法以及在三角函数、圆的方程等领域的应用。
- 题目难度应从基础到进阶,以满足不同学生的学习需求。
8. 弧度制的教学策略
3. 改进措施与建议
针对教学中存在的问题和不足,我提出以下改进措施和建议:首先,在今后的教学中,我要注重理论与实践相结合,设计更多的实际问题让学生解决,提高他们的应用能力。其次,我要关注学生的个体差异,针对不同学生制定不同的学习计划,确保每个学生都能跟上教学进度。最后,我要加强课堂管理,通过设置悬念、互动讨论等方式,提高学生的注意力,营造活跃的课堂氛围。
5.1.2弧度制教学设计-2024-2025学年高一上学期数学人教A版(2019)必修第一册
主备人
备课成员
课程基本信息
1.课程名称:弧度制
2.教学年级和班级:2024-2025学年高一上学期数学人教A版(2019)必修第一册
3.授课时间:1课时
4.教学时数:45分钟
二、教学目标
1. 了解弧度制的概念及其在数学中的应用。
- 拓展学习:利用老师提供的拓展资源,进行进一步的学习和思考。
- 反思总结:对自己的学习过程和成果进行反思和总结,提出改进建议。
教学方法/手段/资源:
- 自主学习法:引导学生自主完成作业和拓展学习。
- 反思总结法:引导学生对自己的学习过程和成果进行反思和总结。
作用与目的:
- 巩固学生在课堂上学到的弧度制的定义和应用。
- 通过实际例子和图形演示,帮助学生建立弧度制的直观印象。
- 设计具有启发性和探究性的问题,引导学生自主思考和探索。

(完整word版)《弧度制》教学设计

(完整word版)《弧度制》教学设计

《弧度制》教学设计知识目标1)理解1弧度的角的意义。

2)理解弧度制的定义,建立弧度制的概念。

能力目标1)掌握角度制与弧度制的换算公式并能熟练地进行角度制与弧度制的换算.2)牢记特殊角的弧度数与角度数的互化。

重点:理解弧度的意义,正确进行弧度与角度的换算难点:弧度的概念,弧度制与角度制之间的关系教学过程:一、创设情境,设置疑问师:在初中几何里我们学过角的度量,当时是用度来做单位度量角的.我们把周角的1360作为1的角.这种用度做单位来度量角的制度叫做角度制,有了它就可以计算弧长,公式为180n r l π=。

但是在角度制下,当两个带着度、分、秒各单位的角相加、相减时,由于运算进制非十进制,总给我们带来不少困难。

那么我们能否重新选择角单位,使其在某种单位制下两角的加减运算与十进制下的加减法运算一样方便呢?今天我们就来认识这种度量角的新单位制-—弧度制。

我们把长度等于半径长的弧所对的圆心角叫做1弧度的角.它的单位符号是rad ,读作弧度.这种用“弧度”做单位来度量角的制度叫做弧度制。

二、分组讨论,探究新知师:我们知道,长度制、角度制的选择都是要选定一个不变量来作为单位,如“米”“度”,那么我们也要找出弧度制相应的不变量。

怎么办呢?请看问题一。

问题一:角度为30,60的圆心角,当半径1,2,3,4r =时,分别计算对应的弧长l ,再计算弧长与半30θ=, 1r =时,3011801806n r l πππ⨯⨯===,6r l π= 2r =时,3021801803n r l πππ⨯⨯===,6r l π= 60θ=,1r =时,6011801803n r l πππ⨯⨯===,3r l π= 2r =时,60221801803n r l πππ⨯⨯===,3r l π= 发现什么规律?结论:圆心角不变,弧长与半径的比值不变。

师:也就是说这个比值与半径的大小有无关系?生:无关。

师:比值的大小只与角的大小有关,我们可以利用这个比值来度量角,这就是-—弧度制。

1.1任意角和弧度制教学设计教案

1.1任意角和弧度制教学设计教案

1.1任意角和弧度制教学设计教案第一篇:1.1 任意角和弧度制教学设计教案教学准备1.教学目标1、知识与技能(1)推广角的概念、引入正角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念.2、过程与方法通过创设情境:“转体,逆(顺)时针旋转2周”,角有正角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.学会运用运动变化的观点认识事物.2.教学重点/难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.3.教学用具多媒体4.标签任意角教学过程【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了角的概念,它是如何定义的呢?[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置,绕着它的端点按逆时针方向旋转到终止位置,就形成角.旋转开始时的射线叫做角的始边,叫终边,射线的端点叫做叫的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体”(即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢? [展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性.为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle).[展示课件]如教材图1.1.3(1)中的角是一个正角,它等于;图1.1.3(2)中,正角,负角;这样,我们就把角的概念推广到了任意角(any angle),包括正角、负角和零角.为了简单起见,在不引起混淆的前提下,“角”或“”可简记为.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念.角的顶点与原点重合,角的始边与轴的非负半轴重合。

《弧度制》教学设计方案

《弧度制》教学设计方案

《5.2.1弧度制》教学设计【课题】弧度制【课时】 1课时(45分钟)【授课类型】新授课【设计理念】通过创设符合学生认知规律的问题情景,挖掘学生内在潜能,借助几何画板,让学生在做中学,学中思,亲身体会创造过程,理解弧度制概念的“来龙去脉”,领悟蕴涵其中的数学思想和方法,进一步培养学生的自主探究能力,逻辑推理能力,形成缜密的思维,养成探究的习惯,真正体现学生的主体地位.【内容解析】本节课选自高等教育出版社出版的《数学(基础模块)》上册第五章第二节第一课时《弧度制》.学生在初中已接触了角度制及圆的相关知识、高中又学习了任意角的概念,在此基础上来学习本节内容.弧度制是《三角函数》的重要概念之一,它是研究三角函数图象与性质的基本立足点,也是后续学习立体几何及微积分的理论基础,同时在物理学的研究中有着广泛应用.因此,本节课起着“承前启后”的作用.【学情简析】学生数学基础较好,思维活跃,有良好的平面几何基础,具备较强的计算机操作及信息处理能力,并会简单操作几何画板,这些特点为本堂课的有效教学提供了质的保障.【教学目标】知识与技能:(1)理解弧度制概念,正确领会1弧度角的含义;(2)能正确进行角度和弧度的换算,熟记特殊角的弧度数;过程与方法:(1)经历弧度制概念的形成过程,体会类比的数学思想,提高观察、分析、逻辑推理的能力;(2)通过弧度制与角度制换算关系的推导,会用联系的观点看问题;情感态度价值观:通过对弧度制概念的构建及两种角的度量制的比较,增强学生自主探究的能力,培养合作交流意识,养成良好的学习习惯. 【教学重点和难点】重点: 弧度制的概念、角度制与弧度制的换算关系难点:弧度制概念的建立关键点:1弧度角的定义【教学方法】教法:情境导入法任务驱动法实践操作法学法: 类比发现法自主探究法交流反馈法【教学用具】电子教室、多媒体、几何画板、网络测试平台、腾讯微博【教学过程】登录百度,搜索“角的度量制有哪些?”启发式课堂小结:今天你收获了什么?【教学反思】本节课以两个知识点的探究为主线,立足教材,贴近学生,着眼于概念本身的发现过程,实现了四个注重:注重几何画板辅助教学,让概念的内涵得到动态的生成;注重学生活动参与教学,让活跃的思维留下冷静的思考;注重及时评价反馈教学,让多样的评价推动有效的课堂;注重拓展任务延伸教学,让多彩的生活丰富教学的资源.。

弧度制教学设计教案

弧度制教学设计教案

弧度制教学设计教案一、教材及内容分析本节课是普通高中实验教科书苏教版必修4第一章第一单元第二节内容。

本节课起着承上启下的作用——学生在初中已经学过角的度量单位“度”并且上节课学了任意角的概念,学生已掌握了一些基本单位转换方法,并能体会不同的单位制能给解决问题带来方便;本节课作为三角函数的第二课时,该课的知识还为后继学习任意角的三角函数等知识作铺垫,因此本节课还起着启下的作用。

通过本节弧度制的学习,我们很容易找出与角对应的实数而且在弧度制下的弧长公式与扇形面积公式有了更为简单形式。

另外弧度制为今后学习三角函数带来很大方便。

同时通过本节课学习学生可以认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但是是互相联系的、辩证统一的,从而进一步加强学生对辩证统一思想的理解。

本节内容一课时完成。

二、重难点分析根据新课程标准及对教材的分析,确定本节课重难点如下:重点:1、理解并掌握弧度制的定义。

2、熟练地进行角度与弧度的相互转换。

3、弧长公式、扇形面积公式的应用。

难点:弧度的概念的理解。

三、目标分析1、知识技能目标(1)理解1弧度的角及弧度的定义。

(2)掌握角度与弧度的换算公式。

(3)理解角的集合与实数集R之间的一一对应关系。

(4)理解并掌握弧度制下的弧长公式、扇形面积公式,并能灵活运用这两个公式解题。

2、过程与方法通过单位圆中的圆心角引入弧度的概念;比较两种度量角的方法探究角度制与弧度制之间的互化;应用在特殊角的角度制与弧度制的互化,帮助学生理解掌握;以针对性的例题和习题使学生掌握弧长公式和扇形的面积公式;通过自主学习和合作学习,树立学生正确的学习态度。

3、情感态度与价值观通过弧度制的学习,使学生认识到角度制与弧度制都是度量角制度,二者虽单位不同,但却是相互联系、辩证统一的;在弧度制下,角的加、减运算可以像十进制一样进行,而不需要进行角度制与十进制之间的互化,化简了六十进制给角的加、减运算带来的诸多不便,体现了弧度制的简捷美;通过弧度制与角度制的比较,使学生认识到引入弧度制的优越性,激发学生的学习兴趣和求知欲望,养成良好的学习品质。

中职数学基础模块上册《弧度制》word教案

中职数学基础模块上册《弧度制》word教案

教案名称:中职数学基础模块上册《弧度制》word教案课时安排:2课时教学目标:1. 理解弧度制的概念和意义。

2. 掌握弧度制与角度制的转换方法。

3. 能够运用弧度制进行简单的三角函数计算。

教学重点:弧度制的概念和意义,弧度制与角度制的转换方法。

教学难点:弧度制的理解和运用。

教学准备:教师准备PPT和教学素材。

教学过程:第一课时一、导入(5分钟)1. 复习角度制的概念和转换方法。

2. 提问:为什么我们需要引入弧度制?二、新课讲解(15分钟)1. 讲解弧度制的概念:以半圆的弧长作为角度的度量单位。

2. 讲解弧度制与角度制的转换方法:π弧度等于180度。

3. 举例说明弧度制的运用:计算三角函数值。

三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固弧度制的理解和运用。

2. 教师对学生的练习进行指导和讲解。

四、总结(5分钟)1. 回顾本节课的内容,让学生加深对弧度制的理解。

2. 提醒学生注意弧度制与角度制的区别和转换方法。

第二课时一、复习(5分钟)1. 复习上节课的内容,提问学生对弧度制的理解和运用。

2. 复习弧度制与角度制的转换方法。

二、深入学习(15分钟)1. 讲解弧度制在三角函数计算中的应用。

2. 举例说明弧度制在解决实际问题中的应用。

三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固弧度制的理解和运用。

2. 教师对学生的练习进行指导和讲解。

四、拓展(10分钟)1. 引导学生思考弧度制在其他领域的应用。

2. 让学生举例说明弧度制在实际问题中的应用。

五、总结(5分钟)1. 回顾本节课的内容,让学生加深对弧度制的理解。

2. 提醒学生注意弧度制与角度制的区别和转换方法。

教学评价:通过课堂练习和课后作业的完成情况,评价学生对弧度制的理解和运用能力。

观察学生在课堂上的参与度和提问回答情况,了解学生的学习效果。

教案名称:中职数学基础模块上册《弧度制》word教案课时安排:2课时教学目标:1. 理解弧度制的概念和意义。

(完整版)_弧度制教案及教学设计

(完整版)_弧度制教案及教学设计

1.1.2 弧度制一、教材分析1、本节内容在教材中的地位和作用:教材地位与作用:本节课是普通高中实验教科书人教A版必修4第一章第一单元第二节。

本节课起着承上启下的作用:在前面学生在初中已经学过角的度量单位“度”并且上节课学了任意角的概念,学生已掌握了一些基本单位转换方法,并能体会不同的单位制能给解决问题带来方便;本节课作为三角函数的第二课时,该课的知识还是后继学习任意角的三角函数等知识的理论准备,因此本节课还起着启下的作用。

通过本节弧度制的学习,我们很容易找出与角对应的实数而且在弧度制下的弧长公式与扇形面积公式有了更为简单形式。

另外弧度制为今后学习三角函数带来很大方便。

2、教学目标3、教学中的重点和难点教学重点:理解弧度的意义,能正确地进行角度制与弧度制的换算。

教学难点:弧度制的概念与角度的换算。

二、教学设计思想教材遵循了由浅入深、循序渐进的原则.从学生熟悉的基本单位转换入手,体会不同的单位制能给解决问题带来方便,引导学习去思考寻找另一种的单位制度量角。

通过类比引出弧度制,关键弄清1弧度的定义,然后通过探索得到弧度数绝对值公式并得出角度和弧度的换算方法。

在此基础上,通过具体的例子,巩固所学概念和公式,进一步认识引入弧度制的必要性。

这样可以尽量自然的引入弧度制,并让学生在探索的过程中,更好的形成弧度的概念,建立角的集合与实数集的一一对应,为学习任意角的三角函数奠定基础。

三、教法分析本节课我采用引导发现式的教学方法。

通过教师在教学过程中的点拨,启发学生通过主动观察、主动思考、自主探究来达到对知识的发现和接受。

四、教学过程五、教学流程六、教学反思本节课,学生能够在老师的引导下主动学习,基本掌握了弧度制与角度制之间的转换,完成了课堂教学。

课堂气氛比较活跃。

弧度制教学设计-2023-2024学年高一上学期数学人教A版(2019)必修第一册

弧度制教学设计-2023-2024学年高一上学期数学人教A版(2019)必修第一册

《5.1.2弧度制》教学设计一、教学目标(1)通过解决现实生活中抽象数学模型问题,经历弧度制的生成过程,尝试用弧长度量角的大小,了解弧度制下角的集合与实数集R之间的一一对应关系,体会引人弧度制的必要性;(2)能熟练进行角度制与弧度制的互化,总结角度制与弧度制的内在联系,掌握弧度制下的弧长公式与扇形面积公式,会利用弧度制解决某些简单的实际问题,感受公式应用的简洁性;(3)通过构建弧度制的知识体系,经历发现问题、提出问题、分析问题、解决问题的研究过程,感受特殊与一般、数形结合、化归与转化、类比等数学思想方法的丰富内涵;(4)通过自主探究、合作交流等活动,感受数学发现与再创造的乐趣,培养学生的直观想象、数学计算、逻辑推理、数学抽象和数学建模核心素养.二、1.教学重点:(1)角度制与弧度制间的互相转化;(2)弧长公式及扇形的面积公式的推导与应用.2.教学难点:弧度制概念的生成与理解.三、教学方法:问题引导教学法,启发式教学,小组合作探究学习.四、教学支持:希沃白板5五、教学过程:(一)创设情境,提出问题问题1:摩天轮,它可以看成是质点做圆周运动的模型,现在将这个圆抽象出来,点P的位置与哪些几何量有关呢?追问:能否像度量长度那样,用十进制的实数来度量角的大小呢?设计意图在三角函数“大单元”中,周期现象是我们研究问题的大背景,它贯穿于三角函数“大单元”始末,为体现教学的连贯性,以摩天轮上一点P的运动为例,师生一起抽象建模,思考研究刻画点P的位置的几何量,制造学生的认知冲突,让学生体会到学习弧度制的必要性.问题2:现实生活中有没有同一个几何量可以用不同的单位制进行表示呢?追问:角的度量是否也可以用不同的单位制呢?设计意图引导学生通过类比生活中的量,发现探究角的度量存在其它单位制的可行性.(二)合作探究,凸显生成动手实验实验教学用具:一张半圆纸板、一把刻度直尺、若干细线实验教学过程:通过小组合作,运用现有的实验用具,在这张半圆纸上标出36°的角.设计意图36°不能通过尺规作图直接得到,而实验用具又未提供量角器,该动手实验旨在引导学生探索新的度量角的方式,将角的度量问题转化为长度的度量问题,从而体会到弧度制的本质即“用线段长度度量角的大小”,为理解弧度制概念积累数学体验.问题3:那我们可以直接用弧长来衡量角的大小吗?追问1:我们先来看看这两个扇形,同学们发现什么?追问2:我们再来观察一下这两个扇形,除了弧长变化之外,还有什么也发生了变化?问题4:角度、半径、弧长这三个量之间存在什么关系呢?能否用我们以前学习过的数学公式来表示它们之间的关系?观察动态演示:计算扇形的弧长与对应半径的比值;改变弧长和半径的长度,观察比值的变化.设计意图以问题串的形式,引导学生探究角的大小与弧长、半径的关系,并结合角度制下的弧长公式180r n l π=进行公式推导,让学生清楚在研究多变量关系时,采用控制某个变量以达到减少变量的目的,清楚在“变化中寻找不变量”是数学研究的重要方式.从特殊到一般的研究方法,得到可以用弧长与半径的比值来度量角的大小.动态演示可以帮助学生加深对弧度制概念的直观理解.(三)类比迁移,形成概念问题5:我们用弧长和半径之比定义圆心角的度量方式,相对于角度制,大家觉得这个新的度量可以给个什么名称?追问:角度制中,1度角的大小是怎么规定的?教师介绍1度角数学史问题6:在我们的定义rl =α下,1rad 的几何意义是什么?学生活动:能否在圆中将大小为1rad 的角表示出来?课件展示:弧度制产生的历史.设计意图先通过信息技术手段让学生进一步感知角α确定后比值rl 的不变性,以及比值rl 与角α的一一对应关系,再从数学史的角度介绍弧度制,近代与现代遥相呼应.让学生体会数学发展的历史,这一点符合新课标所提出的注重数学文化渗透的基本理念.(四)新旧融合,完善概念问题7:经过上节课任意角的研究后,我们知道,角可以分为正角、负角和零角,那么对于我们目前的定义rl =α,你觉得是否需要修改完善一下?追问:你能说说角度制和弧度制的区别吗?设计意图区分正角与负角,在任意角的背景中对rl =α加以修正,体现弧度概念的科学性,帮助学生进一步理解弧度制不仅可以用于度量角的大小,而且使角的集合与实数集之间建立一一对应的关系.(五)相互转化,揭示联系问题8:你能找到角度制和弧度制的换算规则吗?设计意图以角度制和弧度制的内在逻辑为线索,启发学生通过解决具体问题寻找两者之间的内在逻辑,得到换算关系,让学生亲历角度制与弧度制换算关系的探究过程,深化弧度制概念的学习.(六)典例选讲,深化概念例1:把下列角度化成弧度:(1)22°30’(2)-210°例2:把下列角度化成弧度:(1)12πrad (2)0.5练习:填写下列特殊角的度数与弧度数的对应表(1)(2)例3利用弧度制证明下列有关扇形的公式:(1);R l α=(2);221R S α=(3).21lR S =其中R 是圆的半径,()παα20<<为圆心角,l 是扇形的弧长,S 是扇形的面积.例4已知扇形的周长为8cm,圆心角为2rad,求该扇形的面积.【设计意图】巩固角度与弧度的互化,对学习重点内容进行当堂检测,体会弧度制下弧长、扇形面积公式的简洁性,建立弧度制的优越性,体验知识的形成过程,从而进一步提升学生的数学运算核心素养.02π56π角度弧度0 60 120 135 270 4π2ππ2π30(七)归纳小结,提炼升华(1)回顾一下研究过程,说说你是如何研究弧度制的?(2)你认为利用弧度制我们可以解决怎样的问题?(3)你能画出弧度制这一课时的思维导图吗?【设计意图】学生的总结有利于培养学生的概括能力和语言表达能力,老师的总结,从度量过程和引入弧度制的必要性两个层面引领学生回顾这节课的主要内容及概念研究的方法,学生课后自主完成弧度制的思维导图,达到构建知识网络,领悟思想方法的目的.(八)作业分层,巩固实践(1)基础过关①课本P175练习题第3、6题②课本P175-176习题5.1第5、6、8题(2)能力提升课本P176第12题(3)实践创新自由组建兴趣小组,根据不同材质的价格、产生的风量大小等,设计一把优秀的扇子,开展一次数学建模和数学探究的活动,每个人把研究成果和心得撰写成一篇数学建模小论文.【设计意图】设计分层、分类作业,落实基础的同时,为学生发展提供更为广阔的空间;紧贴新时代、新教材、新课堂的要求,设计实践创新作业,以课题形式突破数学建模与数学探究活动,培养全面发展的优秀人才.(九)板书设计草稿区弧度制一.定义二.转化关系三.扇形公式四.例题讲解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

欢迎阅读
弧度制
教学目标:
知识目标
1)理解1弧度的角的意义。

2)理解弧度制的定义,建立弧度制的概念。

能力目标
1)掌握角度制与弧度制的换算公式并能熟练地进行角度制与弧度制的换算。

我们把用度做单位来度量角的制度叫做角度制,有了它就可以计算弧长,公
式为180
n r l π=。

角度制是度量角的一种单位制。

单位制这个概念我们并不陌生,比如说测量长度的单位制,古代常以人体的一部分作为长度的单位。

例如我国三国时期(公元三世纪初)王肃编的《孔子家语》一书中记载有:“布指知寸,布手知尺,舒肘知寻。

”两臂伸开长八尺,就是一寻。

还有记载说:“十尺为丈,人长八尺,故曰丈夫。

”可见,古时量物,寸与指、尺与手、寻与身有一一对应的关系。

现在国际上通用的是国际单位制中的“米制”,“米制”教之“尺、寸……”应用起来要方便得多。

在角度制下,当两个带着度、分、秒各单位的角相加、相减时,由于运算进制非十进制,总给我们带来不少困难。

那么我们能否重新选择角单位,使在该单位制下两角的加减运算与十进制下的加减法运算一样呢?今天我们就来常识研究这种新单位制。

(从熟悉的单位制出发,让学生意识到给出角度新定义的必要性。

意识到单位制的普遍性。


三、分组讨论,探索研究
跟上面类似,长度制的选择都是要选定一个不变量来作为基本量。

如“米”,“度”,那么我们要找到一种新的度量角度的角度制,则必须也找到相应的不变量。

o o
做弧度制。

如下图,依次是1rad ,2rad ,3rad ,αrad
问题二:(1)若弧是一个半圆,圆心角所对的弧度数是多少?若是一个圆呢?
(2)正角的弧度数是什么数?负角呢?零角呢?(从正数,负数,零方面去引导)
(3)在弧度制下弧长的计算公式应该怎么写呢?l r α=⋅(l 为弧长,r 为半径)
四、落实目标
角度制与弧度制之间怎样换算呢?
弧度制与角度制之间的互化
∵360?=2?rad ∴180?=?rad
∴1?=rad rad 01745.0180≈π
公式:180
π
=这个角的弧度数这个叫的角度数 五、例题讲解与知识的巩固
1的集合与实数的集合之间建立一种一一对应的关系
能力拓展,课堂练习 1(1)终边在x 轴上的角的集合
(2)终边在y 轴上的角的集合
(3)终边在坐标轴上的角的集合
解:(1)终边在x 轴上的角的集合{}Z k k S ∈==,|1πββ
(2)终边在y 轴上的角的集合⎭
⎬⎫⎩⎨⎧∈+==Z k k S ,2|2ππββ (3)终边在坐标轴上的角的集合⎭
⎬⎫⎩⎨⎧∈==Z k k S ,2|3πββ
o。

相关文档
最新文档