管道压力损失计算

合集下载

关于管道压力损失的计算方法,管径大变小标准

关于管道压力损失的计算方法,管径大变小标准

管道压力损失是指流体在管道中流动时,由于管道内壁的摩擦和管道
内部的流动阻力,而使得流体的压力减小的现象。

管道压力损失的计
算方法主要有以下几种:
1. 经验公式法:根据经验公式,可以计算出管道压力损失的大致数值。

2. 流体力学计算法:根据流体力学原理,可以计算出管道压力损失的
精确数值。

3. 模型试验法:通过模型试验,可以获得管道压力损失的实际数值。

管径大变小标准:当管道的管径变小时,管道压力损失会增加,而当
管道的管径变大时,管道压力损失会减小。

一般来说,当管道管径变
小时,管道压力损失会增加2倍以上,而当管道管径变大时,管道压
力损失会减少2倍以上。

管道压力损失计算

管道压力损失计算

冷热水管道系统的压力损失无论在供暖、制冷或生活冷热水系统,管道是传送流量和热量必不可少的部分。

计算管道系统的压力损失有助于: (1) 设选择正确的管径。

(2) 设选择相应的循环泵和末端设备。

也就是让系统水循环起来并且达到热能传送目的的设备。

如果不进行准确的管道选型,会导致系统出现噪音、腐蚀(比如管道阀门口径偏小)、严重的能耗及设备的浪费(比如管道阀门水泵等偏大)等。

管道系统的水在流动时遇到阻力而造成其压力下降,通常将之简称为压降或压损。

压力损失分为延程压力损失和局部压力损失:— 延程压力损失指在管道中连续的、一致的压力损失。

— 局部压力损失指管道系统内特殊的部件,由于其改变了水流的方向,或者使局部水流通道变窄(比如缩径、三通、接头、阀门、过滤器等)所造成的非连续性的压力损失。

以下我们将探讨如何计算这两种压力损失值。

在本章节内我们只讨论流动介质为水的管道系统。

一、 延程压力损失的计算方式对于每一米管道,其水流的压力损失可按以下公式计算其中:r=延程压力损失 Pa/m Fa=摩擦阻力系数ρ=水的密度 kg/m 3v=水平均流速 m/sD=管道内径 m公式(1)延程压力损失局部压力损失管径、流速及密度容易确定,而摩擦阻力系数的则取决于以下两个方面:(1)水流方式,(2)管道内壁粗糙程度表1:水密度与温度对应值水温°C10 20 30 40 50 60 70 80 90 密度 kg/m3999.6 998 995.4 992 987.7 982.8 977.2 971.1 964.61.1 水流方式水在管道内的流动方式分为3种:—分层式,指水粒子流动轨迹平行有序(流动方式平缓有规律)—湍流式,指水粒子无序运动及随时变化(流动方式紊乱、不稳定)—过渡式,指介于分层式和湍流式之间的流动方式。

流动方式通过雷诺数(Reynolds Number)予以确定:其中:Re=雷诺数v=流速m/sD=管道内径m。

管道压力差计算公式

管道压力差计算公式

管道压力差计算公式
沿程压力损失:液体在等直径管中流动时因摩擦而产生的损失,称为沿程压力损失。

层流时通过管道的流量q =(πd 4/128μL)Δp,管道内的平均流速v = (d 2/32μL )Δp,沿程压力损失
Δpλ=(64/Re)( L /d )ρv 2 /2=λ(L/d )ρv 2 /2
式中λ为沿程阻力系数,实际计算时对金属管取λ= 75 / Re,Δp为压差,μ为液体粘度,L为管道长度。

紊流时的沿程压力损失
Δpλ=λ(L /d)ρv 2 /2
计算式与层流时相同,但参数λ除了与雷诺数有关外,还与管道的粗糙度有关,λ= f(Re,Δ/ d ),Δ为管壁的绝对粗糙度,Δ/d 为相对粗糙度。

局部压力损失:液体流经管道的弯头、接头、阀口等处时,液体流速的大小和方向发生变化,会产生漩涡并发生紊动现象,由此造成的压力损失称为局部压力损失Δpξ。

Δpξ= ξρv 2 / 2
ξ为局部阻力系数,具体数值可查有关手册。

总压力损失:沿程压力损失+局部压力损失
整个液压系统的总压力损失∑Δp应为所有沿程压力损失∑Δpλ和所有的局部压力损失之和∑Δpξ。

∑Δp = ∑Δpλ+ ∑Δpξ。

第四节管道内压力损失的计算

第四节管道内压力损失的计算

管道内压力损失的计算实际粘性液体在流淌时存在阻力,为了克服阻力就要消耗一局部能量,如此就有能量损失。

在液压传动中,能量损失要紧表现为压力损失,这确实是根基实际液体流淌的伯努利方程式中的hw 项的含义。

液压系统中的压力损失分为两类,一类是油液沿等直径直管流淌时所产生的压力损失,称之为沿程压力损失。

这类压力损失是由液体流淌时的内、外摩擦力所引起的。

另一类是油液流经局部障碍〔如弯头、接头、管道截面陡然扩大或收缩〕时,由于液流的方向和速度的陡然变化,在局部形成旋涡引起油液质点间,以及质点与固体壁面间相互碰撞和剧烈摩擦而产生的压力损失称之为局部压力损失。

压力损失过大也确实是根基液压系统中功率损耗的增加,这将导致油液发热加剧,泄漏量增加,效率下落和液压系统性能变坏。

在液压技术中,研究阻力的目的是:①为了正确计算液压系统中的阻力;②为了寻出减少流淌阻力的途径;③为了利用阻力所形成的压差∆p 来操纵某些液压元件的动作。

一、液体在直管中流淌时的压力损失液体在直管中流淌时的压力损失是由液体流淌时的摩擦引起的,称之为沿程压力损失,它要紧取决于管路的长度、内径、液体的流速和粘度等。

液体的流态不同,沿程压力损失也不同。

液体在圆管中层流流淌在液压传动中最为常见,因此,在设计液压系统时,常盼瞧管道中的液流维持层流流淌的状态。

在液压传动中,液体的流淌状态多数是层流流淌,在这种状态下液体流经直管的压力损失能够通过理论计算求得。

圆管中的层流(1)液体在流通截面上的速度分布规律。

如以如下面图,液体在直径d 的圆管中作层流运动,圆管水平放置,在管内取一段与管轴线重合的小圆柱体,设其半径为r ,长度为l 。

在这一小圆柱体上沿管轴方向的作用力有:左端压力p 1,右端压力p 2,圆柱面上的摩擦力为F f ,那么其受力平衡方程式为:122()0f p p r F π--=(由式(2-6)可知:式中:μ为动力粘度。

因为速度增量du 与半径增量dr 符号相反,那么在式中加一负号。

管路长度压力损失计算公式

管路长度压力损失计算公式

管路长度压力损失计算公式在工程领域中,管路长度压力损失是一个重要的参数,它可以帮助工程师们准确地计算管路系统的性能和能耗。

管路长度压力损失是指流体在管路中流动时由于管道摩擦和弯头、阀门等元件的阻力而导致的压力损失。

在设计和运行管路系统时,准确地计算管路长度压力损失对于保证系统的正常运行和提高系统的效率非常重要。

管路长度压力损失的计算公式是基于流体力学和流体动力学的理论基础而建立的,它可以通过管道的长度、流速、管道直径、流体密度和粘度等参数来计算。

通常情况下,管路长度压力损失可以用以下的公式来表示:ΔP = f (L/D) (ρv^2/2)。

其中,ΔP表示管路长度压力损失,f表示摩擦阻力系数,L表示管道长度,D表示管道直径,ρ表示流体密度,v表示流速。

在这个公式中,摩擦阻力系数f是一个重要的参数,它是根据流体在管道内的流动状态和管道壁面的粗糙度来确定的。

通常情况下,可以通过查表或者使用经验公式来计算摩擦阻力系数。

管道长度L、管道直径D、流体密度ρ和流速v都是可以通过实际测量或者计算得到的参数。

通过上述公式,我们可以看到管路长度压力损失与管道长度、管道直径、流速和流体密度等参数都有关系。

在实际工程中,我们可以根据具体的管路系统参数来计算管路长度压力损失,从而为系统的设计和运行提供重要的参考依据。

在工程实践中,准确地计算管路长度压力损失对于保证管路系统的正常运行和提高系统的效率非常重要。

首先,管路长度压力损失的准确计算可以帮助工程师们合理地选择管道的直径和长度,从而减小管道系统的能耗和运行成本。

其次,管路长度压力损失的准确计算也可以帮助工程师们预测管道系统的性能,从而及时地发现和解决系统中可能存在的问题。

在实际工程中,为了准确地计算管路长度压力损失,工程师们需要充分考虑管道系统的实际情况,包括管道的布置方式、管道材质、流体的物性参数等。

此外,工程师们还需要使用适当的计算方法和工具来进行计算,以确保计算结果的准确性和可靠性。

压力损失计算公式

压力损失计算公式

压力损失计算公式压力损失是指在流体流动过程中,由于各种阻力的存在而导致的压力降低。

在工程和物理学中,有一些常用的压力损失计算公式来帮助我们定量地描述和分析这种现象。

咱先来说说沿程压力损失的计算公式。

沿程压力损失通常与管道的长度、内径、流体的流速、流体的黏度以及管道内壁的粗糙度等因素有关。

其中,一个常用的公式是达西 - 威斯巴赫公式:$h_f = \lambda \frac{L}{d} \frac{v^2}{2g}$ 。

这里面,$h_f$ 表示沿程压力损失,$\lambda$ 是摩擦系数,$L$ 是管道长度,$d$ 是管道内径,$v$ 是流体的平均流速,$g$ 是重力加速度。

就拿我们日常生活中的一个小例子来说吧。

有一次我家里的水管出了点问题,水流明显变小了。

我就琢磨着是不是管道里有堵塞,导致压力损失增大了。

于是我找来工具,把一段水管拆开检查。

这水管里面啊,果然有一些水垢和杂物,使得管道内壁变得粗糙了。

这就好比道路变得崎岖不平,水流在里面流动时受到的阻力就大了,压力损失也就跟着增加了。

局部压力损失的计算也有相应的公式。

比如说,突然扩大或突然缩小的管道连接处,就会产生局部压力损失。

还有阀门、弯头等部件也会导致局部压力损失。

在实际的工程应用中,准确计算压力损失非常重要。

比如在一个工厂的供水系统中,如果没有准确计算压力损失,可能会导致某些设备得不到足够的水压,无法正常运行。

又或者在一个空调系统中,如果风道的压力损失计算有误,就会影响到空气的流通和制冷效果。

再比如说,我曾经参与过一个小区的供暖系统改造项目。

在设计阶段,我们就需要仔细计算管道中的压力损失,以确定合适的水泵功率和管道尺寸。

如果计算不准确,可能会出现有的住户家里暖气不热,冬天就得挨冻啦。

总之,压力损失计算公式在很多领域都有着广泛的应用。

无论是工业生产中的流体输送,还是建筑中的给排水和暖通系统,都离不开对压力损失的准确计算。

只有这样,我们才能设计出高效、稳定的流体系统,让它们更好地为我们服务。

管道压力损失计算word精品

管道压力损失计算word精品

管道压力损失计算管道总阻力损失hw=£hf + E hj,hw —管道的总阻力损失(Pa);刀hf —管路中各管段的沿程阻力损失之和(Pa );刀hj —T路中各处局部阻力损失之和(Pa )ohf=RL 、hf—管段的沿程损失(Pa);R—每米管长的沿程阻力损失,又称比摩阻(Pa / m);L —管段长度(m),R 的值可在水力计算表中查得。

也可以用下式计算,hf=[入/d) X Y X (v A2)] *,(2 X g)L —管段长度(m);d —管径(m);入—沿程阻力因数;Y—介质重度(N/m2 );v—断面平均流速(m /s );g —重力加速度(m / s2 )。

管段中各处局部阻力损失hj=[ZX Y X (V A2)] ,*(2 X g)hj —管段中各处局部阻力损失(Pa );Z—管段中各管件的局部阻力因数,可在管件的局部阻力因数表中查得。

(引自《简明管道工手册》.P.56—57)管道压力损失怎么计算其实就是计算管道阻力损失之总和。

管道分为局部阻力和沿程阻力:1、局部阻力是由管道附件(弯头,三通,阀等)形成的,它和局阻系数,动压成正比。

局阻系数可以根据附件种类,开度大小通过查手册得出, 动压和流速的平方成正比。

2、沿程阻力是比摩阻乘以管道长度, 比摩阻由管道的管径,内壁粗糙度,流体流速确定总之,管道阻力的大小与流体的平均速度、流体的粘度、管道的大小、管道的长度、流体的气液态、管道内壁的光滑度相关。

它的计算复杂、分类繁多,误差也大。

如要弄清它,应学“流体力学”,如难以学懂它,你也可用刘光启著的“化工工艺算图手册”查取。

管道主要损失分为沿程损失和局部损失。

△ h=S入L/d*v72g)v2g2其中的入和E都是系数,这个是需要在手册上查询的。

L ----------------- 管路长度。

d ---- 管道内径。

v ---- 有效断面上的平均流速,一般v=Q/s ,其中Q 是流量, S 是管道的内截面积。

管道内压力损失的计算

管道内压力损失的计算

管道内压力损失的计算一、液体在直管中流动时的压力损失液体在直管中流动时的压力损失是由液体流动时的摩擦引起的,称之为沿程压力损失,它主要取决于管路的长度、内径、液体的流速和粘度等。

液体的流态不同,沿程压力损失也不同。

液体在圆管中层流流动在液压传动中最为常见,因此,在设计液压系统时,常希望管道中的液流保持层流流动的状态。

1.层流时的压力损失在液压传动中,液体的流动状态多数是层流流动,在这种状态下液体流经直管的压力损失可以通过理论计算求得。

圆管中的层流(1)液体在流通截面上的速度分布规律。

如图所示,液体在直径d 的圆管中作层流运动,圆管水平放置,在管内取一段与管轴线重合的小圆柱体,设其半径为r ,长度为l 。

在这一小圆柱体上沿管轴方向的作用力有:左端压力p 1,右端压力p 2,圆柱面上的摩擦力为F f ,则其受力平衡方程式为:122()0f p p r F π--= (由式(2-6)可知:式中:μ因为速度增量du 与半径增量dr 符号相反,则在式中加一负号。

Δp =p 1- p 2Δp 、式(2-45)代入式(2-44),则得: 对式积分得:当r =R 时,u =0,代入(2-47)式得:则 22()4p u R r l μ∇=-由式可知管内流速u 沿半径方向按抛物线规律分布,最大流速在轴线上,其值为:2max 4pR u l μ∇=(1) (1)? 管路中的流量。

图(b)所示抛物体体积,是液体单位时间内流过通流截面的体积即流量。

为计算其体积,可在半径为r 处取一层厚度为的微小圆环面积,通过此环形面积的流量为:对式积分,即可得流量q :(2) (2)? 平均流速。

设管内平均流速为υ对比可得平均流速与最大流速的关系: υ=max2u(4)沿程压力损失。

层流状态时,液体流经直管的沿程压力损失可从式求得:232lv p d μ∇=由式可看出,层流状态时,液体流经直管的压力损失与动力粘度、管长、流速成正比,与管径平方成反比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、烟气用量
L=Q
c 烟气×ρg ×(t 1−t 2) 式中:L —烟气在240C ︒时的流量,h m /3;
烟气c —烟气比热容,240C ︒时为1.15/()kJ kg C ⋅︒;
g ρ—烟气0°时烟气密度为31.2836/kg m
Q 为设备每小时所需热量,经计算(考虑散失热量10%):
Q=2.03×105kJ/h 。

20℃时,ρg=1.2836×
273273+20=1.196kg/m 3 80℃时,ρg=1.2836×273273+80=0.9927 kg/m 3 240℃时,ρg=1.2836×273273+240=0.6831 kg/m 3
则 20℃时,所需烟气流量:
F= 2.03× 105
1.15×1.196×(240-80)= 922m 3/h ; 出口处烟气温度为80℃,出口气量:
F= 2.03× 105
1.15×0.9927×(240-80)=1111 m 3/h ; 在进气管道,烟气的温度为240℃:
F= 2.03× 105
1.15×0.6831×(240-80)=1615m 3/h ;
2、管道烟气速率
进气管的内径d 1=64mm, 出气口管内径d 2=100mm 。

流速计算公式V=
4F πd 2
进气口的流速: 当进口为64mm 时,
V1=4×1615
2×3.14×0.0642×3600=69.76m/s
当进口为100mm时,

1=
4×1615
2×3.14×0.12×3600
=28.57m/s
出口流速:
V2=4×1111
2×3.14×0.12×3600
=19.66m/s 3、管道压力损失(计算过程参照化工原理第三版)
雷诺数: Re=dVρμ
式中,d为管道直径,V为流体平均速度,ρ为气体密度:240℃时为0.6831 kg/m3,80℃时为0.9927 kg/m3,μ为空气粘度:240℃时为2.71×10-5Pa/s,80℃时为2.11×10-5Pa/s。

进口:l=2m
当进口为64mm时,
Re=dVρ
μ
=0.064×69.76×0.6831
2.71×10−5
=1.125×105,
从《化工原理》Re-λ图查得,此Re值下,λ=0.01.(摩擦系数)压力损失:
Δp=λl
d
ρV2
2
,代入数据得:Δp=519Pa
当进口为100mm时,
Re=dVρ
μ
=0.1×28.57×0.6831
2.71×10−5
=0.720×105,
从《化工原理》Re-λ图查得,此Re值下,λ=0.013.压力损失:
Δp=λl
d
ρV2
2
,代入数据得:Δp=72Pa
出口:l=3m
Re=dVρ
μ
=0.1×19.66×0.9927
2.71×10−5
=0.720×105,
从《化工原理》Re-λ图查得,此Re值下,λ=0.013.压力损失:
Δp=λl
d
ρV2
2
,代入数据得:Δp=75Pa
4、局部损失——运用阻力系数法
局部系数: w=ξV2 2
管道设计,至少用到个三通ξ=1,两个90°弯头ξ=0.75。

所以,ξ=2.5
当进口为64mm时, w=ξV2
2
=2.5×69.762
2
=6083J/kg
Δp=wρ=0.6831×6083=4155Pa
当进口为100mm时,w=ξV2
2
=2.5×28.572
2
=1020J/kg
Δp=wρ=0.6831×1020=696Pa。

相关文档
最新文档