矩阵分析Chapter TwoSummary - 北京理工大学研究生课程

合集下载

《矩阵分析》教学大纲.doc

《矩阵分析》教学大纲.doc

《矩阵分析》教学大纲(Matrix Analysis, 14xs20012)一、前言1、课程概述本课程内容包括线性空间与线性变换,矩阵的Jordan标准型,内积空间,正规矩阵,Hermite矩阵,二次型,矩阵分解,特征值的估计与计算,矩阵的扰动问题,向量范数与矩阵范数,矩阵序列和级数,广义逆矩阵,矩阵函数等内容。

《矩阵分析》的特点之一是在介绍矩阵论有关基础理论的同时,引入用MATLAB进行计算的相关内容,使读者能将理论与实践相结合,在培养学生理论水平、演绎推理能力的同时还培养了学生的实际动手能力。

实践内容包括MATLAB软件的讲解和实际动手操作。

2、课程性质专业基础课3、学分与学时本课程总学分:6学分,总学时:48学时。

其中理论课40学时;实践:8学时。

本课程针对计算机应用技术专业研究牛的知识结构背景,在其本科阶段所学的《线性代数》的基础之上,进一步深化和提高矩阵理论的相关知识,并着重培养学生运用矩阵分析的知识和方法解决计算机应用领域相关问题的能力。

通过本课程的学习,使学生掌握矩阵理论的基本概念,基本理论和基本方法,全面了解和掌握矩阵的标准形、特征值与特征向量、矩阵分解、范数与矩阵函数等重点内容,了解近代矩阵理论中十分活跃的若干分支,为今后的进一步学习和研究打下扎实的基础。

5、使用对象计算机应用技术专业一年级学历硕士研究生6、知识背景要求线性代数,程序设计二、讲授提纲第1章线性空间与线性变换(-)本章概述本章首先从线性空间的基本概念讲起,逐步介绍基与坐标、坐标变换,线性子空间, 线性映射,线性映射的值域、核,线性变换的矩阵与线性变换的运算,门维线性空间的结构,线性变换的特征值与特征向量,线性变换的不变子空间,矩阵的相似形等重要概念和方法,同时还要对线性方程组解的结构定理进行复习。

实践环节讲解用MATLAB求解线性方程组的方法和技巧。

(二)教学目标介绍教材及全课程内容,使学生对本课有一个总体的印象,对进一步的学习起到提纲挈领的作用。

北京理工大学出版社矩阵分析习题解答

北京理工大学出版社矩阵分析习题解答

2005级电路与系统矩阵分析作业3-1已知)(ij a A =是n 阶正定Hermite 矩阵,在n 维线性空间nC 中向量[]n x x x ,,,21 =α ,[]n y y y ,,,21 =β定义内积*),(βαβαA =。

(1)证明在上述定义下,nC 是酉空间;(2)写出nC 中的Canchy -Schwarz 不等式。

(1)证明:),(αβ=H A αβ=H H A )(βα=H A βα ,(βα,k )=),(βαβαk A k H =),(),()(),(γβγαγβγαγβαγβα+=+=+=+H H H A A AH A αααα=),(,因为A 为正定H 矩阵,所以0),(≥αα,当且仅当0),(0==ααα时,由上可知cn是酉空间。

証毕。

(2)解: ∑∑==n jnij ij i Hy a x A |||),(|βαβα∑∑==n jnij ijix ax ),(||||ααα,∑∑==n jnij ijiy ay ),(||||βββ由Cauchy-Schwarz 不等式有:∑∑∑∑∑∑≤n jnij ijin jnin jnij ijij ijiy ay x ax y ax *3-3(1)已知.A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡502613803---,试求酉矩阵U,使得U*AU 是上三角矩阵 解:由|λE-A| = (λ+1)3得 λ= -1是A 的特征值,当λ=-1时,可得|λE-A|=000000201于是ε1=(0,1,0)T是A 的特征向量。

选择与ε1正交,并且互相也正交两个向量组成酉阵:U 1= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010则U 1*A U 1= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---520830631 取A 1= ⎥⎦⎤⎢⎣⎡--5283,|λE- A 1| = (λ+1)2λ= -1是A 1的特征值。

当λ=-1时,可得|λE- A 1|=0021,于是,α1 =( --52,51)T是A 的特征向量,选择与α1正交的向量组成酉阵U 2 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡52515152 -,U 2*A 1U 2 = 51⎥⎦⎤⎢⎣⎡-2112⎥⎦⎤⎢⎣⎡--5283⎥⎦⎤⎢⎣⎡-2112 =⎥⎦⎤⎢⎣⎡---10101 3-9若S ,T 分别是实对称矩阵和反实对称矩阵,且0)det(≠--iS T E ,试证:1))((---++iS T E iS T E 是酉矩阵,。

矩阵分析 - 北京理工大学研究生院

矩阵分析 - 北京理工大学研究生院

课程名称:矩阵分析一、课程编码:1700002课内学时: 32 学分: 2二、适用学科专业:计算机、通信、软件、宇航、光电、生命科学等工科研究生专业三、先修课程:线性代数,高等数学四、教学目标通过本课程的学习,要使学生掌握线性空间、线性变换、Jordan标准形,及各种矩阵分解如QR分解、奇异值分解等,正规矩阵的结构、向量范数和矩阵范数、矩阵函数,广义逆矩阵、Kronecker积等概念和理论方法,提升研究生的数学基础,更好地掌握矩阵理论,在今后的专业研究或工作领域中熟练应用相关的矩阵分析技巧与方法,让科研结果有严格的数学理论依据。

五、教学方式教师授课六、主要内容及学时分配1、线性空间和线性变换(5学时)1.1线性空间的概念、基、维数、基变换与坐标变换1.2子空间、线性变换1.3线性变换的矩阵、特征值与特征向量、矩阵的可对角化条件2、λ-矩阵与矩阵的Jordan标准形(4学时)2.1 λ-矩阵及Smith标准形2.2 初等因子与相似条件2.3 Jordan标准形及应用;3、内积空间、正规矩阵、Hermite 矩阵(6学时)3.1 欧式空间、酉空间3.2标准正交基、Schmidt方法3.3酉变换、正交变换3.4幂等矩阵、正交投影3.5正规矩阵、Schur 引理3.6 Hermite 矩阵、Hermite 二次齐式3.7.正定二次齐式、正定Hermite 矩阵3.8 Hermite 矩阵偶在复相合下的标准形4、矩阵分解(4学时)4.1矩阵的满秩分解4.2矩阵的正交三角分解(UR、QR分解)4.3矩阵的奇异值分解4.4矩阵的极分解4.5矩阵的谱分解5、范数、序列、级数(4学时)5.1向量范数5.2矩阵范数5.3诱导范数(算子范数)5.4矩阵序列与极限5.5矩阵幂级数6、矩阵函数(4学时)6.1矩阵多项式、最小多项式6.2矩阵函数及其Jordan表示6.3矩阵函数的多项式表示6.4矩阵函数的幂级数表示6.5矩阵指数函数与矩阵三角函数7、函数矩阵与矩阵微分方程(2学时)7.1 函数矩阵对纯量的导数与积分7.2 函数向量的线性相关性7.3 矩阵微分方程(t)()() dXA t X t dt=7.4 线性向量微分方程(t)()()() dxA t x t f t dt=+8、矩阵的广义逆(3学时)8.1 广义逆矩阵8.2 伪逆矩阵8.3 广义逆与线性方程组课时分配说明:第一章的课时根据学生的数学基础情况可以调整,最多5学时,如学生线性代数的基础普遍较高,可以分配3学时,剩余2学时可在最后讲解第九章部分内容(Kronecker 积的概念和基本性质)。

北京理工大学硕士研究生培养方案

北京理工大学硕士研究生培养方案

车辆工程080204(一级学科:机械工程)本学科1981年获得硕士学位和博士学位授予权,1988年设立博士后流动站,1987年和2001年两次被评为国家级重点学科。

本学科在机械学科的基础上拓宽和发展,涉及动力、控制、电子、计算机、信息、材料、能源等学科领域,具有多学科交叉的特点。

主要研究军用车辆、汽车及其它工程车辆。

主要研究方向有:1.车辆总体理论与现代设计:车辆动力学,车辆系统优化;车辆设计专家系统,车辆虚拟技术;车辆试验与测试技术,车辆可靠性与故障诊断技术等。

2.车辆传动系统理论与技术:车辆动力传动理论与控制,车辆传动系统动态仿真与优化匹配,推进系统集成理论与技术,多流传动与转向,液力液压传动,车辆自动变速和无级变速,车辆新型传动。

3.车辆信息技术:车辆信息网络化技术,车辆电子系统可靠性与故障诊断,智能车辆,车载信息系统,主动和半主动悬挂,车辆安全行驶控制,车辆通过性控制等。

4.新能源车辆与电驱动技术:电动车辆及其它新能源车辆理论与技术,电机驱动系统,车辆能量管理系统,车辆电气综合控制等。

5.车辆安全与人机工程:车辆安全性,车辆安全行驶装置,车辆振动噪声控制,车辆人机工程,车身结构与造型等。

一、培养目标热爱祖国,有社会主义觉悟和较高道德修养,在车辆工程领域掌握坚实的基础理论和系统的专门知识,具有从事本领域科学研究工作或独立担负专门技术工作的能力,能够胜任科研院所、企业、高校的科学研究、工程设计、产品开发和教学工作。

二、课程设置·139·三、必修环节1.文献综述报告(1学分):本学科硕士研究生的文献阅读要结合课题研究方向和具体的研究领域进行,文献综述报告的参考文献应不少于20篇,文献综述报告要反映国内外相关领域的研究历史、现状和发展趋势,不少于4000汉字。

2.学术活动(1学分):在学期间至少应参加6次以上学术活动(含现代数学系列讲座、跨学科或晓外的学术活动3次),其中本人进行正规性的学术报告1次以上。

《矩阵分析》课程教案

《矩阵分析》课程教案
难点:Hermite矩阵、Hermite二次齐次式,正定二次型、正定Hermite矩阵,Rayleigh商
讨 论
练 习
作 业
作业:第3章练习题中任选5题
教学要求
熟练掌握线性空间与线性变换,矩阵的Jordan标准型,内积空间,正规矩阵,Hermite矩阵,二次型,矩阵分解,特征值的估计与计算,矩阵的扰动问题,向量范数与矩阵范数,矩阵序列和级数,广义逆矩阵,矩阵函数等基本概念和基本方法。
教学方法
课堂讲述+实验演示+实际动手操作+作业+研究报告
教学手段
多媒体课件+案例+理论推导+编程实现
考核方式
结合课堂所学写一篇论文/开卷考试二者选一
教学参考资料
[1]《矩阵分析》,史荣昌,魏丰编著,北京理工大学出版社,2010.6,第3版
[2]《Matrix Methods in Data Mining and Pattern Recognition》,Lars Eldén,The SIAM series on Fundamentals of Algorithms,2007.2
本课程针对计算机应用技术专业研究生的知识结构背景,在其本科阶段所学的《线性代数》的基础之上,进一步深化和提高矩阵理论的相关知识,并着重培养学生运用矩阵分析的知识和方法解决计算机应用领域相关问题的能力。通过本课程的学习,使学生掌握矩阵理论的基本概念,基本理论和基本方法,全面了解和掌握矩阵的标准形、特征值与特征向量、矩阵分解、范数与矩阵函数等重点内容,了解近代矩阵理论中十分活跃的若干分支,为今后的进一步学习和研究打下扎实的基础。
山西财经大学研究生课程教案
课程名称
矩阵分析
课程编码

北理版矩阵分析课件 共101页

北理版矩阵分析课件 共101页

1 ,2 , ,n 1 ,2 ,n P
定理:过渡矩阵 P 是可逆的。
任取 V ,设 在两组基下的坐标分别为
x1,x2,
,xn
T

y1,y2,
,yn
T
,那么我们有:
x1 y1

x
2


P

y
2



的为极向大量线 组性无关组,span1,2, ,s的维数即
的秩。
1,2, ,s
例 4 实数域 R 上的线性空间 R n n 中全体上三角矩
阵集合,全体下三角矩阵集合,全体对称矩阵集合,
全体反对称矩阵集合分别都构成 R n n 的子空间,
问题:这几个子空间的基底与维数分别时什么?
(2) 加法结合律 ( ) ( )
(3) 零元素 在 V 中存在一个元素 0 ,使得对
于任意的 V 都有
0
(4) 负元素
对于 V 中的任意元素 都存
在一个元素 使得
0
(5) 1
(6) k(l)(kl)
(7) (kl)kl
与向量组
(0,1,1),(1,0,1),(1,1,0)
都是 R 3 的基。R 3 是3维线性空间。
例 2 实数域 R 上的线性空间R 2 2 中的向量组
0 1
1 1,1 1
10,10
1 1,1 1
1 0
与向量组
1 0
0 0,10
例 4 R 表示实数域 R 上的全体无限序列组成的
的集合。即
R [a1,a2,a3,]iai 1,F 2,,3,
在 R 中定义加法与数乘:

北京理工大学研究生培养方案

北京理工大学研究生培养方案

控制科学与工程共济网081100网络督察(一级学科:控制科学与工程)kaoyantj共济控制科学与工程学科具有博士学位授予权并设博士后流动站,在2006年全国一级学科评估中综合排名第10。

下设“控制理论与控制工程(081101)”、“检测技术与自动化装置(081102)”、“系统工程(081103)”、“模式识别与智能系统(081104)”、“导航、制导与控制(081105)”、“运动驱动与控制”六个二级学科,其中,“控制理论与控制工程”是国家级重点学科,“模式识别与智能系统”是北京市和科工委重点学科。

kaoyantj控制科学与工程是研究控制的理论、方法、技术及其工程应用的学科。

控制科学以控制论、系统论、信息论为基础,研究各应用领域内的共性问题,即为了实现控制目标,应如何建立系统的模型,分析其内部与环境信息,采取何种控制与决策行为;而与各应用领域的密切结合,又形成了控制工程丰富多样的内容。

本学科点在理论研究与工程实践相结合、学科交叉和军民结合等方面具有明显的特色与优势,对我国国民经济发展和国家安全发挥了重大作用。

本学科主要研究方向有:3362 30391.控制理论与控制工程:复杂系统的建模、控制、优化、决策与仿真;鲁棒控制与非线性控制;工程系统的综合控制与优化;运动控制系统设计与分析;先进控制理论与方法。

112室2.模式识别与智能系统:智能控制与智能系统;专家系统与智能决策;模式识别理论与应用;智能信息处理与计算机视觉;生物信息学。

课3.导航、制导与控制:惯性定位导航技术;组合导航及智能导航技术;飞行器制导、控制与仿真技术;惯性器件及系统测试技术;火力控制技术。

共济网4.检测技术与自动化装置:先进传感与检测技术;新型执行机构与自动化装置;智能仪表及控制器;测控系统集成与网络化;测控系统的故障诊断与容错技术。

课5.系统工程:系统工程理论及应用;系统分析、设计与集成;系统预测、决策、仿真与性能评估;网络信息技术、火控与指控系统技术;复杂系统信息处理、控制与应用技术。

《矩阵分析》课件

《矩阵分析》课件

Gauss消元法原理
LU分解求解线性方程组
通过行变换将矩阵化为上三角矩阵, 从而解线性方程组。
将Ax=b转化为LUx=b,通过前向替 换和后向替换求解。
LU分解定义
将矩阵分解为一个下三角矩阵L和一个 上三角矩阵U的乘积。
QR分解原理及实现
QR分解定义
将矩阵分解为一个正交矩阵Q和 一个上三角矩阵R的乘积。
Jordan标准型及其性质
Jordan标准型定义: 设A是n阶方阵,如果 存在一个可逆矩阵P, 使得P^(-1)AP为 Jordan矩阵,则称A 可以相似对角化为 Jordan标准型。
Jordan标准型的性质
Jordan标准型是唯一 的,即对于给定的方 阵A,其Jordan标准 型是唯一的。
Jordan标准型中的每 个Jordan块对应A的 一个特征值。
非零行的首非零元所在列在上一行的 首非零元所在列的右边。
同一行的所有非零元均在首非零元的 右边。
线性无关组与基础解系
线性无关组:一组向量线性无关当且仅当它们不 能由其中的部分向量线性表示出来。换句话说, 只有当这组向量中任何一个向量都不能由其余向 量线性表示时,这组向量才是线性无关的。
基础解系中的解向量线性无关。
初等变换和行阶梯形式
初等变换:对矩阵进行以下三种变换称为初等变 换 对调两行(列)。
以数k≠0乘某一行(列)中的所有元。
初等变换和到另一行(列)的对应元上去。
02
行阶梯形式:一个矩阵经过初等行变换可以化为行阶梯形式,
其特点是
非零行在零行的上面。
03
初等变换和行阶梯形式
方阵
行数和列数相等的矩阵称为方阵。
01
对角矩阵
除主对角线外的元素全为零的方阵称 为对角矩阵。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
于任意的正整数 k ,1 k r ,A() 必有非零的 k 阶子式,A() 的全部 k 阶子式的首项系数为1的最 大公因式 Dk () 称为 A()的 k 阶行列式因子。 显然,如果 rank( A()) r,则行列式因子一共有
个。
(2)不变因子与行列式因子的关系:
d1() D1()
d2 ( )
X i1, X i2 , , X ini
(4)Jordan标准形的某些应用 a)求一个给定的矩阵的高次幂 b) 求解一个常微分方程组 c) 判断两个矩阵是否相似 d) 待补充…☺
J1
J
J2
J
s
为Jordan标准形矩阵。
定理: 设 A C nn , A的初等因子为
( a1)n1 , ( a2 )n2 ,

AJ
, ( as )ns
,这里
J1
J
J2
J
s
其中
ai 1
ai 1
Ji
,(i 1,2, , s)
1
ai ni ni
我们称 J 是矩阵 A 的Jordan标准形。
0
பைடு நூலகம்
0
其中 r 1, di ()是首项系数为1的多项式且
di () di1() (i 1,2, , r 1)
称这种形式的 矩阵为 A( ) 的Smith标准形。 d1(), d2(), , dr ()称为 A()的不变因子。
矩阵Smith标准形的唯一性
(1) 行列式因子
定 义: A()为一个 矩阵且 rank( A()) r 对
(2)用特征矩阵秩的方法求数字矩阵的Jordan标 准形. 具体操作步骤: (1)先求出该矩阵的特征多项式及其特征值;
(2)以 i为主对角元的 阶 t Jordan 块的个数等

rank(i E A)t1 rank(i E A)t
(3)如何求相似变换矩阵?
设 ACnn,则存在 n 阶可逆矩阵 P 使得
J1
P1AP
J2
J
t
其中
这里
Ji
为Jordan块,记
Pi C nni
P
P1, P2,
, Pt
那么有
AP1, AP2, , APt P1J1, P2J2, , Pt Jt
APi Pi Ji , i 1, 2, ,t
记 Pi Xi1, Xi2, , Xini ,又可得
D2 () D1 ( )
D1() d1() D2 () d1()d2 ()
dr ()
Dr () Dr 1 ( )
Dr () d1()d2() dr ()
二、初等因子和矩阵的相似
(1)初等因子
设 矩阵 A() 的不变因子为
d1(), d2(), , dr ()
在复数域内将它们分解成一次因式的幂的乘积:
AX i1 i X i1 AX i2 X i1 i X i2
AX ini
X X ini 1
i ini
注意: X i1 是矩阵 A
特征向量,特征向量
的对应于特征值 i 的
X i1的选取应该保证向
量 Xi2
可以求出,同样向量
X
i
的选取应该保证
2
向量 Xi3可以求出,依此类推,并且使得
线性无关。
d1
(
a )e11 1
(
a2
)e12
d2
(
a )e21 1
(
a2
)e22
( as )e1s ( as )e2s
dr
(
a )er1 1
(
a2
)er
2
( as )ers
其中 a1, as 是互异的复数,eij 是非负整数。因
为 di | di1()(i 1, , r 1) ,所以满足如下关系
0 e11 e21 0 e12 e22
er1 er2
0 e1s e2s ers
定义 在上式中,所以指数大于零的因子
( aj )eij , eij 0,i 1, , r, j 1, , s
称为 矩阵 A() 的初等因子
(2)数字矩阵的相似与 矩阵的等价
定理: 设 A, B 是两个n 阶的数字矩阵,那么
总结: - 矩阵与矩阵的Jordan标准形 一、 -矩阵的Smith标准形
(1) 存在性 (2) 唯一性
(3) 求一个给定的 -矩阵的Smith标准形的方法
矩阵Smith标准形的存在性
定 理 任意一个非零的m n型的 矩阵都等价于
一个“对角矩阵”,即
d1 ( )
d2()
A( )
dr ( )
条件是它们有相同的初等因子。
定理:两个同阶的方阵 A, B 相似的充分必要
条件是它们有相同的不变因子。
三、数字矩阵的Jordan标准形 (1)用初等因子求数字矩阵的Jordan标准形
ai 1
ai 1
Ji
1
ai ni ni
为Jordan块。设 对角形矩阵
J1,
J
2,
, J s 为Jordan块,称准
A与B 相似的充分必要条件为它们的特征矩

I A

I B
等价。
定义: 对于数字矩阵A ,我们称 I A 的 不变因子为 A 的不变因子,称 I A的初等
因子为 A 的初等因子。
对于任何一个数字矩阵 A, I A 0 所以 rank(I A) n ,于是可得下面两
个定理
定理: 两个同阶的方阵 A, B 相似的充分必要
相关文档
最新文档