数学思想和数学方法之整体思想

合集下载

1数学思想篇--整体思想

1数学思想篇--整体思想

数学思想-- 整体思想知识梳理整体思想就是在解决数学问题时,将要解决的问题看作一个整体,通过对问题的整体形式、整体结构、已知条件和所求综合考虑后.得出结论.整体思想的应用,要做到观察全局、整体代入、整体换元、整体构造.整体思想作为重要的数学思想之一,我们在解题过程中经常使用.整体思想使用得恰当,能提高解题效率和能力,减少不必要的计算和走弯路,直奔主题.因而在处理数与式的运算、方程、几何计算等方面有着广泛应用.是初中数学学习中的重要思想方法.典型例题一、在数与式的运算中的应用1. 已知代数式3x 2-4x+6的值为9,则2463x x -+的值为 ( ) A .18 B .12 C .9 D .7 2.先化简,再求值222142442a a a a a a a a +--⎛⎫-÷ ⎪--+-⎝⎭,其中a 满足a 2-2a -1=0. 3.计算:11111111123420082342007⎛⎫⎛⎫+++++++++- ⎪⎪⎝⎭⎝⎭ (111111111234)20082342007⎛⎫⎛⎫+++++++ ⎪⎪⎝⎭⎝⎭…+?+ 二、在方程中的应用1.(08绍兴)若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买4支圆珠笔、4本日记本需__________元.2.(08苏州)解方程:()2221160x x x x +++-=. 三、在几何计算中的应用【例5】如图⊙A ,⊙B ,⊙C两两不相交,且半径都是0.5 cm ,则图中的阴影部分的面积是( )A .12πcm 2B .8πcm 2C .4πcm 2D .6πcm 2综合训练1.当代数式a +b 的值为3时,代数式2a +2b+1的值是 ( )A .5B .6C .7D .82.用换元法解方程(x 2+x) 2+2(x 2+x)-1=0,若设y=x 2+x ,则原方程可变形为 ( )A .y 2+2y+1=0B .y 2-2y+1=0C .y 2+2y -1=0D .y 2-2y -1=03.当x=1时,代数式a x 3+bx+7的值为4,则当x=-l 时,代数式a x 3+bx+7的值为A .7B .10C .11D .12 ( )4.若方程组36133x y k x y +=+⎧⎨+=⎩的解x ,y 满足0<x+y<1,则k 的取值范围是 ( ) A .-4<k<0 B .-1<k<0 C .0<k<8 D .k>-45.(08芜湖)已知113x y -=,则代数式21422x xy y x xy y----的值为_________. 6.已知x 2-2x -1=0,且x<0,则1x x -=__________. 7.如果(a 2+b 2) 2-2(a 2+b 2)-3=0,那么a 2+b 2=_________.8.如图,在高2米,坡角为30°的楼梯表面铺地毯,则地毯长度至少需________米.9.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm ,则正方形A ,B ,C ,D 的面积之和为__________cm 2.10.如图,ABCD 是各边长都大于2的四边形,分别以它的顶点为圆心、1为半径画弧(弧的端点分别在四边形的相邻两边上),则这4条弧长的和是__________.11.如图,半圆A 和半圆B 均与y 轴相切于点O ,其直径CD 、EF 均和x 轴垂直,以O 为顶点的两条抛物线分别经过点C 、E 和点D 、F ,则图中阴影部分的面积是________.12.若买铅笔4支,日记本3本,圆珠笔2支共需10元,若买铅笔9支,日记本7本,圆珠笔5支共需25元,则购买铅笔、日记本、圆珠笔各一样共需_________元.13.(08烟台)已知x(x -1)-(x 2-y)=-3,求x 2+y 2-2xy 的值.14.(07泰州)先化简,再求值:2224124422a a a a a a⎛⎫--÷ ⎪-+--⎝⎭,其中a 是方程x 2+3x+1=0的根.15.解方程(1)(x 2-1) 2-5(x 2-1)+4=0 (2)x 4-x 2-6=0 (3)228011x x x x ⎛⎫⎛⎫--= ⎪ ⎪++⎝⎭⎝⎭为了解方程(x 2-1) 2-5(x 2-1)+4=0.我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则原方程可化为y 2-5y+4=0①.解得y 1=1,y 2=4.当y=1时,x 2-1=1,∴x 2=2,∴x =y=4时,x 2-1=4,∴x 2=5,∴x =.∴1x2x =3x =4x =.解答问题:(1)填空:在由原方程得到方程①的过程中,利用_______法达到了降次的目的,体现了________的数学思想;(2)用上述方法解方程:x 4-x 2-6=0.参考答案1.C 2.C 3.B 4.A 5.4 6.2 7.3 8.2+2+ 9.4910.2π 11.2π12.513.原题化简得x -y=3,∴x 2+y 2-2xy=(x -y) 2=32=9.14.解:原式=()()()()()22222121222222a a a a a a a a a a a ⎡⎤+---+⎛⎫+⨯=+⨯⎢⎥ ⎪---⎝⎭-⎢⎥⎣⎦ ()()231322a a a a +==+a 是方程x 2+3x+1=0的根,∴a 2+3a +1=0,∴a 2+3a =-1,∴原式=-12.15.(1)换元 整体(2)设x 2=y 则原方程可化为y 2-y -6=0,解得y 1=3,y 2=-2<0(舍去)∴当y=3时,x 2=3,∴x =x =。

初中数学常见的思想方法

初中数学常见的思想方法

初中数学常见的思想方法专门与一样的数学思想:关于在一样情形下难以求解的问题,可运用专门化思想,通过取专门值、专门图形等,找到解题的规律和方法,进而推广到一样,从而使问题顺利求解。

常见情形为:用字母表示数;专门值的应用;专门图形的应用;用专门化方法探求结论;用一样规律解题等。

整体的数学思想:所谓整体思想,确实是当我们遇到问题时,不着眼于问题的各个部分,而是有意识地放大考虑问题的视角,将所需要解决的问题看作一个整体,通过研究问题的整体形式、整体结构、整体与局部的内在联系来解决问题的思想。

用整体思想解题时,是把一些彼此独立,但实质上又相互紧密联系的量作为整体来处理,一定要善于把握求值或求解的问题的内在结构、数与形之间的内在结构,要敏捷地洞悉问题的本质,有时也不要舍弃直觉的作用,把注意力和着眼点放在问题的整体上。

常见的情形为:整体代入;整式约简;整体求和与求积;整体换元与设元;整体变形与补形;整体改造与合并;整体构造与操作等。

分类讨论的数学思想:也称分情形讨论,当一个数学问题在一定的题设下,其结论并不唯独时,我们就需要对这一问题进行必要的分类。

将一个数学问题依照题设分为有限的若干种情形,在每一种情形中分别求解,最后再将各种情形下得到的答案进行归纳综合。

分类讨论是依照问题的不同情形分类求解,它表达了化整为零和积零为整的思想与归类整理的方法。

运用分类讨论思想解题的关键是如何正确的进行分类,即确定分类的标准。

分类讨论的原则是:(1)完全性原则,确实是说分类后各子类别涵盖的范畴之和,应当是原被分对象所涵盖的范畴,即分类不能遗漏;(2)互斥性原则,确实是说分类后各子类别涵盖的范畴之间,彼此互相独立,不应重叠或部分重叠,即分类不能重复;(3)统一性原则,确实是说在同一次分类中,只能按所确定的一个标准进行分类,即分类标准统一。

分类的方法是:明确讨论的对象,确定对象的全体,确立分类标准,正确进行分类,逐步进行讨论,猎取时期性结果,归纳小结,综合得出结论。

数学八上整体思想总结人教版

数学八上整体思想总结人教版

数学八上整体思想总结人教版数学八上整体思想总结人教版是一本针对初中八年级学生编写的数学教材,旨在帮助学生系统地学习和掌握数学的基础知识与方法。

在这本教材中,整体思想主要包括数与式的应用、图形的初步认识、数学思想方法的培养、实际问题的建模与解决等方面。

首先,数与式的应用是整个教材的重要内容之一。

通过学习数与式的关系与应用,学生能够更好地理解数的概念和运算规则,掌握简单的代数表达式的运算与求值方法。

同时,教材还强调了将数与实际问题相联系,通过实际问题的解决,培养学生的抽象思维能力和解决问题的能力。

其次,图形的初步认识也是整本教材的重点。

教材中通过引入图形的定义和基本性质,让学生了解到数学与图形之间的关系,并通过图形的变换、相似、对称等内容,培养学生的观察力、想象力和推理能力。

此外,教材还引入了坐标系的概念和利用坐标进行图形分析的方法,为学生打下数学几何的基础。

此外,在整个教材中,数学思想方法的培养也是非常重要的。

教材注重培养学生的数学思维和解决问题的能力,通过引导学生观察、发现、总结、归纳和推理,培养学生的逻辑思维和创造思维能力,鼓励学生自主学习和探究。

同时,教材还引入了多种解题方法和思路,培养学生多样化的解题思维,提高解决问题的灵活性和创造性。

最后,实际问题的建模与解决是整个教材的亮点之一。

教材中提供了大量的实际问题,并通过数与式的应用、图形的初步认识等内容,引导学生将实际问题转化为数学问题,并提供解决问题的方法和思路。

这不仅帮助学生加深对数学知识的理解,而且培养了学生的问题意识和解决问题的能力,为学生将来解决实际问题奠定了基础。

综上所述,数学八上整体思想总结人教版通过数与式的应用、图形的初步认识、数学思想方法的培养、实际问题的建模与解决等方面,帮助学生全面理解和掌握数学的基础知识和方法,培养学生的思维能力和解决问题的能力,为将来的学习和发展打下良好的基础。

常用的数学思想方法简介

常用的数学思想方法简介

转化思想:我们在解题中的困难,一般来说,都是或由于这个问题比较复杂,或由于这个问题不太熟悉。当你遇到较复杂或者你从未见过的一些题目时,一定别害怕,仔细分析,往往能把问题转化成另一种你所熟知的问题,变换其叙述的方式,或改变思考的角度,或把它转化成另一种你所熟悉的问题,从而使问题获得解决,这种思考方法,我们称之为转化思想。
量不变思想:在较复杂的应用题、数学竞赛及智力趣题中,当遇到问题中的某些条件前后发生变化时,有的学生往往抓不住数量关系,无从下手列式。对这类题目,按通常的方法(分析法、综合法、线段图示法、类比法等)进行分析,往往难以奏效。如若采取“抓不变量”的思路,在数量关系的分析中,集中全力抓住“变”中“不变”的量作为突破口,常可使问题迎刃而解。
特殊化思想:看上去似乎很难的某些问题,采用传统的方法去解相当麻烦,但是我们假若放开思想,从特殊情况入手去分析,就有可能使问题迎刃而解。我们称这种思想方法为特殊化思想。由于特殊问题常常比较简单,而且特殊问题的解决孕育着一般问题的解决,因此,特殊化是一种常用的解题思想和探索解题途径的重要方法。
数形结合思想:就是通过“数”与“形”之间的对应、转化来解决数学问题的思想。所谓“数”,就是指数或式,所谓“形”,就是指图形或图像Байду номын сангаас“数”与“形”之间互相依存,对应:“数”是“形”的抽象和概括,“形”是“数”的几何表现;同时,在一定的条件下,它们又可以互相转化:“数”借助于图形的性质,可以使许多抽象的概念和数量关系直接化、形象化、简单化,而“形”的问题经过数量化处理,并借助于计算,可以使较深的问题归结为较容易处理的数量关系来研究。
常用的数学思想方法简介
整体思想:也就是从整体上考虑题目中的数量关系及性质的方法。运用整体思想解题可使我们不纠缠于局部细节,而能拓宽思路,开阔眼界,洞察题目中的整体与局部的关系。

七年级数学培优专题:整体思想

七年级数学培优专题:整体思想
七年级数学培优专题 整体思想
目 录
• 整体思想概述 • 整体思想的基本概念 • 整体思想在解题中的应用 • 整体思想的培养与提高 • 整体思想在数学竞赛中的应用 • 总结与展望
01
整体思想概述
整体思想的定义
01
整体思想是指从整体的角度出发 ,将多个部分或要素视为一个整 体,对其进行全面、系统的分析 和处理。
促进知识整合
整体思想有助于学生将所 学知识进行整合,形成完 整的知识体系,加深对数 学本质的理解。
整体思想在数学中的应用
代数问题
在代数问题中,整体思想常用于因式 分解、方程组的求解等,通过将问题 看作一个整体,简化计算过程。
几何问题
函数问题
在函数问题中,整体思想常用于分析 函数的性质和图像,通过从整体角度 把握函数的规律,更好地理解函数的 本质。
03
整体思想在解题中的应 用
代数题中的应用
代数方程组的求解
通过将方程组视为一个整 体,利用消元法或代入法 求解,避免了逐一解每个 方程的繁琐过程。
代数式的化简
将复杂的代数式视为一个 整体,运用合并同类项、 提取公因式等技巧进行化 简,简化了解题过程。
代数式的变形
通过观察代数式的整体结 构,运用整体代换、整体 约简等方法,快速找到解 题思路。
06
总结与展望
总结整体思想的内容与意义
整体思想概述
整体思想是一种重要的数学思维方式 ,它强调从整体的角度看待问题,通 过全面分析、综合运用知识点,寻找 解题的突破口。
整体思想的意义
整体思想有助于培养学生的逻辑思维 、创新思维和问题解决能力,对于提 高学生的数学素养和应对复杂问题的 能力具有重要意义。
对未来学习的展望

数学解题中的思想方法——整体思维和发散思维

数学解题中的思想方法——整体思维和发散思维

数学解题中的思想方法——整体思维和发散思维知识技能梳理:1、整体思维:整体思维方法在解题中,不是着限于问题的各个组成部分,而是将要解决的问题看作为一个整体。

具体方法:(1)整体代入,直奔终点;(2)整体把握,各个击破;(3)整体补形,变换角度。

2、发散思维:发散思维具有多向性、变异性、独特性的特点。

在内容上具有变通性和开放性,形式多样。

解题中涉及的主要发散思维模式,其涵义概括如下:题型发散——保持原命题发散的特点,变换题型和命题形式;解法发散——从不同角度、不同侧面解答问题;综合发散——将分析、归纳、综合等多种思维方法进行综合应用,解决较复杂的问题,使知识系统化,强调灵活应用。

发散思维还有逆向思维、迁移思维、分解思维、构造思维等等。

典型例题剖析:例1、设{ EMBED Equation.KSEE3 \* MERGEFORMAT |{}n a 是由正数组成的等比数列,是其前项和,证明:答案:略例2、如图,是直三棱柱,过点的平面和平面的交线记作。

(1)判定直线和的位置关系,并证明;(2)若,求顶点到直线的距离。

答案:(1);(2)例3、过抛物线顶点,任作互相垂直的两条弦交此抛物线于两点,求证:此两点连线的中点轨迹仍为一抛物线。

答案:略例4、已知复数,若是常数,,求满足的点的轨迹方程。

答案:当时,轨迹为椭圆,方程为;当时,轨迹为线段,方程是例5、如果正实数满足,求的最大值。

答案:A 1B 1C 1 A BC例6、对于函数,若存在,使成立,则称为的不动点。

已知函数(1)当时,求函数的不动点;(2)若对任意实数,函数恒有两个相异的不动点,求的取值范围。

答案:(1);(2)例7、如图,且有一般地,求:(1)向量对应的复数,;(2)向量对应的复数;(3) 答案:(1)(2)(3)自我测试作业:1、设复数满足等式,且,又已知复数使得为实数,问复数在复平面上的对应的点的集合是什么图形?并说明理由。

答案:以为圆心,1为半径的圆,除两点。

人教版九年级数学上册《初中数学思想之整体思想》教学设计

人教版九年级数学上册《初中数学思想之整体思想》教学设计

活动三:放开眼界,整体观察例1、(08杭州中考)小张同学根据某媒体上报道的一张条形统计图,在随笔中写道:“今年在我市的中学生艺术节上,参加合唱比赛的人数比去年激增”。

小张同学的这种说法对吗?为什么?师:数学源于生活,又运用于生活。

所以生活中的一些哲理,在数学中也会得到极大的体现。

那么今天我们来研究研究数学中的整体思想,看看是否也能做到放开眼界整体观察呢?老师板书:整体思想老师带领学生一起看题读题,并简单介绍条形统计图。

让学生在讲义的自我思考部分写下自己第一时间的思考结果。

老师在学生间游走,观察学生所得到的思考结果。

比较认同和不认同两种答案,引领学生发现造成两种不同答通过一个简单的统计图观察题调动学生尝试的积极性,并将整体思想从成语故事中的哲理直接联系到数学问题,让学生对数学问题倍感亲切。

最重要的让学生对数路(1、先拆开二次项及一次项2、整体观察,利用完全平方公式运算)进行比较。

老师引导学生给出结论: 1、整体观察出完全平方形式;2、以(x-y )这一共同特征作为局部整体。

眼界,整体观察。

说明普遍数学问题中都蕴含着数学中的整体思想。

活动四:化零为整,整体补形 例3、如图 ,⊙A ,⊙B ,⊙C 两两不相交,半径都是 0.5 cm ,则图中阴影部分的面积是( )212cm A π、28cm B π、师:由上一题,我们可知除了整体观察之外,或许我们处理数学问题的时候,能将有共同特征的局部视为一个整体,从而做到局部分析,整体把握。

让我们再一次回到几何部分,看看整体思想还能不能有更深层次的应用呢? 学生练习2分钟,老师通过上一题,从整体观察上升到局部整体性的应用。

备战高考数学专题讲义 第7讲:数学思想方法之整体思想探讨

备战高考数学专题讲义 第7讲:数学思想方法之整体思想探讨

【备战2013高考数学专题讲座】 第7讲:数学思想方法之整体思想探讨数学思想是指人们对数学理论和内容的本质的认识,数学方法是数学思想的具体化形式,实际上两者的本质是相同的,差别只是站在不同的角度看问题。

通常混称为“数学思想方法”。

常见的数学思想有:建模思想、归纳思想,分类思想、化归思想、整体思想、数形结合思想等。

整体思想就是从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理。

整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用,整体代入、叠加叠乘处理、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用。

结合2012年全国各地高考的实例,我们从下面四方面探讨整体思想的应用:(1)整体运算;(2)整体代换;(3)整体设元;(4)整体变形、补形。

一、整体运算:整体运算是着眼结构的整体性,根据问题的条件进行运算(包括整体配方、求导等),达到简化解题思路,确定解题的突破口或者总体思路。

典型例题:例1. (2012年全国课标卷理5分)设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则PQ 最小值为【 】()A 1ln 2- ()Bln 2)- ()C 1ln 2+ ()D ln 2)+【答案】B 。

【考点】反函数的性质,导数的应用。

【解析】∵函数12xy e =与函数ln(2)y x =互为反函数,∴它们的图象关于y x =对称。

∴函数12x y e =上的点1(,)2x P x e 到直线y x =的距离为d =设函数1()2x g x e x =-,则1()12x g x e '=-,∴min ()1ln 2g x =-。

∴min d =。

∴由图象关于y x =对称得:PQ最小值为min 2ln 2)d =-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整体意识的运用
整体意识是在全局的观点上看问题,整体把握条件和结论之间的联系,或将条件中的某一部分、几何图形中的某一部分视作整体用于问题的研究,或将所要研究的结论视作一个整体,或问题的处理过程中,用整体的意识探寻解题策略,它与分解意识相互联系也相互转化。

例1 设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝
⎭,则)122sin(π+a 的值为 . 分析:记6παβ+
= ,则22124ππαβ+=-。

由α为锐角,可得263ππβ<<。

由4cos()cos 65παβ+==
,可得3sin 5
β==。

从而2247sin 22sin cos ,cos 212sin 2525βββββ===-=,
sin(2)sin(2)sin 2cos cos 2sin 1244450π
πππαβββ+=-=-= 注:通过将题中的部分“式子”看成一个整体,实现问题的转化。

例2 求函数22(1)3sin ()1
x x f x x ++=+的最大值和最小值之和. 分析:若直接求最值是非常困难的,结论不是分别求最大值和最小值,而求整体探求最大值和最小值之和,故而可尝试研究函数f(x)的对称性,再从整体角度探究两最值之和 由于22222(1)sin 213sin 23sin ()1111x x x x x x x f x x x x ++++++===++++,记223sin ()1
x x g x x +=+,则易证g(x)为奇函数,从而max min ()()0g x g x +=, 因此max min max min max min ()()[1()][1()]2()()2f x f x g x g x g x g x +=+++=++=, 即M+m=2。

注:将所求结论看成一个整体,
例3 已知一个长方体的表面积为48cm 2,所有棱长之和为36cm ,试求该长方体体积的取值范围.
分析:设长方体的长、宽、高分别为a,b,c ,则有,,0,24,9.a b c ab bc ca a b c >⎧⎪++=⎨⎪++=⎩
从而 2
9,24()924.a b c ab c a b c c +=-=-+=-+
故a,b 是方程22(9)(924)0t c t c c --+-+=两正实根。

因此有1212
0,0,0.t t t t ∆≥⎧⎪+>⎨⎪>⎩可求得
1≤c ≤5. 设长方体体积为V ,则32924([1,5])V abc c c c c ==-+∈,
由2318243(2)(4)V c c c c '=-+=--可得当c ∈[1,2]和[4,5]时,0V '≥,当c ∈
[2,4]时,0V '≤, 所以函数V 有在区间[1,2]和[4,5]上单调递增,在区间[2,4]上单调递减,故max min max{(2),(5)}20,min{(1),(4)}16V V V V V V ====,从而体积的取值范围为
[16,20]
另外,也可以从整体角度出发,运用基本不等式消去a,b ,获得c 的取值范围.
练习:
1.求不等式338630(1)1
x x x x +-->++的解集. 解:由函数y =t 3+3t 为奇函数,且为递增函数,转化为2,(1,1)(,2)1
x x x >∈--∞-+ 2.若实数x ,y
满足x -=x 的取值范围为 .
,(0,0)a b a b ==≥≥,则有x=a 2+b 2,且a 2+b 2-4a=2b 。

亦即(a-2)2+(b-1)2=5 (a≥0, b≥0), 表示平面直角坐标系aob 中的圆弧,a 2+b 2表示该圆弧上点到原点之距的平方,其范围为[4,20]或0.
另:三角换元;柯西不等式。

3.已知A , B , C 是△ABC 的三内角,求证:
sin sin sin 3sin sin sin sin sin sin sin sin sin A C B B C A A B C C A B
++≥+-+-+-; 解:设a ,b ,c 是△ABC 的三边长,由正弦定理,要证原式成立,即证
3a c b b c a a b c c a b
++≥+-+-+-
令a +b -c =x , b +c -a =y , c +a -b =z ,则,,222
x z y x z y a b c +++===, 从而, 1()21[()()()]32a c b x z x y z y b c a a b c c a b y z x x y z y x z y x y z z x +++++=+++-+-+-=+++++≥。

相关文档
最新文档