智能循迹避障小车报告
智能循迹小车___设计报告

智能循迹小车___设计报告设计报告:智能循迹小车一、设计背景智能循迹小车是一种能够通过感知地面上的线条进行导航的小型机器人。
循迹小车可以应用于许多领域,如仓库管理、物流配送、家庭服务等。
本设计旨在开发一款功能强大、性能稳定的智能循迹小车,以满足不同领域的需求。
二、设计目标1.实现循迹功能:小车能够准确地识别地面上的线条,并按照线条进行导航。
2.提供远程控制功能:用户可以通过无线遥控器对小车进行控制,包括前进、后退、转向等操作。
3.具备避障功能:小车能够识别和避开遇到的障碍物,确保行驶安全。
4.具备环境感知功能:小车能够感知周围环境,包括温度、湿度、光照等参数,并将数据传输给用户端。
5.高稳定性和可靠性:设计小车的硬件和软件应具备较高的稳定性和可靠性,以保证长时间的工作和使用。
三、设计方案1.硬件设计:(1) 采用Arduino控制器作为主控制单元,与传感器、驱动器等硬件模块进行连接和交互。
(2)使用红外传感器作为循迹传感器,通过检测地面上的线条来实现循迹功能。
(3)使用超声波传感器来检测小车前方的障碍物,以实现避障功能。
(4)添加温湿度传感器和光照传感器,以提供环境感知功能。
(5)将无线模块与控制器连接,以实现远程控制功能。
2.软件设计:(1) 使用Arduino编程语言进行程序设计,编写循迹、避障和远程控制的算法。
(2)设计用户界面,通过无线模块将控制信号发送给小车,实现远程控制。
(3)编写数据传输和处理的程序,将环境感知数据发送到用户端进行显示和分析。
四、实施计划1.硬件搭建:按照设计方案中的硬件模块需求,选购所需元件并进行搭建。
2.软件开发:根据设计方案中的软件设计需求,编写相应的程序并进行测试。
3.功能调试:对小车的循迹、避障、远程控制和环境感知功能进行调试和优化。
4.性能测试:使用不同场景和材料的线条进行测试,验证小车的循迹性能。
5.用户界面开发:设计用户端的界面,并完成与小车的远程控制功能的对接。
智能寻迹小车实验报告

智能寻迹小车实验报告
实验目的:
设计一个智能寻迹小车,能够依据环境中的黑线自主行驶,并避开障碍物。
实验材料:
1. Arduino开发板
2. 电机驱动模块
3. 智能车底盘
4. 红外传感器
5. 电源线
6. 杜邦线
7. 电池
实验步骤:
1. 按照智能车底盘的说明书将车底盘组装起来。
2. 将Arduino开发板安装在车底盘上,并与电机驱动模块连接。
3. 连接红外传感器到Arduino开发板上,以便检测黑线。
4. 配置代码,使小车能够依据红外传感器检测到的黑线自主行驶。
可以使用PID控制算法来控制小车的速度和方向。
5. 测试小车的寻迹功能,可以在地面上绘制黑线,观察小车是否能够准确地跟随黑线行驶。
6. 根据需要,可以添加避障功能。
可以使用超声波传感器或红外避障传感器来检测障碍物,并调整小车的行驶路线。
实验结果:
经过实验,可以发现小车能够依据红外传感器检测到的黑线自主行驶,并能够避开障碍物。
小车的寻迹功能和避障功能能够实现预期的效果。
实验总结:
本次实验成功设计并实现了智能寻迹小车。
通过使用Arduino 开发板、电机驱动模块和红外传感器等材料,配合合适的代码配置,小车能够准确地跟随黑线行驶,并能够避开障碍物。
该实验展示了智能小车的基本原理和应用,为进一步研究和开发智能车提供了基础。
智能循迹避障小车实践报告

电气工程与自动化学院课程设计报告(嵌入式技术实践一)题目:****专业班级:****学号:20学生姓名:****指导老师:****2012年 7 月 31 日摘要本课题是基于P89C51单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶,能够检测周围的障碍物寻找最佳路以免小车在行驶的过程中遭到损坏。
小车系统以P89C51单片机为系统控制处理器;采用红外传感获取赛道的信息,利用超声波测距模块判断障碍物,来对小车的方向和速度进行控制。
此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。
关键词:智能循迹避障小车、嵌入式系统。
目录第一章绪论 (4)1.1课题背景 (4)1.2智能汽车的发展现状 (5)1.2.1 国内发展情况 (5)1.2.2 国外的发展情况 (5)1.2.3 智能车竞赛现状 (6)1.3实践的目的和意义 (7)第二章系统方案设计 (8)2.1系统设计目标 (8)2.2系统设计思想 (8)2.3系统的总体结构 (8)2.4系统硬件设计 (9)2.4.1 小车设计 (9)2.4.2 电源模块设计 (9)2.4.3 驱动模块设计 (10)2.4.4 红外传感模块设计 (10)2.4.5 测距模块设计 (10)2.5系统软件设计 (11)2.5.1 编程环境的介绍 (11)2.5.2 电机控制程序设计 (12)2.5.3 循迹程序设计 (12)2.5.4 避障程序设计 (12)第三章系统的调试与分析 (15)3.1系统硬件调试 (15)3.2系统软件调试 (15)附录 (16)第一章绪论1.1课题背景当今世界,传感器技术和自动控制技术正在飞速发展,机械、电气和电子信息已经不再明显分家,自动控制在工业领域中的地位已经越来越重要,“智能”这个词也已经成为了热门词汇。
现在国外的自动控制和传感器技术已经达到了很高的水平,特别是日本,比如日本本田制作的机器人,其仿人双足行走已经做得十分逼真,而且具有一定的学习能力,还据说其智商已达到6岁儿童的水平。
《循迹避障小车设计开题报告含提纲2100字》

《循迹避障小车设计》开题报告一、研究背景随着IT领域的崛起,智能汽车成为了热点。
智能汽车,即智能化地根据人工所要求或者结合轻人工而不花费过多的人力而做出对应的标准动作。
它可以应用于运输业和生产业中,实现智能化管理和生产。
智能汽车的成为了世界各国的热点,促使世界各国不断地对它进行积极研究和开发。
各地的研究者旨在能设计和开发出更高的人工智能技术,形成一个稳定的人工智能系统,从而可以将人工智能运用在更加复杂的应用环境。
在不久的将来,人工智能机器人的数量将会快速膨胀。
智能车辆,将会受到越来越多的人关注,同时也不断促进人工智能移动机器人的发展。
智能小车,采用各种集成技术。
该设计是一个高新技术集成,能感知周边环境的参数变化而通过自身的运作而做出符合情况的反应,具备极高的综合性和灵活性。
目前,智能车辆具备的功能多种多样,能自动报警,能保持一定安全距离而进行自动维护,能控制自身速度来巡航,能自动识别前方障碍物和能自动制动等,这些功能都体现了它的综合性和灵活性。
智能车辆必须具备同时又是最基础的是能智能化循迹和智能化避障。
二、研究目的及意义21世纪是个不断朝着智能方向发展的时代,标志我们的世界会不断地趋向于智能化,进入人工智能的时代。
智能汽车早已开始发展,它是由智能汽车和智能道路构成的,目前尚无智能道路的技术条件,但在技术层面上却是可行的。
事实上,在智能汽车的目标达到以前,很多辅助驾驶系统都被广泛地运用到了车辆中,比如智能雨刮,它能够自动感知降雨,并能自动打开和关闭;在夜间灯光不充足的时候,将自动打开前照灯;智能空调系统,根据人体的体温,对空气流量、温度进行自动调节;智能悬挂系统,也叫主动悬挂,能够根据道路状况,自动调节悬挂行程,降低车辆的碰撞;“防睡眠”,通过监控司机的眼睛,判断司机的疲劳程度,并在必要的时候,自动停止工作。
什么叫智能?智能就是无需花费过大的人力物力去完成既定的任务或者是去完成人工无法完成的任务,丰富了人的想象力和拓展了人探索世界的能力。
循迹、避障、寻光小车实验报告

简易智能小车摘要:本系统基于自动控制原理,以MSP430为控制核心,用红外传感器、光敏三极管、霍尔传感器、接近开关之间相互配合,实现了小车的智能化,小车完成了自动寻迹、避障、寻光入库、计时、铁片检测、行程测量的功能。
本系统采用液晶LCD12864显示数据,良好的人机交流界面,显示小车行程的时间、铁片中心线离起始线的距离和铁片的个数。
整个系统控制灵活,反应灵敏。
关键词:MSP430 传感器 LCD12864目录一、方案论证与比较 (3)1、题目任务要求及相关指标的分析 (3)2、方案的比较与选择 (3)(1)控制单元的选择 (3)(2)直流电机驱动电路的选择 (3)(3)轨迹探测模块选择 (3)(4)金属片的探测 (3)(5)路程测量方案的选择 (4)(6)避障方案的选择 (4)(7)小车寻光方案的选择 (4)(8)电源的选择 (4)(9)刹车机构功能方案比较 (5)二、系统总体设计方案及实现方框图 (5)1、系统总体设计方案 (5)2、系统实现框图 (5)三、理论分析与计算 (5)1、铁片中心线距离的测量 (5)2、小车行程时间的测量 (5)四、主要功能电路设计 (6)1、小车循迹模块 (6)2、小车检测铁片模块 (6)3、小车测距模块 (6)4、小车避障模块 (6)5、小车寻光模块 (6)6、直流电机驱动模块 (7)五、系统软件的设计 (8)六、测试量数据与分析 (8)1、测量数据 (8)2、数据分析 (8)参考文献 (8)一、方案论证与比较1.题目任务要求及相关指标的分析题目要求小车按照规定的跑道行驶,同时检测在跑道下的铁片,在检测到最后一块铁片时小车会有连续的声光显示;后又可以准确的避开障碍,而且不与障碍物接触;最后,在光源的引导下,进入车库。
智能小车有显示功能,可以显示检测到铁片的数量,金属片距起点的距离,行驶的总时间。
整个行驶过程中的总时间不大于90秒,小车在行驶90秒后会自动停车。
2. 方案的比较与选择(1)控制单元的选择方案一:利用单片机与FPGA配合使用。
智能循迹避障小车实习报告

智能循迹避障小车实习报告一、实习背景及目的随着科技的不断发展,嵌入式系统在各个领域的应用越来越广泛。
智能小车作为一种典型的嵌入式系统应用产品,不仅可以锻炼学生的动手能力,还能深入理解嵌入式系统的原理和应用。
本次实习旨在让学生通过设计制作智能循迹避障小车,掌握嵌入式系统的基本原理,提高动手实践能力,培养创新意识和团队协作精神。
二、实习内容与过程1. 实习准备在实习开始前,我们先学习了嵌入式系统的基本原理,了解了微控制器(如STM32)的工作原理和编程方法。
同时,我们还学习了如何使用相关开发工具(如Keil、CubeMX)进行程序开发和仿真。
2. 设计思路根据实习要求,我们确定了智能循迹避障小车的主要功能:远程控制、循迹、避障。
为了实现这些功能,我们需要选用合适的微控制器、传感器、电机驱动模块等硬件,并编写相应的软件程序。
3. 硬件设计我们选用了STM32F103C8T6作为主控制器,它具有高性能、低功耗的特点。
为了实现循迹功能,我们采用了红外传感器来检测地面上的黑线。
为了实现避障功能,我们采用了超声波传感器来检测前方的障碍物。
此外,我们还选用了两个直流电机来驱动小车行驶,并通过L298N驱动模块来控制电机转动。
4. 软件设计软件设计主要包括初始化配置、循迹算法实现、避障算法实现和远程控制实现。
我们使用了CubeMX工具对STM32的硬件资源进行配置,包括时钟、GPIO、ADC、PWM 等。
然后,我们编写了循迹算法和避障算法,通过不断地读取红外传感器和超声波传感器的数据,调整小车的行驶方向和速度,实现循迹和避障功能。
最后,我们通过蓝牙模块实现了手机APP对小车的远程控制。
5. 实习成果经过一段时间的紧张设计与制作,我们的智能循迹避障小车终于完成了。
在实习总结会议上,我们进行了演示,展示了小车的循迹、避障和远程控制功能。
通过实习,我们不仅掌握了嵌入式系统的设计方法,还提高了团队协作能力。
三、实习收获与反思通过本次实习,我们深入了解了嵌入式系统的设计原理,学会了使用相关开发工具和硬件设备,提高了动手实践能力。
智能小车实验报告心得(3篇)

第1篇一、引言随着科技的不断发展,人工智能技术逐渐渗透到我们生活的方方面面。
作为人工智能的一个典型应用,智能小车实验为我们提供了一个将理论知识与实践操作相结合的平台。
在本次智能小车实验中,我深刻体会到了理论知识的重要性,同时也感受到了动手实践带来的乐趣和成就感。
以下是我对本次实验的心得体会。
二、实验目的本次实验旨在通过设计、搭建和调试智能小车,让学生掌握以下知识:1. 传感器原理及在智能小车中的应用;2. 单片机编程及接口技术;3. 电机驱动及控制;4. PID控制算法在智能小车中的应用。
三、实验过程1. 设计阶段在设计阶段,我们首先对智能小车的功能进行了详细规划,包括自动避障、巡线、遥控等功能。
然后,根据功能需求,选择了合适的传感器、单片机、电机驱动器等硬件设备。
2. 搭建阶段在搭建阶段,我们按照设计图纸,将各个模块连接起来。
在连接过程中,我们遇到了一些问题,如电路板布局不合理、连接线过多等。
通过查阅资料、请教老师,我们逐步解决了这些问题。
3. 编程阶段编程阶段是本次实验的核心环节。
我们采用C语言对单片机进行编程,实现了小车的基本功能。
在编程过程中,我们遇到了许多挑战,如传感器数据处理、电机控制算法等。
通过查阅资料、反复调试,我们最终完成了编程任务。
4. 调试阶段调试阶段是检验实验成果的关键环节。
在调试过程中,我们对小车的各项功能进行了测试,包括避障、巡线、遥控等。
在测试过程中,我们发现了一些问题,如避障效果不稳定、巡线精度不高、遥控距离有限等。
针对这些问题,我们再次查阅资料、调整程序,逐步优化了小车的性能。
四、心得体会1. 理论与实践相结合本次实验让我深刻体会到了理论与实践相结合的重要性。
在实验过程中,我们不仅学习了理论知识,还通过实际操作,将所学知识应用于实践,提高了自己的动手能力。
2. 团队合作在实验过程中,我们充分发挥了团队合作精神。
在遇到问题时,我们互相帮助、共同探讨解决方案,最终完成了实验任务。
智能小车避障实习报告

一、实习背景随着科技的不断发展,智能机器人技术逐渐成为研究热点。
智能小车作为智能机器人的一种,在工业、家庭、教育等领域具有广泛的应用前景。
为了提高我国智能机器人技术的研发水平,本实习报告以智能小车避障系统为研究对象,通过实际操作,掌握智能小车避障系统的设计、实现及调试方法。
二、实习目的1. 熟悉智能小车避障系统的组成及工作原理;2. 掌握智能小车避障系统的硬件设计、软件编程及调试方法;3. 提高实际动手能力和团队协作能力;4. 为今后从事智能机器人研发工作打下基础。
三、实习内容1. 系统概述本实习项目采用基于单片机的智能小车避障系统,主要包括以下模块:(1)传感器模块:超声波传感器、红外传感器;(2)控制器模块:单片机(如STC89C52);(3)执行器模块:电机驱动模块、电机;(4)电源模块:电池、电源管理芯片;(5)通信模块:无线通信模块(如nRF24L01)。
2. 硬件设计(1)传感器模块:采用超声波传感器和红外传感器,分别用于检测前方障碍物和地面上的标记线。
(2)控制器模块:选用STC89C52单片机作为控制器,负责处理传感器数据、生成控制指令,并通过无线通信模块与上位机进行数据交互。
(3)执行器模块:采用直流电机驱动模块,驱动电机实现小车的前进、后退、左转和右转。
(4)电源模块:采用锂电池作为电源,通过电源管理芯片实现电压稳定输出。
(5)通信模块:采用nRF24L01无线通信模块,实现小车与上位机之间的数据传输。
3. 软件编程(1)初始化:初始化单片机,配置端口、中断、定时器等。
(2)传感器数据处理:读取超声波传感器和红外传感器的数据,并进行处理。
(3)控制指令生成:根据传感器数据处理结果,生成控制指令,驱动电机实现小车避障。
(4)无线通信:实现小车与上位机之间的数据传输。
4. 系统调试(1)硬件调试:检查各模块连接是否正确,电源是否稳定,传感器信号是否正常。
(2)软件调试:通过串口调试工具,观察程序运行状态,调试程序错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要:本智能识别小车以STC89C52单片机为控制芯片,以直流电机,光电传感器,超声波传感器,电源电路以及其他电路构成。
系统由STC89C52通过IO口,通过红外传感器检测黑线,利用单片机输出PWM脉冲控制直流电机的转速和转向,循迹由TCRT5000型光电对管完成。
一、系统设计
1、小车循迹,避障原理
这里的循进是指小车在白色地板上寻黑线行走,通常采取的方法是红外探测法。
红外探测法,即利用红外a在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地板时,发生漫反射反射光被装在小车上的按收管按收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光,单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线。
红外探测器探测距离有限一殷最大不应超过3cm。
而避障则是通过超声波模块不断向前方发射超声波信号,通过接收反射回来的超声波信号,从而实现的避障。
当前方有障碍物时,超声波会向单片机串口发送一串数字,这些数字就是当前小车距离障碍物得距离。
当串口接收到信号时,会引发串口中断,单片机通过读取距离值,并且对此数值进行分析是不是距离小车很近,是的话就进行转向;否则继续循迹。
当小车遇到第一个障碍后,就计数一次,这样当遇到第二个障碍物时,小车就可以以不同的形式躲避障碍物了。
2、选用方案
(1):采用成品的小车地盘,通过改装来完成任务;
(2):采用STC89C52单片机作为主控制器;
(3):采用7V电源经7805稳压芯片降压后为其他芯片及器件供电。
(4):采用TCRT5000型红外传感器进行循迹;
(5):L298N作为直流电机的驱动芯片;
(6):通过对L298N使能端输入PWM来控制电机转速和转向;
3、系统机构框图如下所示:
二、硬件实现及单元电路设计与分析
1、微控制模块设计与分析
微控制器模块我们采用STC89C52。
该芯片采用双列直插是封装,便于焊接,性能比较稳定,而且在市场上也是比较廉价的单片机。
当按下启动健时整个系统开始工作。
其很据光电传感器把反馈回来的深测信号,单片机转向相应的程序,使小车前行和拐弯,根据红外传感器所传送来的数字信号,总结出黑线相对于车身的变化规律,判断出模型车所处的运行状态,能够判断出模型车是在直道还是弯道;并且很据道路的形状行驶,并向驱动芯片L298N愉出一定占空比的PWM信号驱动直流电机。
当小车检测到前方有障碍物,且距离达到二十厘米范围内时,小车按程序进行避障。
2,稳压电路的议计与分析
用7v电池供电,将7v电压降压、检压后分别分给单片机系统,驱动芯片,传感器系统以及其他芯片供电。
3、光电传感及电压比较模块设计与分析
LM339集成块采用C-14型封装LM339类似于增益不可调的运异放大器每个比较器有两个输入端和一个输出端,两个输入端一个称为同相愉入端,用“+”来表示,另一个称为反响输入端,用“一”表示。
用作比较两个电压时,任意一个输入端加一个固定电压做参考电压,另一端加一个待比较的信号电压当,当“+”端电压高于“--”端时.输出高电压,相当于输出低电压。
根据其原理,我们利用红外线在不同颜色的物体表面具有不同的发射性质的特点,在小车行驶过程中,不断的向地面发射红外光,当红外光遇到黑色的轨道时,反射光比较弱,被装在小车上的接收管收到,产生比较弱的光电流,当红外光遇到白色底板时,反射光比较强,产生比较大的光电流;该不同电流输入到比较器的“+”,经过比较处理,变为高低电平——轨道信号,传输给单片机,结合分析查询,通过控制小车循迹。
4、电机驱动及电机设计与分析
小车两侧轮各由一个直流电机控制,通过单片机控制电机驱动芯片L298N驱动,小车电机为直流电机,带有齿轮组;驱动电路采用电机驱动芯片L298N。
L298N为块集成电路,高电压,高电流,四通道驱动。
设计用来接收DTL或者TTL逻辑电平,驱动感性负载(比如继电器,直流和步进马达),和开关电源晶体管。
内部包含4通道逻辑驱动电路。
其额定工作电流为1A,最大可达1.5A。
Voss电压最小4.5V,最大可达36V;Vs电压最大值也是36V;经过实验,Vs电压应该比V oss电压高,否则有时会出现失控现象;所以,使用L298N 芯片充分发挥了它的功能。
能温定地驱动直流电机,且L298N可直接的对电机进行控制。
通过单片机的1/O输人改变芯片控制端的电平,即可以对电机进行正反转,从而实现转向。
电动机采用PWM(脉宽调制)电路控制,他与传统的控制电路的不同之处在于比较放大电路后接PWM电路和开关晶钵管VT,PWM电路是周期性恒定,他根据输入直流信号电平的大小,改变脉宽占空比,即脉宽高低电平宽度之比的电路。
当占空比改变时,晶钵管VT通、断时间改变。
则供给电动机的平均电流也跟右改变。
也就是说,要改变电动机的转速只需改变开关的占空比,信号的占空比形成了闭环控制。
能够比较精确地保证在各种道路形伏下所需要的模型车车速。
PWM的一个优点是从处理器到被控系统信号郁是数字形式的,无需进行数模转换。
让信号保待为数字形式可将噪声影响降到最小。
噪声只有在强到足以将逻辑1改变为逻粗0或有逻辑0改变为逻辑1时。
也才能对数字拍号产生影响,对噪声抵抗能力的增强是pWM 对于模拟控制的另外一个优点。
小车行驶时,由红外传感器检测出黑线相对于车身的位置,并将代表此位置关系的数字信号传输给单片机,单片机接收到信号之后做出相应的判断,根据黑线的位置偏移的距离大小,输出具有特定占空比的PwM信号,控制直流电机的转向,转速,停止。
跟踪前方的黑线,以消除车辆中心线和黑线之间的偏移距离。
同时,红外传感器又对黑线位置进行检测输送给单片机。
如此反复便实现了小车跟踪黑线进行行驶的目的。
同时,经传感器的信号经单片机判断,向驱动芯片L298N输出一定占空比的PwM信号羽动直流电机。
5、传感器的安装
考虑到设计要求,本次设计仅用4对光电传感器就能完成设计要求,中间两对传感器一直检测黑线,用来校正小车的寻迹路线,保证小车运行的直线性。
两侧的传感器用来检溯小车过线。
当四个传感器中只有中间某个脱离了黑线或者只有最外侧某个检测到黑线时,小车向对应方向做小的偏转。
当某测的两个传感器都检测到黑线,切另外一侧的两个脱离黑线时,小车向对应方向做大的偏转,保证小车不脱硫轨道。
三、软件实现
主程序设计
在小车系统控制软件的设计中主程序的任务是,完成单片机设备的初始化设计,包括幻I/O口的设置,脉冲宽度调制初始化设置,输入捕捉通道初始化设置,各变量和常量初始化;然后单片机进入查询状态,查询状态包括转向红外传感器输入端口查询,一旦传感器的状态发生变化,立即调用控制子程序改变电机转动方向及车速。
小车始终在黑线上行走井完成所以任务。
对标志位进行查询,该标志通过串口中断程序控制的,每次对障碍物与小车的距离进行查询比较,达到一定距离时,小车进行避障,并且计数,方便第二次遇到障碍是以另一种方式避障。
四:结论
通过各种方案的讨论及研究,和多次的整体软硬件结合研究,我们不断地对系统迸行优化。
使得智能小车能够完成各项功,能并在预计的时间内顺利到达要求位置。
五、结束语
我们的识别小车在完成设计要求的前提下充分考虑到成本等问短,在牲能和价格之问作了比较好的平街由于设计要求限制,所以我们没有在电路中增加多余的功能,但是我们仅留了各种硕件接口和软件子程序接口,方便以后的扩展和进一步的开发。