中考数学解题方法及提分突破训练:反证法专题(含解析)

合集下载

中考数学真题分类汇编及解析(二十二)定理、命题、反证法

中考数学真题分类汇编及解析(二十二)定理、命题、反证法
对顶角相等,故B是真命题,不符合题意;
平行四边形是中心对称图形,故C是真命题,不符合题意;
如果直线a∥c,b∥c,那么直线a∥b,故D是真命题,不符合题意.
2201
(2022•大庆中考)下列说法不正确的是( )
A.有两个角是锐角的三角形是直角或钝角三角形
B.有两条边上的高相等的三角形是等腰三角形
C.有两个角互余的三角形是直角三角形
当x﹣m=0时,不能直接除,而题干中给出的条件是x=m,此处不能直接除.
答案:④.
2202
(2022•无锡中考)请写出命题“如果a>b,那么b﹣a<0”的逆命题:如果b﹣a<0,那么a>b.
【解析】命题“如果a>b,那么b﹣a<0”的逆命题是“如果b﹣a<0,那么a>b”.
答案:如果b﹣a<0,那么a>b
B.调查全国中学生的视力情况,适合采用普查的方式
C.抽样调查的样本容量越小,对总体的估计就越准确
D.十字路口的交通信号灯有红、黄、绿三种颜色,所以开车经过十字路口时,恰好遇到黄灯的概率是
【解析】选A.A选项,三角形内角和为180°,故该选项符合题;
B.有一个角是直角的四边形是矩形,是假命题,本选项不符合题意;
C.对角线互相平分的四边形是菱形,是假命题,本选项不符合题意;
D.对角线互相垂直的矩形是正方形,是真命题,本选项符合题意.
2201
(2022•怀化中考)下列说法正确的是( )
A.相等的角是对顶角
B.对角线相等的四边形是矩形
C.三角形的外心是它的三条角平分线的交点
B、在同圆或等圆中,相等的圆周角所对的弧相等,原命题是假命题;
C、若a<b,c=0时,则ac2=bc2,原命题是假命题;
D、在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是 ,是真命题

数学反证法经典例题

数学反证法经典例题

数学反证法经典例题一、题目:假设“所有整数都是偶数”成立,则下列结论正确的是?A. 1是奇数B. 2是奇数C. 3是偶数D. 存在奇数(答案)C(注:在假设下,所有整数包括奇数也应被视为偶数,但此假设本身是错误的,此题考察反证法思维)二、题目:若声称“所有质数都是大于2的偶数”,则根据这一错误假设,下列哪个数不应被视为质数?A. 2B. 3C. 5D. 7(答案)B(注:在假设下,只有大于2的偶数被视为质数,但实际上3是质数且为奇数,此题同样考察反证法及质数定义)三、题目:假设“所有三角形的内角和不等于180度”,则以下哪个三角形的内角和在此假设下不可能成立?A. 等边三角形B. 直角三角形C. 钝角三角形D. 任意三角形(答案)D(注:根据几何学基本定理,任意三角形的内角和总是180度,此假设错误,用于考察反证法)四、题目:若有人认为“所有正整数的倒数都小于1”,则下列哪个数的倒数不符合这一错误假设?A. 1B. 2C. 3D. 4(答案)A(注:1的倒数是1,不小于1,此题考察反证法及对倒数概念的理解)五、题目:假设“所有平行线都会相交”,则根据这一错误假设,在平面几何中不可能存在的是?A. 两条平行线B. 两条相交线C. 一条直线和一个点D. 一个三角形(答案)A(注:平行线定义为不相交的直线,此假设与平行线定义相悖,考察反证法及平行线概念)六、题目:若声称“所有实数的平方都是正数”,则下列哪个数的平方不符合这一错误假设?A. 1B. -1C. 0.5D. -0.5(答案)B和D(注:负数和0的平方不是正数,但此题为单选题形式,更严谨的答案是指出存在多个不符合,若必须单选,可选B或D中的任意一个作为代表,此题考察反证法及实数平方性质)七、题目:假设“所有自然数的因数都只有1和它本身”,则根据这一错误假设,下列哪个数不符合这一条件?A. 1B. 2C. 3D. 4(答案)D(注:4除了1和4本身外,还有2作为因数,此假设实际上描述了质数的性质,但4不是质数,考察反证法及质数定义)八、题目:若有人认为“所有圆的周长与其直径的比值都不等于π”,则以下哪个圆的性质在此假设下不成立?A. 圆是闭合曲线B. 圆的对称性C. 圆的面积公式D. 圆的周长与直径之比是常数(答案)D(注:根据圆的定义,其周长与直径之比是π,此假设错误,考察反证法及对圆的基本性质的理解)。

2019中考数学专题练习-命题与证明反证法(含解析)

2019中考数学专题练习-命题与证明反证法(含解析)

2019备战中考数学专题练习-命题与证明反证法(含解析)一、单选题1.用反证法证明“四边形的四个内角中至少有一个不小于90°”时第一步应假设()A. 四个角中最多有一个角不小于90°B. 四个内角中至少有一个不大于90°C. 四个内角全都小于90°D. 以上都不对2.用反证法证明“若⊙O的半径为r,点P到圆心的距离d<r,则点P在⊙O的内部”首先应假设()A. d≤rB. d≥rC. 点P在⊙O的外部D. 点P在⊙O上或点P在⊙O的外部3.用反证法证明:在一个三角形中至少有一个内角小于或等于60°.证明过程中,可以先()A. 假设三个内角没有一个小于60°的角B. 假设三个内角没有一个等于60°的角C. 假设三个内角没有一个小于或等于60°的角D. 假设三个内角没有一个大于或等于60°的角4.用反证法证明“△ABC的三个内角中至少有一个内角大于或等于60°”,第一步应假设()A. 三角形的三个内角都小于60°B. 三角形的三个内角中至多有一个角大于或等于60°C. 三角形的兰个内角中有两个角大于或等于60°D. 三角形的三个内角都大于或等于60°5.用反证法证明“△ABC中,若∠A>∠B>∠C,则∠A>60°”,第一步应假设()A. ∠A=60°B. ∠A<60°C. ∠A≠60°D. ∠A≤60°6.用反证法证明“一个三角形中至少有两个锐角”时,下列假设正确的是()A. 假设一个三角形中只有一个锐角B. 假设一个三角形中至多有两个锐角C. 假设一个三角形中没有一个锐角D. 假设一个三角形中至少有两个钝角7.对于命题“已知:a∥b,b∥c,求证:a∥c”.如果用反证法,应先假设()A. a不平行bB. b不平行cC. a⊥cD. a不平行c8.用反证法证明命题“钝角三角形中必有一个内角小于45°”时,首先应该假设这个三角形中()A. 有一个内角小于45°B. 每一个内角都小于45°C. 有一个内角大于等于45°D. 每一个内角都大于等于45°9.用反证法证明“若⊙O的半径为r,点P到圆心的距离d<r,则点P在⊙O的内部”首先应假设()A. d≤rB. d≥rC. 点P在⊙O的外部D. 点P在⊙O上或点P在⊙O的外部10.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设()A. a不垂直于cB. a,b都不垂直于cC. a与b相交D. a⊥b11.用反证法证明命题“一个三角形中至少有一个角不小于60度”,应先假设这个三角形中()A. 至多有两个角小于60度B. 都小于60度C. 至少有一个角是小于60度D. 都大于60度12.对假命题举反例时,应注意使反例()A. 满足命题的条件,并满足命题的结论B. 不满足命题的条件,但满足命题的结论C. 不满足命题的条件,也不满足命题的结论D. 满足命题的条件,但不满足命题的结论13.用反证法证明“三角形中至少有一个角不小于60°”,应该先假设这个三角形中()A. 没有一个内角小于60°B. 每一个内角小于60°C. 至多有一个内角不小于60°D. 每一个内角都大于60°二、填空题14.用反证法证明AB≠AC时,首先假设________成立.15.用反证法证明∠A>60°时,应先假设________16.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中 ________17.用反证法证明“三角形的内角中最多有一个角是直角”时应假设: ________18.用反证法证明“∠A≥60°”时,应假设________.三、解答题19.用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.20.用反证法证明命题“已知D,E分别为△ABC的边AB,AC上的点,BE,CD交于点F,则BE,CD不能互相平分”是真命题.21.如图,直线AB与CD相交于O,EF⊥AB于F,GH⊥CD于H.求证:EF和GH必相交.。

初三反证法练习题

初三反证法练习题

初三反证法练习题反证法是数学中常用的一种证明方法,通过假设反面来推导出矛盾,从而证明命题的正确性。

下面是一些初三反证法练习题,通过解答这些题目,可以帮助同学们更好地理解和掌握反证法。

1. 证明:不存在最大的有理数。

假设存在一个最大的有理数,记为M。

根据有理数的性质,我们可以找到一个比M大的有理数N,即N=M+1。

显然,N>M,这与M是最大的有理数相矛盾。

因此,不存在最大的有理数。

2. 证明:根号2是无理数。

假设根号2是有理数,即可以表示为两个互质的整数p和q的比值,即根号2=p/q。

我们可以进一步假设p和q没有公因数,否则可以约分。

将等式两边平方得到2=p^2/q^2,整理得到p^2=2q^2。

这说明p^2是2的倍数,根据整数分解定理,p也是2的倍数。

设p=2k,代入等式得到(2k)^2=2q^2,整理得到2k^2=q^2。

这说明q^2是2的倍数,因此q也是2的倍数。

这与p和q没有公因数相矛盾,因此假设不成立,根号2是无理数。

3. 证明:不存在无限递增的整数序列。

假设存在一个无限递增的整数序列a1, a2, a3, ...。

我们可以取相邻的两个数ai和ai+1,如果ai>=ai+1,那么这个序列不是无限递增的;如果ai<ai+1,那么我们可以找到一个大于ai+1的整数,记为N,这与序列无限递增相矛盾。

因此,不存在无限递增的整数序列。

4. 证明:存在无限个素数。

假设只有有限个素数,记为p1, p2, p3, ..., pn。

我们考虑数N=p1*p2*p3*...*pn+1,显然N大于任意一个素数pi。

根据素数的定义,N只能是合数,即可被p1, p2, p3, ..., pn中的至少一个素数整除。

但是,N除以任意一个素数pi的余数都不为0,这与N是合数相矛盾。

因此,假设不成立,存在无限个素数。

通过这些反证法练习题的解答,我们可以看到反证法在数学证明中的重要作用。

通过假设反面来推导出矛盾,从而证明命题的正确性。

漫谈初中数学解题中的“反证法”

漫谈初中数学解题中的“反证法”

61学子 2017.05数学教学漫谈初中数学解题中的“反证法”王玉琴一、“反证法”解题方法在解题中,反证法一般分为三步:1.提出假设:做出与所要求证的结论相反的假定。

2.推理求证:由“假设”出发进行推理,得出与定义、定理、公理或与题设相矛盾的结论。

3.得出结论:根据“矛盾”得出假设不成立,原求证结论正确。

反证法的步骤好理解和掌握,关键是要反设正确,在结论的方面呈多种情况或比较隐晦时,在反设时就比较困难,现将其中常用的互为否定形式词语总结如下:其中,在至少有一个、至多有n 个、至多有一个等证明结论的反设上,需要更为细心的琢磨,让学生明白一个也没有、至多有二个、至多有n 个的深刻含义,从而顺利进行证明。

反证法的使用,使得一些数学试题的解决简单便捷。

二、“反证法”例题展示1.定理性命题的证明在数学的基本定理中,利用“反证法”来证明,更便捷、具有说服力。

案例1:勾股定理的证明如图所示,在直角三角形△ABC 中,∠C=90°,三个边长分别为a、b、c,求证:c2=a2+b2.证明:过C 点作斜边AB 上的垂线于D,假设a 2+b 2 ≠ c 2,即AC 2+BC 2≠AB 2,根据三角形的中垂线定理可得:AB 2=AB•AB=AB(AD+BD)=AB•AD+AB•BD 根据假设又知:AC2≠AB•AD,BC2≠AB•BD 即AD:AC ≠AC:AB,或者BD:BC ≠BC:AB,在△ADC 和△ACB 中,因为∠A=∠A,则当AD:AC ≠AC:AB 时,∠ADC ≠∠ACB;在△CDB 和△ACB 中,因为∠B=∠B,则当BD:BC ≠BC:AB 时,∠CDB ≠∠ACB,又因为∠ACB=90°,所以∠ADC ≠90°,∠CDB ≠90°,这与CD ⊥AB 是矛盾的,所以AC 2+BC 2≠AB 2不成立,则有:AC 2+BC 2=AB 2,即c 2=a 2+b 22.无限性命题的证明“无限”、“无穷”等概念,往往出现在求证命题中,正面证明缺乏一定的头绪,而“反证法”使得解题变得非常简单。

知识点26 反证法、命题与定理2018-2019领军中考数学(解析版)

知识点26 反证法、命题与定理2018-2019领军中考数学(解析版)

1 专题二十六 反证法、命题与定理瞄准中考一、选择题1. (2018湖南省怀化市,8,4分)下列命题是真命题的是( )A .两直线平行,同位角相等B .相似三角形的面积比等于相似比C .菱形的对角线相等D .相等的两个角是对顶角【思路分析】A .两直线平行,同位角相等,根据平行线的性质定理,得出A 是真命题.相似三角形的面积比等于相似比的平方,得出B 是假命题.根据菱形的性质可知,菱形的对角线相等是假命题.对顶角一定相等,但角相等不一定是对顶角,得出D 是假命题.2. 2018广西贵港,8,3分)下列命题中真命题是A .a2=(a)2一定成立B .位似图形不可能全等C .正多边形都是轴对称图形D .圆锥的主视图一定是等边三角形 【答案】C3. (2018江苏常州,5,2)下列命题中,假命题是( )A .一组对边相等的四边形是平行四边形B .三个角是直角的四边形是矩形C .四边相等的四边形是菱形D .有一个角是直角的菱形是正方形【答案】B 【解析】∵231<<,352<<,∴介于53与之间的整数只有2,故选B.4. (2018内蒙古包头,10,3分)已知下列命题:2 ①若33b a >,则22b a >;②若点A (x 1,y 1)和B (x 2,y 2)在二次函数122--=x x y 的图象上,且满足x 1<x 2<1,则y 1>y 2>-2; ③在同一平面内,a ,b ,c 是直线,且a ∥b ,b ⊥c ,则a ∥c ;④周长相等的所有等腰直角三角形全等.其中真命题的个数是 ( )A .4个B .3个C .2个D .1个【答案】C5. (2018四川眉山,9,3分)下列命题为真命题的是( )A .两条直线被一组平行线所截,所得的对应线段成比例B .相似三角形面积之比等于相似比C .对角线互相垂直的四边形是菱形D .顺次连结矩形各边的中点所得的四边形是正方形【答案】A【解析】①相似三角形面积之比等于相似比的平方,故B 错误;②对角线互相垂直且平分的四边形是菱形,故C 错误;③顺次连结矩形各边的中点所得的四边形是菱形,故D 错误,因此选A .考点(知识点)讲解考点九、反证法 (3分)先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。

中考数学十大解题思路之反证法

中考数学十大解题思路之反证法

中考数学十大解题思路之反证法一、选择题1.否定结论“至多有两个解”的说法中,正确的是( )A.有一个解B.有两个解 C.至少有三个解 D.至少有两个解[答案] C[解析]在逻辑中“至多有n个”的否定是“至少有n+1个”,所以“至多有两个解”的否定为“至少有三个解”故应选C.2.否定“自然数a、b、c中恰有一个偶数”时的正确反设为( )A.a、b、c都是奇数 B.a、b、c或都是奇数或至少有两个偶数C.a、b、c都是偶数 D.a、b、c中至少有两个偶数[答案] B[解析] a,b,c三个数的奇、偶性有以下几种情况:①全是奇数;②有两个奇数,一个偶数;③有一个奇数,两个偶数;④三个偶数.因为要否定②,所以假设应为“全是奇数或至少有两个偶数”.故应选B.3.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反设正确的是( )A.假设三内角都不大于60° B.假设三内角都大于60°C.假设三内角至多有一个大于60° D.假设三内角至多有两个大于60°[答案] B[解析]“至少有一个不大于”的否定是“都大于60°”.故应选B.4.用反证法证明命题:“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设正确的是( )A.假设a,b,c都是偶数 B.假设a、b,c都不是偶数C.假设a,b,c至多有一个偶数 D.假设a,b,c至多有两个偶数[答案] B[解析] “至少有一个”反设词应为“没有一个”,也就是说本题应假设为a,b,c都不是偶数.5.命题“△ABC中,若∠A>∠B,则a>b”的结论的否定应该是( )A.a<b B.a≤b C.a=b D.a≥b[答案] B[解析]“a>b”的否定应为“a=b或a<b”,即a≤b.故应选B.6.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”,四位歌手的话只有两句是对的,则获奖的歌手是( ) A.甲B.乙C.丙D.丁[答案] C[解析]因为只有一人获奖,所以丙、丁只有一个说对了,同时甲、乙中只有一人说对了,假设乙说的对,这样丙就错了,丁就对了,也就是甲也对了,与甲错矛盾,所以乙说错了,从而知甲、丙对,所以丙为获奖歌手.故应选C.7.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A.有一个内角大于60°B.有一个内角小于60°C.每一个内角都大于60°D.每一个内角都小于60°[答案] C[解析] 用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即都大于60°.8.用反证法证明命题“一个三角形中不能有两个角是直角”,应先假设这个三角形中()A.有两个角是直角B.有两个角是钝角C.有两个角是锐角D.一个角是钝角,一个角是直角[答案] A[解析] 用反证法证明“一个三角形中不能有两个角是直角”,应先设这个三角形中有两个角是直角.9.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°[答案] D[解析] 用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设每一个锐角都大于45°.10.在证明“在△ABC中至少有两个锐角”时,第一步应假设这个三角形中()A.没有锐角B.都是直角C.最多有一个锐角D.有三个锐角[答案] C[解析] 用反证法证明同一三角形中至少有两个锐角时,应先假设同一三角形中最多有一个锐角.11.用反证法证明:“一个三角形中至多有一个钝角”时,应假设()A.一个三角形中至少有两个钝角B.一个三角形中至多有一个钝角C. 一个三角形中至少有一个钝角D.一个三角形中没有钝角[答案] A[解析] 从结论的反面出发进行假设,证明“一个三角形中至多有一个钝角”,应假设:一个三角形中至少有两个钝角.12.用反证法证明:在四边形中,至少有一个角不小于90°,应先假设()A.四边形中有一个内角小于90°B.四边形中每一个内角都小于90°C.四边形中有一个内角大于90°D.四边形中每一个内角都大于90°[答案] B[解析] 用反证法证明:在四边形中,至少有一个角不小于90°,应先假设:四边形中的每个角都小于90°.13.用反证法证明“一个三角形中至少有两个锐角”时,下列假设正确的是()A.假设一个三角形中只有一个锐角B.假设一个三角形中至多有两个锐角C.假设一个三角形中没有一个锐角D.假设一个三角形中至少有两个钝角[答案] D[解析] 用反证法应先假设“一个三角形中最多有一个锐角”或者假设一个三角形中至少有两个钝角.14.用反证法证明命题“三角形中最多有一个角是直角或钝角”时,下列假设正确的是()A.三角形中最少有一个角是直角或钝角B. 三角形中没有一个角是直角或钝角C.三个角全是直角或钝角D.三角形中有两个(或三个)角是直角或钝角[答案]D[解析] 假设正确的是:假设三角形中有两个(或三个)角是直角或钝角.二,填空题1.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.[答案]没有一个是三角形或四边形或五边形[解析]“至少有一个”的否定是“没有一个”.2.用反证法证明命题“a,b是自然数N,ab可被5整除,那么a,b中至少有一个能被5整除”,那么反设的内容是________________.[答案]a,b都不能被5整除[解析]“至少有一个”的否定是“都不能”.3.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,则∠A=∠B=90°不成立;②所以一个三角形中不能有两个直角;③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°.正确顺序的序号排列为____________.[答案]③①②[解析] 由反证法证明的步骤知,先反证即③,再推出矛盾即①,最后作出判断,肯定结论即②,即顺序应为③①②.4.若a∥b,b∥c,证明a∥c.用反证法证明的第一步是假设a与c不平行5.“对角线不互相平分的四边形不是平行四边形”,这个命题用反证法证明应假设对角线不互相平分的四边形是平行四边形6.用反证法证明“三角形中最多有一个是直角或钝角”时应假设三角形中至少有两个是直角或钝角7.用反证法证明“四边形的四个内角不能都是锐角”时,应首先假设四边形的四个内角都是锐角.8.用反证法证明:“多边形的内角中锐角的个数最多有三个”的第一步应该是:假设多边形的内角中锐角的个数最少是4个.9.用反证法证明命题“三角形中最多有一个是直角”时,可以假设为三角形中最少有两个角是直角.10.用反证法证明“在△ABC中,至少有一个内角小于或等于60°”时,第一步是假设△ABC中,每一个内角都大于60°.11.用反证法证明命题“一个三角形的三个内角中,至多有一个钝角”的第一步应假设一个三角形的三个内角中,至少有两个钝角.12.“反证法”证明命题“等腰三角形的底角是锐角”时,是先假设等腰三角形的两底都是直角或钝角.三、解答题1.已知:a+b+c>0,ab+bc+ca>0,abc>0.求证:a>0,b>0,c>0.证明:用反证法:假设a,b,c不都是正数,由abc>0可知,这三个数中必有两个为负数,一个为正数,不妨设a<0,b<0,c>0,则由a+b+c>0,可得c>-(a+b),又a+b<0,∴c(a+b)<-(a+b)(a+b)ab+c(a+b)<-(a+b)(a+b)+ab即ab+bc+ca<-a2-ab-b2∵a2>0,ab>0,b2>0,∴-a2-ab-b2=-(a2+ab+b2)<0,即ab+bc+ca<0,这与已知ab+bc+ca>0矛盾,所以假设不成立.因此a>0,b>0,c>0成立.2.用反证法证明:等腰三角形两底角必为锐角.证明:①设等腰三角形底角∠B,∠C都是直角,则∠B+∠C=180°,而∠A+∠B+∠C=180°+∠A>180°,这与三角形内角和等于180°矛盾.②设等腰三角形的底角∠B,∠C都是钝角,则∠B+∠C>180°,而∠A+∠B+∠C=180°,这与三角形内角和等于180°矛盾.综上所述,假设①,②错误,所以∠B,∠C只能为锐角.故等腰三角形两底角必为锐角3.用反证法证明:一条线段只有一个中点.证明:假设线段AB有两个中点M、N,不妨设M在N的左边,则AM<AN,又AM=AB=AN=AB,这与AM<AN矛盾,所以一条线段只有一个交点4.用反证法证明:“在一个三角形中,外角最多有一个锐角”.证明: 假设三角形中的外角有两个角是锐角.根据三角形的外角与相邻的内角互补,知:与这两个角相邻的两个内角一定是钝角,大于90°,则这两个角的度数和一定大于180度,与三角形的内角和定理相矛盾.因而假设错误.故在一个三角形中,外角最多有一个锐角.。

《初中数学反证法》课件

《初中数学反证法》课件
《初中数学反证法》PPT 课件
本PPT课件详细介绍了初中数学中的反证法。内容包括反证法的定义和原理, 反证法在数学中的应用,反证法的基本步骤,以及使用反证法解决数学问题 的示例。
反证法例题解析
数学概念和定理
使用反证法解决常见的数学概念和定理问题。
步骤示例
演示如何运用反证法来解决具体问题。
深入探索
探讨反证法在不同数学领域中的应用。
3
学习建议
分享一些学习反证法的有效方法和技巧。
练习题和答案解析
1 提供练习
给出一些练习题,让学生巩固对反证法的理解。
2 答案解析
提供详细的答案解析,帮助学生检查和纠正错误。
3 挑战题目
提供一些有挑战性的题目,激发学生的思考和探索欲望。
解题技巧
分享一些解题技巧和经验。
反证法的优势和限制
数学推理的优势
反证法在数学推理中的重要作 用。
限制和注意事项
使用反证何促进思维的创 新。
常见误解和常见问题
1
常见错误和误解
学生在学习反证法时可能容易犯的常见错误和误解。
2
问题解答
解答学生常见问题和困惑,帮助他们更好地理解和应用反证法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解题方法及提分突破训练:反证法专题对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。

从而推出命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,对于提高推理论证的能力、探索新知识的能力都是非常必要的。

一真题链接1.用反证法证明:圆的两条不是直径的相交弦不能互相平分。

已知:如图,在⊙O 中,弦AB 、CD 交于点P ,且AB 、CD 不是直径.求证:弦AB 、CD 不被P 平分.2.平面内有四个点,没有三点共线,证明:以任意三个点为顶点的三角形不可能都是锐角三角形3. 平面内有四个点,没有三点共线证明:以任意三个点为顶点的三角形不可能都是锐角三角形二 名词释义反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。

反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。

用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n 个/至多有(n 一1)个;至多有一个/至少有两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。

推理必须严谨。

导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

例如: 已知:a 是整数,2能整除2a 。

试证:2能整除a① 探究:问题实际上是在讨论a 是奇数,还是偶数。

已知中:说明2a 是偶数,则()22a m m N =∈,此时)a m N =∈② 反思:条件已用完,结论还不能明确得证,可能结论自身有问题。

③ 若结论有问题,则“2不能整除a ”应该成立,此时会发生怎样的情况,进行推理引出反证法。

总结:在上题由“2不能整除a ”这个假设下,推理出了矛盾,肯定了原题的结论,从而说明了这种思想可以作为一种证明问题的方法,再通过问题2继续认识。

三 典型例题反证法的证题步骤:① 假设。

假设结论的反面成立,重点完成对假设的等价转化 ② 归结矛盾。

矛盾来源:与已知,定理,公理,已证,已作,矛盾。

③ 否定假设,肯定结论。

例1.是无理数是有理数,那么它就可以表示成两个整数之比,设,0,qp p =≠且,p q q =。

所以,222p q =。

---------①故2q 是偶数,q 也必然为偶数。

不妨设2q k =,代入①式,则有2224p k =,即222p k=,所以,p也为偶数。

p和q都是偶数,它们有公约数2,这与,p q互素相矛盾。

不是有理数,而是无理数。

例2.在同一平面内,两条直线,a b都和直线c垂直。

求证:a与b平行。

证明:假设命题的结论不成立,即“直线a与b相交”。

不妨设直线,a b的交点为M,,a b与c的交点分别为,P Q,如图所示,则0 PMQ ∠>.这样,MPQ∆的内角和PMQ MPQ PQM=∠+∠+∠0009090180PMQ=∠++>这与定理“三角形的内角和等于0180”相矛盾。

说明假设不成立。

所以,直线a与b不相交,即a与b平行。

例3.已知:在四边形ABCD中,M、N分别是AB、DC的中点,且MN =(AD+BC)。

求证:AD∥BC证明:假设AD BC,连结ABD,并设P是BD的中点,再连结MP、PN。

在△ABD中∵BM=MA,BP=PD∴MP AD,同理可证PN BC从而MP+PN =(AD+BC)①这时,BD的中点不在MN上若不然,则由MN∥AD,MN∥BC,得AD∥BC与假设AD BC矛盾,于是M、P、N三点不共线。

从而MP+PN>MN②由①、②得(AD+BC)>MN,这与已知条件MN=(AD+BC)相矛盾,故假设AD BC不成立,所以AD∥BC。

解析:反证法是根据“正难则反”的原理,即如果正面证明有困难时,或者直接证明需要分多种情况而反面只有一种情况时,可以考虑用反证法。

反证法不仅在几何中有着广泛的应用,而且在代数中也经常出现。

用反证法证明不等式就是最好的应用。

要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设。

要证明的不等式中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效。

四巩固强化1. 设a,b,c,d均为正数,求证:下列三个不等式①a+b<c+d,②,③中至少有一个不正确。

2. 已知求证:。

3. 若,求证:。

4. 设a,b,c均为小于1的正数,求证:,不能同时大于。

5. 若,,,求证:,不能同时大于1。

6求证:三角形中至少有一个角不大于60°。

7求证:一直线的垂线与斜线必相交。

8.在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于H,求证:AD与BE不能被点H 互相平分。

9.求证:直线与圆最多只有两个交点。

10.求证:等腰三角形的底角必为锐角。

已知:△ABC 中,AB =AC ,求证:∠B 、∠C 必为锐角。

五 参考答案真题链接答案:1.证明:假设弦AB 、CD 被P 平分, 连结 AD 、BD 、BC 、AC,因为弦AB 、CD 被P 点平分,所以四边形ACBD 是平行四边形所以因为 ABCD 为圆内接四边形 所以因此所以,对角线AB 、CD 均为直径,这与已知条件矛盾,即假设不成立所以,弦AB 、CD 不被P 平分。

2.证明:假设以任意三个点为顶点的三角形都是锐角三角形。

记四个点为A 、B 、C 、D 。

考虑点D 在 △ABC 之内或之外两种情况。

(1) 如果点D 在△ABC 之内,根据假设,都为锐角三角形所以这与一个周角为360°矛盾。

CBD CAD ADB ACB ∠=∠∠=∠,180,180=∠+∠=∠+∠CBD CAD ADB ACB 90,90=∠=∠CADACBBDC ADB ADC ∆∆∆,, 270<∠+∠+∠BDC ADBADC3.(1)如果点D在 之外,根据假设,都是锐角三角形,即这与四边形内角和矛盾。

所以,综上所述,假设不成立,从而题目结论成立。

即这些三角形不可能都为锐角三角形。

巩固强化答案 1.证明:假设不等式①、②、③都成立,因为a ,b ,c ,d 都是正数,所以由不等式①、②得,。

由不等式③得,因为,所以综合不等式②,得,即由不等式④,得,即,显然矛盾。

∴不等式①、②、③中至少有一个不正确。

2.证明:由知≠0,假设,则又因为,所以,即从而,与已知矛盾。

∴假设不成立,从而 同理,可证。

3.证明:假设,则,即。

因为所以故又,,即ABC ∆BCDBAD ADC ABC ∆∆∆∆,,,360<+∠+∠+∠ADC BCD ABC BAD∴,即,不成立。

4.证明:假设同时大于,即,,。

故假设不成立,即。

则由,可得同理,,三个同向不等式两边分别相加,得,所以假设不成立。

∴原结论成立。

5.证明:由题意知假设有那么同理,①+②+③,得矛盾,假设不成立。

故,,不能同时大于1。

6.证明:假设△ABC中的∠A、∠B、∠C都大于60°则∠A+∠B+∠C>3×60°=180°这与三角形内角和定义矛盾,所以假设不能成立。

故三角形中至少有一个角不大于60°。

7.证明:假设m和n不相交则m∥n∵m⊥l ∴n⊥l这与n是l的斜线相矛盾,所以假设不能成立。

故m和n必相交。

8.证明:假设AD、BE被交点H互相平分,则ABDE是平行四边形。

∴AE∥BD,即AC∥BC这与AC、BC相交于C点矛盾,故假设AD、BE被交点H平分不能成立。

所以AD与BE不能被点H互相平分。

9.证明:假设一直线l与⊙O有三个不同的交点A、B、C,M、N分别是弦AB、BC的中点。

∵OA=OB=OC∴在等腰△OAB和△OBC中OM⊥AB,ON⊥BC从而过O点有两条直线都垂直于l,这是不可能的,故假设不能成立。

因此直线与圆最多只有两个交点。

10.证明:假设∠B、∠C不是锐角,则可能有两种情况:(1)∠B=∠C=90°(2)∠B=∠C>90°若∠B=∠C=90°,则∠A+∠B+∠C>180°,这与三角形内角和定理矛盾。

若∠B=∠C>90°,则∠A+∠B+∠C>180°,这与三角形内角和定理矛盾。

所以假设不能成立。

故∠B、∠C必为锐角。

相关文档
最新文档