概率论与数理统计知识点总结80858
概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。
-频率和概率的关系,概率的基本性质。
-古典概型和几何概型的概念。
-条件概率和乘法定理。
-全概率公式和贝叶斯公式。
-随机变量和概率分布函数的概念。
-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。
2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。
-协方差、相关系数和线性变换的数学期望和方差公式。
-两个随机变量的和、差、积的数学期望和方差公式。
3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。
-中心极限定理的概念和中心极限定理的两种形式。
4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。
-样本统计量和抽样分布的概念。
-点估计和区间估计的概念。
-假设检验的基本思想和步骤。
-正态总体的参数的假设检验和区间估计。
5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。
-矩估计的原理和方法。
-最小二乘估计的原理和方法。
-一般参数的假设检验和区间估计。
6.相关分析和回归分析-相关系数和线性相关的概念和性质。
-回归分析的一般原理。
-简单线性回归的估计和检验。
7.非参数统计方法-秩和检验和符号检验的基本思想和应用。
-秩相关系数的计算和检验。
8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。
-正态总体参数的拟合优度检验。
-贝叶斯估计的基本思想和方法。
9.时间序列分析和质量控制-时间序列的基本性质和分析方法。
-时间序列预测的方法和模型。
-质量控制的基本概念和控制图的应用。
以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。
(完整word版)概率论与数理统计知识点总结(word文档良心出品)

Ai Ai
德摩根率: i1
i 1
AB AB,AB AB
(7)概率 的公理化 定义
设 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满
足下列三个条件: 1° 0≤P(A)≤1, 2° P(Ω ) =1
3° 对于两两互不相容的事件 A1, A2 ,…有
P( A) L( A) 。其中 L 为几何度量(长度、面积、体积)。 L()
(10)加法+B)=P(A)+P(B)-P(AB) 当 AB 不相容 P(AB)=0 时,P(A+B)=P(A)+P(B) 当 AB 独立,P(AB)=P(A)P(B), P(A+B)=P(A)+P(B)-P(A)P(B) P(A-B)=P(A)-P(AB)
,
则称 X 为连续型随机变量。 f (x) 称为 X 的概率密度函数或密度函数,简称概
率密度。
密度函数具有下面 4 个性质:
1、 f (x) 0 。
f (x)dx 1
2、
。
(3)离散 与连续型
3、 P(x1 X x2 ) F(x2 ) F(x1)
x2 f (x)dx
P(A)=(1 ) (2 ) (m ) = P(1 ) P(2 ) P(m )
m n
A所包含的基本事件数 基本事件总数
(9)几何 概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空 间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何 概型。对任一事件 A,
P( X k) q k1 p, k 1,2,3, ,其中 p≥0,q=1-p。
统计学复习资料概率论与数理统计重点知识点整理

统计学复习资料概率论与数理统计重点知识点整理概率论与数理统计是统计学的基础课程之一,也是应用最为广泛的数学工具之一。
下面将对概率论与数理统计的重点知识点进行整理,以供复习使用。
一、概率论的基本概念1. 样本空间和事件:样本空间是指随机试验的所有可能结果构成的集合,事件是样本空间的子集。
2. 古典概型和几何概型:古典概型是指样本空间中的每个结果具有相同的概率,几何概型是指采用几何方法进行分析的概率模型。
3. 概率公理和条件概率:概率公理是概率论的基本公理,条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
4. 独立事件和全概率公式:独立事件是指两个事件的发生与否互不影响,全概率公式是用于计算复杂事件的概率的公式。
5. 随机变量和概率分布函数:随机变量是对样本空间中的每个结果赋予一个数值,概率分布函数是随机变量的分布情况。
二、概率分布的基本类型1. 离散型概率分布:包括二项分布、泊松分布和几何分布等。
2. 连续型概率分布:包括正态分布、指数分布和均匀分布等。
三、多维随机变量及其分布1. 边缘分布和条件分布:边缘分布是指多维随机变量中的某一个或几个变量的分布,条件分布是指在已知某些变量取值的条件下,其他变量的分布。
2. 二维随机变量的相关系数:相关系数用于刻画两个随机变量之间的线性关系的强度和方向。
3. 多维随机变量的独立性:多维随机变量中的各个分量独立时,称为多维随机变量相互独立。
四、参数估计与假设检验1. 参数估计方法:包括点估计和区间估计,点估计是通过样本数据得到参数的估计值,区间估计是对参数进行一个范围的估计。
2. 假设检验的基本概念:假设检验是用于对统计推断的一种方法,通过与某个假设进行比较来得出结论。
3. 假设检验的步骤:包括建立原假设和备择假设、选择显著性水平、计算检验统计量和做出统计决策等步骤。
五、回归分析与方差分析1. 简单线性回归分析:简单线性回归分析是研究两个变量之间的线性关系的方法,通过建立回归方程来拟合数据。
概率论与数理统计知识点总结

概率论与数理统计知识点总结一、概率论知识点总结:1.随机事件:随机事件是指在一次试验中,可能发生也可能不发生的事件。
例如:掷硬币的结果、抽取扑克牌的花色等。
2.概率:概率是描述随机事件发生可能性大小的数值。
概率的取值范围是[0,1],表示事件发生的可能性大小,0表示不可能发生,1表示一定会发生。
3.古典概型:古典概型是指每种可能的结果发生的概率相等的情形。
例如:掷骰子的结果、抽取彩色球的颜色等。
4.随机变量:随机变量是用来描述试验结果的数值,它的取值是根据随机事件的结果确定的。
例如:掷骰子的点数、抽取扑克牌的点数等。
5.概率分布:随机变量的概率分布描述了每个取值发生的概率。
常见的概率分布有离散概率分布和连续概率分布,如二项分布、正态分布等。
6. 期望值:期望值是衡量随机变量取值的平均值。
对于离散型随机变量,期望值=E[X]=∑[xP(X=x)];对于连续型随机变量,期望值=E[X]=∫[x f(x)dx],其中f(x)为概率密度函数。
7. 方差:方差是衡量随机变量取值与期望值之间的偏离程度。
方差=Var(X)=E[(X-E[X])^2]。
8.独立性:两个随机事件或随机变量之间的独立性表示它们的发生与否或取值无关联。
独立性的判定通常通过联合概率、条件概率等来进行推导。
二、数理统计知识点总结:1.样本与总体:在统计学中,样本是指从总体中选取的具体观测数据。
总体是指要研究的对象的全部个体或事物的集合。
2.参数与统计量:参数是描述总体特征的数值,如总体均值、总体方差等。
统计量是根据样本计算得到的参数估计值,用来估计总体参数。
3.抽样方法:抽样方法是从总体中选取样本的方法,常见的抽样方法有简单随机抽样、系统抽样、整群抽样等。
4.统计分布:统计分布是指样本统计量的分布。
常见的统计分布有t分布、F分布、x^2分布等,其中t分布适用于小样本、F分布适用于方差比较、x^2分布适用于拟合优度检验等。
5.点估计与区间估计:点估计是以样本统计量为基础,估计总体参数的数值。
(完整版)概率论与数理统计知识点总结(免费)

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B A ⊂ 称为事件A 与事件B 的和事件,指当且仅B}x x x { ∈∈=⋃或A B A 当A ,B 中至少有一个发生时,事件发生B A ⋃称为事件A 与事件B 的积事件,指当B}x x x { ∈∈=⋂且A B A A ,B 同时发生时,事件发生B A ⋂ 称为事件A 与事件B 的差事件,指当且仅B}x x x { ∉∈=且—A B A 当A 发生、B 不发生时,事件发生B A —,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事φ=⋂B A 件B 不能同时发生,基本事件是两两互不相容的,则称事件A 与事件B 互为逆事件,又称事件且S =⋃B A φ=⋂B A A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃ 结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃分配律)()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂徳摩根律BA B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数称为A n 事件A 发生的频数,比值称为事件A 发生的频率n n A 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率1.概率满足下列条件:)(A P (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设是两两互不相容的事件,有n A A A ,,,21 (可以取)∑===nk k n k k A P A P 11)()( n ∞2.概率的一些重要性质:(i )0)(=φP (ii )若是两两互不相容的事件,则有(可以取)n A A A ,,,21 ∑===nk knk kA P A P 11)()(n ∞(iii )设A ,B 是两个事件若,则,B A ⊂)()()(A P B P A B P -=-)A ()B (P P ≥(iv )对于任意事件A ,1)(≤A P (v ) (逆事件的概率))(1)(A P A P -=(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件A 包含k 个基本事件,即,里}{}{}{2]1k i i i e e e A =个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑=§5.条件概率(1)定义:设A,B 是两个事件,且,称为事件A 发生的0)(>A P )()()|(A P AB P A B P =条件下事件B 发生的条件概率(2)条件概率符合概率定义中的三个条件1。
概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。
概率论与数理统计知识点总结

概率论与数理统计知识点一、概率论知识点1.1 概率基本概念概率是研究事物变化规律的一门学科。
在概率学中,我们需要掌握一些基本概念:•随机试验:一种在相同条件下重复的可以观察到不同结果的试验。
•样本空间:随机试验所有可能结果的集合。
•事件:样本空间的子集。
•频率和概率:在大量重复实验中,某个事件出现的频率称为频率,其极限称为概率。
1.2 概率计算公式•加法公式:P(A∪B) = P(A) + P(B) - P(A∩B)•乘法公式:P(A∩B) = P(A|B)P(B) = P(B|A)P(A)•条件概率公式:P(A|B) = P(A∩B)/P(B)•全概率公式:P(B) = Σi=1nP(Ai)P(B|Ai)•贝叶斯公式:P(Ai|B) = P(Ai)P(B|Ai)/Σj=1nP(Aj)P(B|Aj)1.3 随机变量和分布随机变量是用来描述随机试验结果的数学量。
离散型随机变量和连续型随机变量是概率论中两个重要的概念。
•离散型随机变量:在一个范围内,只有有限个或无限个可能值的随机变量。
•连续型随机变量:在一个范围内,有无限个可能值的随机变量。
概率分布是反映随机变量取值情况的概率规律,可分为离散型概率分布和连续型概率分布。
•离散型概率分布:包括伯努利分布、二项分布、泊松分布等。
•连续型概率分布:包括正态分布、指数分布、卡方分布等。
1.4 常用概率分布概率论涉及到很多的分布,其中一些常用的分布如下:•二项分布•泊松分布•正态分布•均匀分布•指数分布1.5 统计推断在概率论中,统计推断是指根据样本数据来对总体进行参数估计和假设检验的方法。
统计推断主要涉及以下两个方面:•点估计:使用样本数据来推断总体参数的值。
•区间估计:使用样本数据来推断总体参数的一个区间。
二、数理统计知识点2.1 统计数据的描述为了更准确地描述数据,我们需要使用以下几个参数:•平均数:所有数据的和除以数据个数。
•中位数:将数据按大小排序,位于中间位置的数。
概率论与数理统计知识点总结

概率论与数理统计知识点总结概率论与数理统计是数学的一个重要分支,主要研究各种随机现象的规律性及其数值描述。
下面将对概率论与数理统计的一些重要知识点进行总结。
一、概率论知识点总结1. 随机事件与概率- 随机事件:指在一定条件下具有不确定性的事件。
- 概率:用来描述随机事件发生的可能性大小的数值。
2. 古典概型与几何概型- 古典概型:指随机试验中,所有基本事件的可能性相等的情况。
- 几何概型:指随机试验中,基本事件的可能性不完全相等,与图形的属性有关的情况。
3. 随机变量与概率分布- 随机变量:定义在样本空间上的函数,用来描述试验结果与数值之间的对应关系。
- 离散随机变量:取有限个或可列个数值的随机变量。
- 连续随机变量:取无限个数值的随机变量。
4. 期望与方差- 期望:反映随机变量平均取值的数值。
- 方差:反映随机变量取值偏离期望值的程度。
5. 大数定律与中心极限定理- 大数定律:指在独立重复试验中,随着试验次数增加,事件发生的频率趋近于其概率。
- 中心极限定理:指在独立随机变量之和的情况下,当随机变量数目趋于无穷时,这些随机变量之和的分布趋近于正态分布。
二、数理统计知识点总结1. 抽样与抽样分布- 抽样:指对总体进行有规则地选择一部分样本进行观察和研究的过程。
- 抽样分布:指用统计量对不同样本进行计算所得到的分布。
2. 参数估计与置信区间- 参数估计:根据样本推断总体的未知参数。
- 置信区间:对于总体参数估计的一个区间估计,用来表示这个参数的可能取值范围。
3. 假设检验与统计显著性- 假设检验:用来判断统计推断是否与已知事实相符。
- 统计显著性:基于样本数据,对总体或总体参数进行判断的一种方法。
4. 方差分析与回归分析- 方差分析:用来研究因素对于某一变量均值的影响程度。
- 回归分析:通过观察变量之间的关系,建立数学模型来描述两个或多个变量间的依赖关系。
5. 交叉表与卡方检验- 交叉表:将两个或多个变量的数据按照某种方式交叉排列而形成的表格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》第一章随机事件及其概率§1.1 随机事件一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性:§1.2 概率古典概型公式:P (A )=所含样本点数所含样本点数ΩA实用中经常采用“排列组合”的方法计算补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A :“每个盒子恰有1个球”。
求:P(A)=?Ω所含样本点数:nn n n n =⋅⋅⋅...Α所含样本点数:!1...)2()1(n n n n =⋅⋅-⋅-⋅补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少?解:设A i :“信箱中信的最大封数为i”。
(i =1,2,3)求:P(A i )=?Ω所含样本点数:6444443==⋅⋅A 1所含样本点数:24234=⋅⋅A 2所含样本点数: 363423=⋅⋅C A 3所含样本点数:4433=⋅C注:由概率定义得出的几个性质: 1、0<P (A )<1 2、P(Ω)=1,P(φ) =0§1.3 概率的加法法则定理:设A 、B 是互不相容事件(AB=φ),则: P (A ∪B )=P (A )+P (B ) 推论1:设A 1、 A 2、…、 A n 互不相容,则 P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n ) 推论2:设A 1、 A 2、…、 A n 构成完备事件组,则P(A 1+A 2+...+ A n )=1推论3: P (A )=1-P (A )推论4:若B A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式):对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律:§1.4 条件概率与乘法法则条件概率公式:P(A/B)=)()(B P AB P (P(B)≠0) P(B/A)=)()(A P AB P (P(A)≠0) ∴P (AB )=P (A /B )P (B )= P (B / A )P (A )有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。
全概率与逆概率公式:全概率公式: 逆概率公式:(注意全概率公式和逆概率公式的题型:将试验可看成分为两步做,如果要求第二步某事件的概率,就用全概率公式;如果求在第二步某事件发生条件下第一步某事件的概率,就用逆概率公式。
)§1.5 独立试验概型事件的独立性:贝努里公式(n 重贝努里试验概率计算公式):课本P24另两个解题中常用的结论——1、定理:有四对事件:A 与B 、A 与B 、A 与B 、A 与B ,如果其中有一对相互独立,则其余三对也相互独立。
2、公式:)...(1)...(2121n n A A A P A A A P ⋅⋅⋅-=⋃⋃⋃第二章 随机变量及其分布一、关于离散型随机变量的分布问题1、求分布列:⑴确定各种事件,记为ξ写成一行;⑵计算各种事件概率,记为p k 写成第二行。
得到的表即为所求的分布列。
注意:应符合性质—— 1、0≥k p (非负性) 2、1=∑kkp(可加性和规范性)补例1:将一颗骰子连掷2次,以ξ 表示两次所得结果之和,试写出ξ的概率分布。
解:Ω所含样本点数:6×6=36所求分布列为:所求分布列为:2分布函数∀x ∈R ,如果随机变量ξ的分布函数F (x )可写成F (x )=⎰∞-xdx x )(φ,则ξ为连续型。
)(x φ称概率密度函数。
解题中应该知道的几个关系式:第三章 随机变量数字特征一、求离散型随机变量ξ 的数学期望E ξ =?数学期望(均值)二、设ξ 为随机变量,f(x)是普通实函数,则η=f (ξ)也是随机变量,求E η=?以上计算只要求这种离散型的。
补例1:设ξ的概率分布为:求:⑴1-=ξη,2ξη=的概率分布;⑵ηE 。
解:因为所以,所求分布列为:和:当η=ξ-1时,E η=E (ξ-1)=-2×51+(-1)×101+0×101+1×103+23×103=1/4当η=ξ2时,E η=E ξ2=1×51+0×101+1×101+4×103+425×103=27/8 三、求ξ 或η的方差D ξ =? D η=?实用公式ξD =2ξE -ξ2E其中,ξ2E =2)(ξE =2)(∑kk k p x2ξE =∑kk k p x 2补例2:求:E ξ 和D ξ 解:ξE =-2×0.4+0×0.3+2×0.3=-0.2ξE 2=(-2)2×0.4+02×0.3+22×0.3=2.8ξD =ξE 2-ξ2E =2.8-(-0.2)2=2.76第四章 几种重要的分布常用分布的均值与方差(同志们解题必备速查表..........)解题中经常需要运用的E ξ 和D ξ 的性质(同志们解题必备速查表..........)第八章 参数估计§8.1 估计量的优劣标准(以下可作填空或选择)⑴若总体参数θ的估计量为θˆ,如果对任给的ε>0,有 1}ˆ{lim=<-∞→εθθP n ,则称θˆ是θ的一致估计; ⑵如果满足θθ=)ˆ(E ,则称θˆ是θ的无偏估计; ⑶如果1ˆθ和2ˆθ均是θ的无偏估计,若)ˆ()ˆ(21θθD D <,则称1ˆθ是比2ˆθ有效的估计量。
§8.3 区间估计: 几个术语——1、设总体分布含有一位置参数,若由样本算得的一个统计量)...(ˆ11n ,x ,x θ及)...(ˆ12n ,x ,x θ,对于给定的α(0<α<1)满足: 则称随机区间(1ˆθ,2ˆθ)是θ的100(1-α)%的置信区间,1ˆθ和2ˆθ称为θ的100(1-α)%的置信下、上限,百分数100(1-α)%称为置信度。
一、求总体期望(均值)E ξ 的置信区间 1、总体方差2σ已知的类型①据α,得)(0αU Φ=1-2α,反查表(课本P260表)得临界值αU ;②x =∑=n i i x n 11 ③求d=nU σα⋅ ④置信区间(x -d ,x +d ) 补简例:设总体)09.0,(~μN X 随机取4个样本其观测值为12.6,13.4,12.8,13.2,求总体均值μ的95%的置信区间。
解:①∵1-α=0.95,α=0.05∴Φ(U α)=1-2α=0.975,反查表得:U α=1.96②∑==+++==4113)2.138.124.136.12(4141i iX X ③∵σ=0.3,n=4 ∴d=nU σα⋅=43.096.1⨯=0.29④所以,总体均值μ的α=0.05的置信区间为:(X -d ,X +d )=(13-0.29,13+0.29)即(12.71,13.29) 2、总体方差2σ未知的类型(这种类型十分重要!务必掌握!!) ①据α和自由度n -1(n 为样本容量),查表(课本P262表)得)1(-n t α;②确定x =∑=ni i x n 11和∑=--=n i ix x n s 122)(11 ③求d=nsn t ⋅-)1(α ④置信区间(x -d ,x +d ) 注:无特别声明,一般可保留小数点后两位,下同。
二、求总体方差2σ的置信区间①据α和自由度n -1(n 为样本数),查表得临界值:)1(22-n αχ和)1(221--n αχ ②确定X =∑=ni i x n 11和∑=--=n i ix X n s 122)(11 ③上限)1()1(2212---n s n αχ 下限)1()1(222--n s n αχ④置信区间(下限,上限) 典型例题:补例1:课本P166之16 已知某种木材横纹抗压力的实验值服从正态分布,对10个试件作横纹抗压力试验得数据如下(单位:kg/cm 2): 482 493 457 471 510 446 435 418 394 469 试对该木材横纹抗压力的方差进行区间估计(α=0.04)。
解:①∵α=0.04,又n=10,自由度n -1=9∴查表得,)1(22-n αχ=)9(202.0χ=19.7)1(221--n αχ=)9(298.0χ=2.53②X =∑=101101i i x =)469...493482(101+++=457.5∑=-=10122)(91i i x X s =91[2)4825.457(-+2)4935.457(-+…+2)4695.457(-]=1240.28③上限)1()1(2212---n s n αχ=)9(9298.02χs =53.228.12409⨯=4412.06下限)1()1(222--n s n αχ=)9(9202.02χs =7.1928.12409⨯=566.63④所以,所求该批木材横纹抗压力的方差的置信区间为(566.63,4412.06)第九章 假设检验必须熟练掌握一个正态总体假设检验的执行标准 一般思路:1、提出待检假设H 02、选择统计量3、据检验水平α,确定临界值4、计算统计量的值5、作出判断检验类型⑵:未知方差2σ,检验总体期望(均值)μ①根据题设条件,提出H 0:μ= 0μ(0μ已知); ②选择统计量)1(~/--=n t ns X T μ;③据α和自由度n -1(n 为样本容量),查表(课本P262表)得)1(-n t α;④由样本值算出X =?和s =?从而得到ns X T /0μ-=;⑤作出判断典型例题:对一批新的某种液体的存贮罐进行耐裂试验,抽查5个,得到爆破压力的数据(公斤/寸2 )为:545,545,530,550,545。
根据经验爆破压认为是服从正态分布的,而过去该种液体存贮罐的平均爆破压力为549公斤/寸2 ,问这种新罐的爆破压与过去有无显著差异?(α=0.05)解:H 0:μ= 549 选择统计量)1(~/--=n t n s X T μ∵α=0.05,n -1=4,∴查表得:)4(05.0t =2.776 又∵X =)545...545(51++=543s 2=])545543(...)545545[(4122-++-=57.5 ∴n s X T /0μ-==5/5.57549543-=1.77<2.776 ∴接受假设,即认为该批新罐得平均保爆破压与过去的无显著差异。
检验类型⑶:未知期望(均值)μ,检验总体方差2σ①根据题设条件,提出H 0:σ= 0σ(0σ已知); ②选择统计量222)1()1(σχs n n ⋅-=-;③据α和自由度n -1(n 为样本容量),查表(课本P264表)得临界值:)1(212--n αχ和)1(22-n αχ; ④由样本值算出X =?和s =?从而得到2220)1()1(σχs n n ⋅-=-; ⑤若)1(212--n αχ<)1(20-n χ<)1(22-n αχ则接受假设,否则拒绝!补例:某厂生产铜丝的折断力在正常情况下服从正态分布,折断力方差2σ=64,今从一批产品中抽10根作折断力试验,试验结果(单位:公斤):578,572,570,568,572,570,572,596,584,570。