《抽屉原理练习题》#(精选.)

合集下载

抽屉原则练习题

抽屉原则练习题

抽屉原则练习题抽屉原则,也被称为鸽笼原理,是数学中的一个重要原理。

它指的是,如果有 n+1 个物体放入 n 个抽屉中,那么至少有一个抽屉中必定放入了两个或以上的物体。

这个原理在现实生活中也有很多应用,例如物品分类、待办事项等。

下面是一些抽屉原则的练习题,帮助你更好地理解和应用这个原理。

练习题一:假设某个班级有 40 名学生,每位学生喜欢各异的运动项目,包括足球、篮球、乒乓球和羽毛球。

根据抽屉原则,如果每个学生只能选择一种运动项目,并且任意两个学生不选择相同的项目,那么必然有至少一种运动项目被至少两名学生选择。

请你利用抽屉原理,解答以下问题:1. 最少有几个学生选择足球?2. 最多有几个学生选择羽毛球?3. 如果有 27 名学生选择了篮球,那么至少还有几名学生选择了乒乓球?练习题二:某个班级的学生总数为 n,假设每位学生参加了 m 个俱乐部活动,并且每个俱乐部活动至少有两名学生参加。

请你回答以下问题:1. 如果 n=30,m=4,那么俱乐部活动的总数最多是多少?2. 如果只有两个俱乐部活动的总数达到最大值,那么 n 至少有多少个学生?3. 如果 n=25,俱乐部活动的总数为 40,那么 m 至少是多少?练习题三:某个超市有 n 种商品,每种商品的库存量不同。

根据抽屉原则,如果每个商品的库存量都不超过 m 个,那么必然存在至少一个商品的库存量超过了 m 个。

请你运用抽屉原理,回答以下问题:1. 如果有 15 种商品,每种商品的库存量都不超过 6 个,那么至少有几种商品的库存量是相同的?2. 如果有 20 种商品,每种商品的库存量都不超过 10 个,那么至多有几种商品的库存量是相同的?3. 如果有 12 种商品,至少有 8 种商品的库存量超过 5 个,那么最多有几种商品的库存量不超过 5 个?以上是关于抽屉原理的练习题,通过解答这些题目,相信你对抽屉原理的应用有了更深入的理解。

抽屉原理在数学、计算机科学以及日常生活中都具有广泛的应用价值。

抽屉原理练习题

抽屉原理练习题

抽屉原理练习题一、选择题1. 抽屉原理是指,如果有n+1个或更多的物品放入n个抽屉中,至少有一个抽屉中会有2个或更多的物品。

以下哪项不是抽屉原理的表述?A. 每个抽屉至少有一个物品B. 至少有一个抽屉包含多个物品C. 物品数量总是比抽屉数量多1D. 物品和抽屉的数量关系导致至少一个抽屉有多个物品2. 如果有10个苹果要放入9个抽屉中,根据抽屉原理,至少有几个苹果会放在同一个抽屉里?A. 1B. 2C. 3D. 43. 一个班级有50名学生,如果至少有5名学生在同一天过生日,根据抽屉原理,这个班级至少有多少名学生的生日是在同一个月?A. 5B. C. 6D. 7二、填空题4. 如果有13个球要放入12个盒子中,至少有一个盒子里会有______个或更多的球。

5. 一年有12个月,如果有25个人的生日在一年中的不同月份,根据抽屉原理,至少有______个人的生日在同一个月。

6. 一个学校有100名学生,如果至少有10名学生在同一天参加考试,根据抽屉原理,至少有______名学生的考试日期是在同一天。

三、解答题7. 一个班级有36名学生,他们要参加7个不同的兴趣小组。

请证明至少有一个兴趣小组有6名或更多的学生参加。

解答:设有7个兴趣小组,每个小组最多可以有5名学生。

如果每个小组都只有5名学生,那么总共会有7*5=35名学生参加兴趣小组。

但班级有36名学生,这意味着至少有1名学生必须加入到已经满员的小组中,使得至少有一个小组有6名学生。

8. 一个图书馆有10个书架,每个书架最多可以放100本书。

如果图书馆有1000本书需要放置,根据抽屉原理,至少有一个书架上会有多少本书?解答:如果每个书架都放满100本书,那么10个书架可以放1000本书。

但根据抽屉原理,至少有一个书架上会有101本书,因为如果每个书架都只有100本书,那么总共只有1000本书,而实际上有1001本书需要放置。

9. 一个学校有365名学生,他们的生日分布在一年中的不同天。

抽屉原理练习题(精选3篇)

抽屉原理练习题(精选3篇)

抽屉原理练习题〔精选3篇〕篇1:抽屉原理练习题抽屉原理练习题抽屉原理练习题1.木箱里装有红色球3个、黄色球5个、蓝色球7个,假设蒙眼去摸,为保证取出的球中有两个球的颜色一样,那么最少要取出多少个球?2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有3张牌有一样的点数?3.有11名学生到教师家借书,教师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。

试证明:必有两个学生所借的书的类型一样4.有50名运发动进展某个工程的单循环赛,假如没有平局,也没有全胜。

试证明:一定有两个运发动积分一样。

5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?6.某校有55个同学参加数学竞赛,将参赛人任意分成四组,那么必有一组的女生多于2人,又知参赛者中任何10人中必有男生,那么参赛男生的人数为多少人?7.有黑色、白色、蓝色手套各5只〔不分左右手〕,至少要拿出多少只〔拿的时候不许看颜色〕,才能使拿出的手套中一定有两双是同颜色的。

8.一些苹果和梨混放在一个筐里,小明把这筐水果分成了假设干堆,后来发现无论怎么分,总能从这假设干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了多少堆?9.从1,3,5,……,99中,至少选出多少个数,其中必有两个数的和是100。

10.某旅游车上有47名乘客,每位乘客都只带有一种水果。

假如乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有多少人带苹果。

11.某个年级有202人参加考试,总分值为100分,且得分都为整数,总得分为01分,那么至少有多少人得分一样?12.名营员去游览长城,颐和园,天坛。

规定每人最少去一处,最多去两处游览,至少有几个人游览的地方完全一样?13.某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,那么至少有多少人植树的株数一样?答案:1.将红、黄、蓝三种颜色看作三个抽屉,为保证取出的球中有两个球的颜色一样,那么最少要取出4个球。

小学数学抽屉原理例题

小学数学抽屉原理例题

小学数学抽屉原理例题篇一:抽屉原理公式及例题抽屉原理公式及例题“至少??才能保证(一定)?最不利原则抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:抽屉原则二:如果把n个物体放在m个抽屉里,其中nm,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

例1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。

例2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。

这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。

15+1=16 例3:从一副完整的扑克牌中,至少抽出()张牌,才能保证至少6张牌的花色相同? A.21 B.22 C.23 D.24 解:完整的扑克牌有54张,看成54个“苹果”,抽屉就是6个(黑桃、红桃、梅花、方块、大王、小王),为保证有6张花色一样,我们假设现在前4个“抽屉”里各放了5张,后两个“抽屉”里各放了1张,这时候再任意抽取1张牌,那么前4个“抽屉”里必然有1个“抽屉”里有6张花色一样。

答案选C.例4:2013年国考:某单位组织4项培训A、B、C、D,要求每人参加且只参加两项,无论如何安排,都有5人参加培训完全相同,问该单位有多少人?每人一共有6种参加方法(4个里面选2个)相当于6个抽屉,最差情况6种情况都有4个人选了,所以4*6=1=25 例5:有300名求职者参加高端人才专场招聘会,其中软件设计类、市场营销类、财务管理类和人力资源管理类分别有100、80、70和50人。

抽屉原理十个例题

抽屉原理十个例题

抽屉原理十个例题1.有5个红球和7个蓝球放在一个抽屉里,如果随机取出3个球,那么至少会拿到两个是同色球的概率是多少?解析:使用反面计算。

首先,计算取出3个球都是不同色球的概率。

当第一个球被取出后,有5个红球和7个蓝球剩下。

那么取出第二个球时就只剩下4个红球和7个蓝球,概率为(5/12)*(7/11)。

同理,取出第三个球时只剩下3个红球和7个蓝球,概率为(5/12)*(4/11)。

因此,取出3个球都是不同色球的概率为(5/12)*(7/11)*(4/11)。

所以,至少会拿到两个是同色球的概率为1-(5/12)*(7/11)*(4/11)。

2.一组音乐会有10个乐手,其中3个会弹钢琴,4个会吹号,2个会弹吉他,1个会敲鼓。

从中随机选出4个人组成一个小号乐队,求至少会有一位会弹钢琴和一位会吹号的概率是多少?解析:首先,计算四个人都不弹钢琴的概率。

在10个乐手中,只能选出7个人(除去3个弹钢琴的乐手),然后从这7个人中选出4个组成小号乐队,概率为(7选择4)/(10选择4)。

同理,计算四个人都不会吹号的概率为(6选择4)/(10选择4)。

然后计算四个人都不弹钢琴且不会吹号的概率为(4选择4)/(10选择4)。

所以,至少会有一位会弹钢琴和一位会吹号的概率为1-[(7选择4)/(10选择4)+(6选择4)/(10选择4)-(4选择4)/(10选择4)]。

3.有一个箱子里有10双袜子,其中5双是黑色的,3双是蓝色的,2双是灰色的。

如果从箱子中随机取出3只袜子,那么至少会拿到一双是蓝色的概率是多少?解析:计算没有蓝色袜子的概率。

当从箱子中取出第一只袜子后,有10只袜子剩下,其中3只是蓝色的。

所以,没有蓝色袜子的概率为(7/10)*(6/9)*(5/8)。

所以,至少会拿到一双是蓝色的概率为1-(7/10)*(6/9)*(5/8)。

4.一个袋子里有20个糖果,其中3个是巧克力的,7个是草莓味的,10个是薄荷味的。

如果从袋子中随机取出5个糖果,那么至少会拿到两个是草莓味的概率是多少?解析:计算没有草莓味糖果的概率。

五年级抽屉原理练习题

五年级抽屉原理练习题

五年级抽屉原理练习题一、选择题(每题5分,共30分)根据题意,选择正确的答案填入括号中。

1. 一个抽屉有3个红色袜子和5个蓝色袜子,如果你随便伸手进去取一只袜子,那么它是红色袜子的可能性是()。

A. 3/8B. 1/8C. 5/8D. 3/52. 一个抽屉有6个橘子、4个苹果和5个香蕉,如果你闭上眼睛从抽屉中拿取水果,那么拿到香蕉的可能性是()。

A. 5/15B. 1/5C. 5/7D. 5/153. 若一个抽屉有8个白球、7个黑球,那么从抽屉中取出的球不是白球的概率是()。

A. 8/15B. 7/15C. 1/2D. 8/234. 一个抽屉有2个红色书籍和3个绿色书籍,如果从抽屉中随机取一本书,它是绿色书籍的可能性是()。

A. 3/4B. 2/5C. 3/5D. 3/25. 一个抽屉里有4个蓝色卡片、3个红色卡片和2个黄色卡片,如果从抽屉中随机取一张卡片,它不是红色卡片的概率是()。

A. 4/9B. 3/9C. 6/9D. 3/46. 一个抽屉里有10双袜子,其中4个是白色的,2个是黑色的,4个是蓝色的。

从抽屉中任意取出一双袜子,拿到蓝色袜子的概率是()。

A. 4/10B. 2/10C. 4/12D. 1/3二、填空题(每题5分,共20分)根据题意,填入正确的答案。

1. 一个抽屉有10个红色小球和15个蓝色小球。

小明从抽屉中取出一个小球,不看颜色放回,再取一个小球,取得的两次小球颜色相同的概率是()。

答:(15/25) * (14/24) = 7/242. 一个抽屉里有20只袜子,其中6只是黑色的,5只是蓝色的,剩余的是白色的。

小丽从抽屉中取两只袜子,拿到两只不同颜色的袜子的概率是()。

答:(6/20) * (14/19) * 2 = 84/1903. 一个抽屉有10个苹果,8个橙子和5个香蕉。

小亮从抽屉中任意取出一个水果,不放回,再取一个水果。

取得的两次水果都是香蕉的概率是()。

答:(5/23) * (4/22) = 10/2534. 一个抽屉中有8本书籍,其中3本是数学书,2本是英语书,剩余的是科学书。

2023年六年级数学下册《抽屉原理》练习题

2023年六年级数学下册《抽屉原理》练习题

《抽屉原理》练习题1、跳绳练习中,1分钟至少跳几次时,必在某1秒内,至少跳了三次?2、任意取几个自然数,才能保证至少有两个数的差是7的倍数?3、五(1)班有40名学生,班里有个小书架,要保证至少有一两个同学能借到两本或两本以上的书,书架上至少要有几本书。

4、在自然数1、2、3……100中,至少要取几个数,才能保证当中必有两个数的差小于5?5、袋子里有红色球80个、黄色球70个、兰色球60个、白色球50个,它们的大小和质量都一样,要保证摸出10对球(颜色相同的为一对),至少应取几个球?6、一副扑克牌(去掉两张王牌),每人随意抽取两张牌,那么至少要有几个人才能保证他们当中一定有两个所抽取的两张牌的花色是相同的?7、黑暗中有红、黄、黑、白4种颜色的筷子分别有1只、3只、5只和7只混在一起,要保证得到两双颜色不同的筷子,一次至少应摸出多少只?8、库房里有一批篮球、排球、足球和手球,每人任意搬运两个,至少要几人搬运,才能保证有5人搬运的球完全一样?9、夏令营组织1987名营员去游览故宫、景山公园、北海公园,规定每人最少去一处,最多去两处,那么至少有几个人游览的地方完全相同/?10、在一个口袋中有10个黑球、6个白球、4个红球,若要保证取到白球,则至少应从中取出几个球?11、六(1)班有49名学生,数学期中考试中(满分为100分)除3人外均在86分以上(每人的成绩均为整数),那么该班同学至少有几人的成绩相同?12、口袋里有足够多的红、蓝、白三种颜色的球,现有31人轮流从袋子中取球,每人取3个,至多有多少人所拿的球,相互颜色不完全相同?13、一个袋子中有100只红袜子,80只绿袜子,40只白袜子,让你闭上眼睛从袋子中摸袜子,每次只许摸一只,至少要摸出多少只?才能保证摸出的这几只袜子中至少有一双颜色一样。

14、100名少先队员选大队长,候选人是甲、乙、丙三人,选举时每人只能选举1人,得票最多的人当选,开票中途累计,前61张选票中,甲得35票,乙得10票,丙得16票,在尚未统计的选票中,甲至少再得多少票就一定当选?15、把红、蓝、黄、白四种颜色的筷子各三根混在一起。

抽屉原理练习题(打印版)

抽屉原理练习题(打印版)

抽屉原理练习题(打印版)# 抽屉原理练习题## 一、基础题目1. 题目一:有5个苹果,要分给4个孩子,至少有一个孩子能得到至少几个苹果?2. 题目二:一个班级有35名学生,如果他们每人至少参加一个兴趣小组,那么至少有多少名学生参加的是同一个兴趣小组?3. 题目三:有7个不同的球,要放入6个相同的盒子中,至少有一个盒子里至少有几个球?## 二、进阶题目4. 题目四:一个篮子里有100个鸡蛋,需要将它们分成9组,每组至少有几个鸡蛋?5. 题目五:有24个不同的球,要放入5个不同的盒子中,每个盒子至少有一个球,那么至少有一个盒子里至少有几个球?6. 题目六:有36个不同的球,要放入10个相同的盒子中,至少有一个盒子里至少有几个球?## 三、应用题目7. 题目七:一个学校有365名学生,如果他们每人至少参加一个课外活动,那么至少有多少名学生参加的是同一个课外活动?8. 题目八:一个图书馆有1000本书,要将它们平均分配给10个书架,每个书架至少有100本书,那么至少有一个书架上至少有多少本书?9. 题目九:有50个不同的球,要放入4个不同的盒子中,每个盒子至少有一个球,那么至少有一个盒子里至少有几个球?## 四、拓展题目10. 题目十:一个班级有40名学生,如果他们每人至少参加一个兴趣小组,那么至少有多少名学生参加的是同一个兴趣小组?11. 题目十一:有31个不同的球,要放入4个相同的盒子中,至少有一个盒子里至少有几个球?12. 题目十二:一个篮子里有200个鸡蛋,需要将它们分成5组,每组至少有几个鸡蛋?## 五、挑战题目13. 题目十三:有49个不同的球,要放入7个不同的盒子中,每个盒子至少有一个球,那么至少有一个盒子里至少有几个球?14. 题目十四:一个学校有400名学生,如果他们每人至少参加一个课外活动,那么至少有多少名学生参加的是同一个课外活动?15. 题目十五:有56个不同的球,要放入8个相同的盒子中,至少有一个盒子里至少有几个球?解题提示:抽屉原理,又称鸽巢原理,是数学中的一个基本概念,它指出如果有更多的物品(鸽子)需要放入较少的容器(巢穴)中,那么至少有一个容器必须包含多于一个的物品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽屉原理练习题1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。

2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。

这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。

3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。

试证明:必有两个学生所借的书的类型相同。

证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种。

共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”。

如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同。

4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同。

证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同。

5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?解题关键:利用抽屉原理2。

解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜。

以这9种配组方式制造9个抽屉,将这50个同学看作苹果50÷9 =5 (5)由抽屉原理2k=[m/n ]+1可得,至少有6人,他们所拿的球类是完全一致的。

6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人生为__________人。

解:因为任意分成四组,必有一组的女生多于2人,所以女生至少有4×2+1=9(人);因为任意10人中必有男生,所以女生人数至多有9人。

所以女生有9人,男生有55-9=46(人)7、证明:从1,3,5,……,99中任选26个数,其中必有两个数的和是100。

解析:将这50个奇数按照和为100,放进25个抽屉:(1,99),(3,97),(5,95),……,(49 ,51)。

根据抽屉原理,从中选出26个数,则必定有两个数来自同一个抽屉,那么这两个数的和即为100。

8. 某旅游车上有47名乘客,每位乘客都只带有一种水果。

如果乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有______人带苹果。

解析:由题意,不带苹果的乘客不多于一名,但又确实有不带苹果的乘客,所以不带苹果的乘客恰有一名,所以带苹果的就有46人。

9. 一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了_______堆。

解析:要求把其中两堆合并在一起后,苹果和梨的个数一定是偶数,那么这两堆水果中,苹果和梨的奇偶性必须相同。

对于每一堆苹果和梨,奇偶可能性有4种:(奇,奇),(奇,偶),(偶,奇),(偶,偶),所以根据抽屉原理可知最少分了4+1=5筐。

10. 有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出_____只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。

解析:考虑最坏情况,假设拿了3只黑色、1只白色和1只蓝色,则只有一双同颜色的,但是再多拿一只,不论什么颜色,则一定会有两双同颜色的,所以至少要那6只。

11.从前25个自然数中任意取出7个数,证明:取出的数中一定有两个数,这两个数中大数不超过小数的1.5倍.证明:把前25个自然数分成下面6组:1; ①2,3; ②4,5,6; ③7,8,9,10; ④11,12,13,14,15,16; ⑤17,18,19,20,21,22,23, ⑥因为从前25个自然数中任意取出7个数,所以至少有两个数取自上面第②组到第⑥组中的某同一组,这两个数中大数就不超过小数的1.5倍.12.一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。

问最少抽几张牌,才能保证有4张牌是同一种花色的?解析:根据抽屉原理,当每次取出4张牌时,则至少可以保障每种花色一样一张,按此类推,当取出12张牌时,则至少可以保障每种花色一样三张,所以当抽取第13张牌时,无论是什么花色,都可以至少保障有4张牌是同一种花色,选B。

13.从1、2、3、4……、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7?【解析】在这12个自然数中,差是7的自然树有以下5对:{12,5}{11,4}{10,3}{9,2}{8,1}。

另外,还有2个不能配对的数是{6}{7}。

可构造抽屉原理,共构造了7个抽屉。

只要有两个数是取自同一个抽屉,那么它们的差就等于7。

这7个抽屉可以表示为{12,5}{11,4}{10,3}{9,2}{8,1}{6}{7},显然从7个抽屉中取8个数,则一定可以使有两个数字来源于同一个抽屉,也即作差为7,所以选择D。

15.某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?分析与解:将40名小朋友看成40个抽屉。

今有玩具122件,122=3×40+2。

应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。

也就是说,至少会有一个小朋友得到4件或4件以上的玩具。

16.一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。

问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?分析与解:将1,2,3,4四种号码看成4个抽屉。

要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。

所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。

17.六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种。

问:至少有多少名学生订阅的杂志种类相同?分析与解:首先应当弄清订阅杂志的种类共有多少种不同的情况。

订一种杂志有:订甲、订乙、订丙3种情况;订二种杂志有:订甲乙、订乙丙、订丙甲3种情况;订三种杂志有:订甲乙丙1种情况。

总共有3+3+1=7(种)订阅方法。

我们将这7种订法看成是7个“抽屉”,把100名学生看作100件物品。

因为100=14×7+2。

根据抽屉原理2,至少有14+1=15(人)所订阅的报刊种类是相同的。

18.篮子里有苹果、梨、桃和桔子,现有81个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的?分析与解:首先应弄清不同的水果搭配有多少种。

两个水果是相同的有4种,两个水果不同有6种:苹果和梨、苹果和桃、苹果和桔子、梨和桃、梨和桔子、桃和桔子。

所以不同的水果搭配共有4+6=10(种)。

将这10种搭配作为10个“抽屉”。

81÷10=8……1(个)。

根据抽屉原理2,至少有8+1=9(个)小朋友拿的水果相同。

19.学校开办了语文、数学、美术三个课外学习班,每个学生最多可以参加两个(可以不参加)。

问:至少有多少名学生,才能保证有不少于5名同学参加学习班的情况完全相同?分析与解:首先要弄清参加学习班有多少种不同情况。

不参加学习班有1种情况,只参加一个学习班有3种情况,参加两个学习班有语文和数学、语文和美术、数学和美术3种情况。

共有1+3+3=7(种)情况。

将这7种情况作为7个“抽屉”,根据抽屉原理2,要保证不少于5名同学参加学习班的情况相同,要有学生7×(5-1)+1=29(名)。

20. 在1,4,7,10,…,100中任选20个数,其中至少有不同的两对数,其和等于104。

分析:解这道题,可以考虑先将4与100,7与97,49与55……,这些和等于104的两个数组成一组,构成16个抽屉,剩下1和52再构成2个抽屉,这样,即使20个数中取到了1和52,剩下的18个数还必须至少有两个数取自前面16个抽屉中的两个抽屉,从而有不同的两组数,其和等于104;如果取不到1和52,或1和52不全取到,那么和等于104的数组将多于两组。

解:1,4,7,10,……,100中共有34个数,将其分成{4,100},{7,97},……,{49,55},{1},{52}共18个抽屉,从这18个抽屉中任取20个数,若取到1和52,则剩下的18个数取自前16个抽屉,至少有4个数取自某两个抽屉中,结论成立;若不全取1和52,则有多于18个数取自前16个抽屉,结论亦成立。

21. 任意5个自然数中,必可找出3个数,使这三个数的和能被3整除。

分析:解这个问题,注意到一个数被3除的余数只有0,1,2三个,可以用余数来构造抽屉。

解:以一个数被3除的余数0、1、2构造抽屉,共有3个抽屉。

任意五个数放入这三个抽屉中,若每个抽屉内均有数,则各抽屉取一个数,这三个数的和是3的倍数,结论成立;若至少有一个抽屉内没有数,那么5个数中必有三个数在同一抽屉内,这三个数的和是3的倍数,结论亦成立。

22. 在边长为1的正方形内,任意放入9个点,证明在以这些点为顶点的三角形中,必有一个三角形的面积不超过1/8.解:分别连结正方形两组对边的中点,将正方形分为四个全等的小正方形,则各个小正方形的面积均为1/4 。

把这四个小正方形看作4个抽屉,将9个点随意放入4个抽屉中,据抽屉原理,至少有一个小正方形中有3个点。

显然,以这三个点为顶点的三角形的面积不超过1/8 。

反思:将边长为1的正方形分成4个面积均为1/4 的小正方形,从而构造出4个抽屉,是解决本题的关键。

我们知道。

将正方形分成面积均为1/4 的图形的方法不只一种,如可连结两条对角线将正方形分成4个全等的直角三角形,这4个图形的面积也都是1/4 ,但这样构造抽屉不能证到结论。

可见,如何构造抽屉是利用抽屉原理解决问题的关键。

23.班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。

解:把50名学生看作50个抽屉,把书看成苹果 ,根据原理1,书的数目要比学生的人数多,即书至少需要50+1=51本.24.在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米。

相关文档
最新文档