寄存器电路设计

合集下载

16位通用移位寄存器设计报告

16位通用移位寄存器设计报告

16位通用移位寄存器设计报告(1) 设计一个16位循环右移电路,S是移位数,A是移位前的并行输入,Y是移位后的并行输出(在本设计中,我用Pin表示移位前的并行输入,Pout表示移位后的并行输入,S表示移位设计题目要求数),要求估算电路占用的资源大小及电路的速度;(2) 以上面设计好的16位循环右移电路为核心,扩展设计一个能进行循环右移、循环左移、算术右移、算术左移、逻辑右移、逻辑左移的通用移位电路。

设计工具及版本 Quartus II 9.0设计原理及结构方案(1)在考虑16位循环右移电路的设计时,我选择用74151“8选1数据选择器”配合门电路进行搭建桶形移位电路,对于每个输出断对应需要用两片74151对16位并行输入数据进行选择,用移位数控制端S(S3S2S1S0)中的S3实现两片74151的片选进而将两片74151组成“16选1数据选择器”,结构如图1。

用16个如图1的结构这可以构成16位输出的循环右移电路结构框图,如图2。

74151 16位并行输入Pin16位并行输出的其中一端Pout[n]74151 移位数控制端S(图1)16位并行输入Pin 74151 16位并行输出端Pout[0]74151 移位数控制端S16位并行输入Pin 7415116位并行输出端Pout[15]74151 移位数控制端S(图2)(3) 以16位循环右移电路(结构图如上图2)为核心进行构建多功能移位通用电路(结构图如下图3):16位16位并行输入Pin 循环循环16位循右移移位环移位并4位全位电移位数控制端S 输出行输出加器路信号74283 移位方式控制端处理16位自定义A、B、LorR 16位循环左移电路产生移位并行输最终出的期4位全自定移位数控制端S 望输加器义4-16 出信74283 译码16位译号电路码序列移位方式控制端A、B、LorR根据移位方式产生所需要的译码序列(图3)电路设计描述(1)16位循环右移电路设计:选择用2片74151“8选1数据选择器”对16位并行输入数据根据移位数和所在输出位置进行选择,作为Pout[n],例如Pout[0]对应的第一片74151的D7D6D5D4D3D2D1D0分别对应Pin[7]---Pin[0], 第二片74151的D7D6D5D4D3D2D1D0分别对应Pin[15]---Pin[8];再如Pout[6]对应的第一片74151的D7D6D5D4D3D2D1D0分别对应Pin[13]---Pin[6], 第二片74151的D7D6D5D4D3D2D1D0分别对应Pin[5]---Pin[0]Pin[15]Pin[14],按照这样的方式不同的输出位对应的不同的接线方法就可以根据S(S3S2S1S0)选择相应的输入数据作为输出Pout[n]。

8位移位寄存器的电路设计与版图实现要点

8位移位寄存器的电路设计与版图实现要点

8位移位寄存器的电路设计与版图实现要点8位移位寄存器的电路设计与版图实现摘要电⼦设计⾃动化,缩写为EDA,主要是以计算机为主要⼯具,⽽Tanner EDA则是⼀种在计算机windows平台上完成集成电路设计的⼀种软件,基本包括S-Edit,T-Spice,W-Edit,L-Edit与LVS等⼦软件,其S-Edit以及L-Edit为常⽤软件,前者主要实现电路设计,后者主要针对的是已知电路的版图绘制,⽽T-Spice主要可实现电路图及版图的仿真,可以⽤Tanner EDA实现电路的设计布局以及版图实现等⼀系列完整过程。

本⽂⽤Tanner EDA⼯具主要设计的是8位移位寄存器,移位寄存器主要是⽤来实现数据的并⾏和串⾏之间的转换以及对数据进⾏运算或专业处理的⼯具,主要结构构成是触发器,触发器是具有储存功能的,可以⽤来储存多进制代码,⼀般N 位寄存器就是由N个触发器构成,移位寄存器⼯作原理主要是数据在其脉冲的作⽤下实现左移或者右移的效果,输⼊输出的⽅式表现为串⾏及并⾏⾃由组合,本设计就是在Tanner EDA的软件平台上进⾏对8位移位寄存器的电路设计仿真,再根据电路图在专门的L-Edit 平台上完成此电路的版图实现,直⾄完成的结果和预期结果保持⼀致。

关键词:Tanner EDA;L-Edit;移位寄存器,S-Edit8 bits shift register circuit design and layoutAbstractElectronic design automation,referred to as EDA,it is based on computers as the main tool,and Tanner EDA is a kind of software that complete the integrated circuit design on Windows platforms.Its Sub-Softwares include S-Edit,T-Spice,W-Edit,L-Edit and LVS and so on.S-Edit and L-Edit are commonly used software,S-Edit is primarily designed to achieve circuit,the latter is aimed primarily known circuit layout drawing,T-Spice can achieve schematic and layout simulation.We can achieve layout of the circuit design and a series of complete process layout used Tanner EDA tools.In this paper, Tanner EDA tools are mainly designed an 8-bit shift register.The shift register is mainly used for data conversion between parallel and serial, and the data processing tool operation or professional,its main structure is the trigger composition,flip-flop is a storage function,it can be used to store more hexadecimal code,In general N-bits register is composed of N trigger.Working principle of the shift register data under the action of the pulse, mainly the effect of the shift to the left or right,input and output of the way of serial and parallel free combination.This design is in Tanner on the EDA software platform to 8 bits shift register circuit design and simulation,then according to the circuit diagram on special L - Edit platform to complete the circuit layout implementation,until the finish is consistent with the results and expected results.Keywords:Tanner EDA;L-Edit;Shift register,S-Edit⽬录1 前⾔ (1)1.1 课题的背景和⽬的 (1)1.2课题的设计内容 (1)2 设计软件简介 (2)2.1EDA技术的介绍 (2)2.2T ANNER EDA T OOLS的简述 (2)2.3T ANNER软件的组成及发展 (3)2.3.1 Tanner的设计流程 (4)2.3.2 Tanner软件的发展 (5)2.3.3 L-Edit软件的介绍 (6)2.48位移位寄存器的⼯作原理和设计要求 (9)2.4.1 ⼯作原理 (9)2.4.2 电路结构与设计 (11)3 8位移位寄存器的电路设计与版图实现过程 (13)3.1各个模块的设计与仿真 (13)3.1.1 带复位端D触发器的设计与版图实现 (13)3.1.2 与或⾮门的设计与版图实现 (16)3.28位移位寄存器的电路设计与版图实现 (18)3.2.1 8位移位寄存器的电路结构 (18)3.2.2 8位移位寄存器的版图实现 (19)3.2.3 LVS对⽐ (21)4 结束语 (21)参考⽂献 (22)巢湖学院2013届本科毕业论⽂(设计)1 前⾔1.1 课题的背景和⽬的随着科技的进步,近⼏个世纪寄存器技术不断成熟,在数字电路中,寄存器已经是⼀个经常被提出的概念,它主要指的是⽤来存放⼆进制数据或者代码的电路。

计算机寄存器实验报告

计算机寄存器实验报告

一、实验目的1. 理解计算机寄存器的概念、作用和分类;2. 掌握寄存器在计算机系统中的基本操作;3. 熟悉寄存器的控制信号及其工作原理;4. 培养实验操作能力和分析问题能力。

二、实验环境1. 实验设备:计算机组成原理实验箱、计算机、Proteus仿真软件;2. 实验软件:Proteus仿真软件、模型机仿真软件;3. 实验环境:实验室。

三、实验内容1. 寄存器基本概念及分类;2. 寄存器操作实验;3. 寄存器控制信号实验;4. 寄存器在计算机系统中的应用实验。

四、实验步骤1. 寄存器基本概念及分类实验(1)打开Proteus仿真软件,创建一个新的项目;(2)在项目中选择计算机组成原理实验箱中的寄存器模块;(3)观察寄存器的结构,了解寄存器的分类(如累加器、寄存器组、地址寄存器等);(4)总结寄存器的作用,如暂存数据、控制指令等。

2. 寄存器操作实验(1)在Proteus仿真软件中,搭建一个简单的寄存器操作电路;(2)设置输入数据,观察寄存器的输出;(3)通过改变输入数据,验证寄存器的存储功能;(4)总结寄存器操作的基本步骤。

3. 寄存器控制信号实验(1)在Proteus仿真软件中,搭建一个包含控制信号的寄存器电路;(2)观察控制信号对寄存器操作的影响;(3)通过改变控制信号,验证寄存器的读写功能;(4)总结寄存器控制信号的作用和意义。

4. 寄存器在计算机系统中的应用实验(1)在Proteus仿真软件中,搭建一个简单的计算机系统电路;(2)观察寄存器在计算机系统中的操作过程;(3)分析寄存器在计算机系统中的作用,如数据暂存、指令控制等;(4)总结寄存器在计算机系统中的应用。

五、实验结果与分析1. 通过实验,掌握了寄存器的基本概念、作用和分类;2. 熟悉了寄存器的操作过程,包括输入、输出、读写等;3. 了解寄存器控制信号的作用,以及它们对寄存器操作的影响;4. 分析了寄存器在计算机系统中的应用,如数据暂存、指令控制等。

寄存器

寄存器

1.1 寄存器在实际的数字系统中,通常把能够用来存储一组二进制代码的同步时序逻辑电路称为寄存器.由于触发器内有记忆功能,因此利用触发器可以方便地构成寄存器。

由于一个触发器能够存储一位二进制码,所以把n个触发器的时钟端口连接起来就能构成一个存储n位二进制码的寄存器。

1.2 锁存器由若干个钟控D触发器构成的一次能存储多位二进制代码的时序逻辑电路。

数据有效迟后于时钟信号有效。

这意味着时钟信号先到,数据信号后到。

在某些运算器电路中有时采用锁存器作为数据暂存器。

1.3 缓冲器缓冲器相当于一个寄存器,暂时保存数据.缓冲是用来在两种不同速度的设备之间传输信息时平滑传输过程的常用手段。

除了在关键的地方采用少量硬件缓冲器之外,大都采用软件缓冲。

软件缓冲区是指在I/O操作期间用来临时存放输入/输出数据的一块存储区域。

在操作系统中,引入缓冲的主要原因如:缓和CPU与l/0设备间速度不匹配的矛盾。

一般情况下,程序的运行过程是时而进行计算,时而进行输入或输出。

以输出为例,如果没有缓冲,则程序在输出时,必然由于打印机的速度跟不上而使CPU停下来等待;然而在计算阶段,打印机又无事可做。

如果设置一个缓冲区,程序可以将待输出的数据先输出到缓冲区中,然后继续执行;而打印机则可以从缓冲区取出数据慢慢打印。

1.4 寄存器和锁存器的区别(1)寄存器是同步时钟控制,而锁存器是电位信号控制。

(2)寄存器的输出端平时不随输入端的变化而变化,只有在时钟有效时才将输入端的数据送输出端(打入寄存器),而锁存器的输出端平时总随输入端变化而变化,只有当锁存器信号到达时,才将输出端的状态锁存起来,使其不再随输入端的变化而变化可见,寄存器和锁存器具有不同的应用场合,取决于控制方式以及控制信号和数据之间的时间关系:若数据有效一定滞后于控制信号有效,则只能使用锁;数据提前于控制信号而到达并且要求同步操作,则可用寄存器来存放数据。

一、锁存器1. 锁存器的工作原理锁存器不同于触发器,它不在锁存数据时,输出端的信号随输入信号变化,就像信号通过一个缓冲器一样;一旦锁存信号起锁存作用,则数据被锁住,输入信号不起作用。

EDA课程设计报告---串入并出移位寄存器

EDA课程设计报告---串入并出移位寄存器

EDA课程设计报告设计课题:1、串入并出移位寄存器2、译码器3、数字钟专业班级:电子信息工程08-1班串入并出移位寄存器一、设计任务与要求1.设计一个4位的串入并出移位寄存器;2.要求能分别输入两组4位数据,同时输出显示。

二、方案设计与论证移位寄存器除了具有存储代码的功能以外,还具有移位功能。

所谓移位功能,是指寄存器里存储的代码能在移位脉冲的作用下依次左移或右移。

因此,移位寄存器不但可以用来寄存代码,还可用来实现数据的串并转换、数字的运算以及数据处理等。

所谓的串入/并出移位寄存器,即输入的数据是一个接着一个有序地进入,输出时则一起送出。

两组数据伴随着时钟信号依次输入,输出时消除延时。

三、单元电路设计与参数计算程序代码:library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_arith.all;use ieee.std_logic_unsigned.all;entity sipo isport(d_in:in std_logic;clk:in std_logic;d_out:out std_logic_vector(3 downto 0));end sipo;architecture a of sipo issignal q:std_logic_vector(3 downto 0);beginp1:process(clk)beginif clk'event and clk='1'thenq(0)<=d_in;for i in 1 to 3 loopq(i)<=q(i-1);end loop;end if;end process p1;d_out<=q;end a;四、总原理图及元器件清单1.总原理图1.元件清单(或程序清单)五、安装与调试输入的数据为“1010”、“0111”两组4 位数据。

因输入的数据是每次一位依序进入,故输入、输出信号之间有 4 个CLK 时间的延迟。

计算机组成原理实验报告_存储系统设计实验

计算机组成原理实验报告_存储系统设计实验

实验四存储系统设计实验一、实验目的本实训项目帮助大家理解计算机中重要部件—存储器,要求同学们掌握存储扩展的基本方法,能设计MIPS 寄存器堆、MIPS RAM 存储器。

能够利用所学习的cache 的基本原理设计直接相联、全相联,组相联映射的硬件cache。

二、实验原理、内容与步骤实验原理、实验内容参考:1、汉字字库存储芯片扩展设计实验1)设计原理该实验本质上是8个16K×32b 的ROM 存储系统。

现在需要把其中一个(1 号)16K×32b 的ROM 芯片用4个4K×32b 的芯片来替代,实际上就是存储器的字扩展问题。

a) 需要4 片4个4K×32b 芯片才可以扩展成16K×32b 的芯片。

b) 目标芯片16K个地址,地址线共14 条,备用芯片12 条地址线,高两位(分线器分开)用作片选,可以接到2-4 译码器的输入端。

c) 低12 位地址直接连4K×32b 的ROM 芯片的地址线。

4个芯片的32 位输出直接连到D1,因为同时只有一个芯片工作,因此不会冲突。

芯片内数据如何分配:a) 16K×32b 的ROM 的内部各自存储16K个地址,每个地址里存放4个字节数据。

地址范围都一样:0x0000~0x3FFF。

b) 4个4K×32b 的ROM,地址范围分别是也都一样:0x000~0xFFF,每个共有4K个地址,现在需要把16K×32b 的ROM 中的数据按照顺序每4个为一组分为三组,分别放到4个4K×32b 的ROM 中去。

HZK16_1 .txt 中的1~4096个数据放到0 号4K 的ROM 中,4097~8192 个数据放到 1 号4K 的ROM 中,8193~12288 个数据放到2 号4K 的ROM 中,12289~16384个数据放到3 号4K 的ROM 中。

c) 注意实际给的16K 数据,倒数第二个4K(8193~12288 个数据)中部分是0,最后4K(12289~16384 数据)全都是0。

计算机组成原理实验报告-寄存器实验

计算机组成原理实验报告-寄存器实验

千里之行,始于足下。

计算机组成原理实验报告-寄存器实验计算机组成原理实验报告-寄存器实验》一、实验目的本次实验旨在通过设计和实现一个基本的寄存器,加深对计算机组成原理中寄存器的理解,并掌握寄存器在计算机中的应用。

二、实验设备及软件1. 实验设备:计算机2. 实验软件:模拟器软件Mars3. 实验材料:电路图、线缆、元器件三、实验原理寄存器是计算机的一种重要组成部分,用于存储数据和指令。

一个基本的寄存器通常由一组触发器组成,可以存储多个位的信息。

本实验中,我们需要设计一个16位的寄存器。

四、实验步骤1. 确定寄存器的结构和位数:根据实验要求,我们需要设计一个16位的寄存器。

根据设计要求,选择合适的触发器和其他元器件。

2. 组装寄存器电路:根据电路图,将选择好的元器件按照电路图连接起来。

3. 连接电路与计算机:使用线缆将寄存器电路连接到计算机的相应接口上。

4. 编写程序:打开Mars模拟器软件,编写程序来测试寄存器的功能。

可以编写一段简单的程序,将数据写入寄存器并读取出来,以验证寄存器的正确性。

5. 运行程序并测试:将编写好的程序加载到Mars模拟器中,并运行程序,观察寄存器的输出和模拟器的运行结果。

第1页/共3页锲而不舍,金石可镂。

五、实验结果在本次实验中,我们成功设计和实现了一个16位的寄存器,并进行了相关测试。

经过多次测试,寄存器的功能和性能良好,能够准确地存储和读取数据。

六、实验心得通过本次实验,我对寄存器的结构和工作原理有了更深入的了解。

寄存器作为计算机的一种重要组成部分,起着存储和传输数据的作用。

通过实际操作和测试,我更加清楚了寄存器在计算机中的应用和重要性。

在实验过程中,我遇到了一些问题,如电路连接不稳定、程序错误等,但通过仔细检查和调试,最终解决了这些问题。

这次实验也让我深刻体会到了学习计算机组成原理的重要性,只有深入理解原理并通过实践运用,才能真正掌握计算机的工作原理和能力。

通过这个实验,我有了更深入的认识和理解,对计算机组成原理的学习也更加系统和完整。

数字集成电路设计 pdf

数字集成电路设计 pdf

数字集成电路设计一、引言数字集成电路设计是一个广泛且深入的领域,它涉及到多种基本元素和复杂系统的设计。

本文将深入探讨数字集成电路设计的主要方面,包括逻辑门设计、触发器设计、寄存器设计、计数器设计、移位器设计、比较器设计、译码器设计、编码器设计、存储器设计和数字系统集成。

二、逻辑门设计逻辑门是数字电路的基本组成单元,用于实现逻辑运算。

常见的逻辑门包括与门、或门、非门、与非门和或非门等。

在设计逻辑门时,需要考虑门的输入和输出电压阈值,以确保其正常工作和避免误操作。

三、触发器设计触发器是数字电路中用于存储二进制数的元件。

它有两个稳定状态,可以存储一位二进制数。

常见的触发器包括RS触发器、D触发器和JK触发器等。

在设计触发器时,需要考虑其工作原理和特性,以确保其正常工作和实现预期的功能。

四、寄存器设计寄存器是数字电路中用于存储多位二进制数的元件。

它由多个触发器组成,可以存储一组二进制数。

常见的寄存器包括移位寄存器和同步寄存器等。

在设计寄存器时,需要考虑其结构和时序特性,以确保其正常工作和实现预期的功能。

五、计数器设计计数器是数字电路中用于对事件进行计数的元件。

它可以对输入信号的脉冲个数进行计数,并输出计数值。

常见的计数器包括二进制计数器和十进制计数器等。

在设计计数器时,需要考虑其工作原理和特性,以确保其正常工作和实现预期的功能。

六、移位器设计移位器是数字电路中用于对二进制数进行移位的元件。

它可以对输入信号进行位移操作,并输出移位后的结果。

常见的移位器包括循环移位器和算术移位器等。

在设计移位器时,需要考虑其工作原理和特性,以确保其正常工作和实现预期的功能。

七、比较器设计比较器是数字电路中用于比较两个二进制数的元件。

它可以比较两个数的值,并输出比较结果。

常见的比较器包括并行比较器和串行比较器等。

在设计比较器时,需要考虑其工作原理和特性,以确保其正常工作和实现预期的功能。

八、译码器设计译码器是数字电路中用于将二进制数转换为另一种形式的元件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五寄存器电路设计
1.画出74ls74构成的4位单向移位寄存器并说明其工作原理。

它是由四个D触发器串联而成的四位单向移位寄存器。

移位寄存器使其中所储存的二进制,在一位脉冲的作用下左右移动;
一位触发器可以储存1位二进制代码,存放n位二进制就需要n个触发器构成;
2.8位移位寄存器设计原理图。

实验五寄存器电路设计
一、实验目的
l、掌握寄存器的工作原理、测试和分析其工作状态
2、掌握集成双向移位寄存器和并行数据锁存器的功能及使用方法
3、8位移位寄存器电路设计
二、实验内容及步骤
1、并行输入/并行输出寄存器功能测试
表5.1
2、移位寄存器功能测试
(1)用74LS74构成的4位单向移位寄存器
11010000表5.2
(2) 74LSl94
表5.3
100X X X X X X X0000
3、8D 锁存器功能测试
表5.4
注: “个”表示单脉冲上升沿
4、8位移位寄存器电路设计(如不够可自行加纸)
自制表格:
设计思路:
用两片74LS194芯片来设计8位移步寄存器;主要思路是74LS194芯片在S0S1=00,01,10,11状态下分别为保持、右移、左移和置位的功能,而本实验就要应用了左移和右移的功能,只要将两个芯片的S0S1端连接在一起就可以实现由四位移步寄存器变为八位移步寄存器了;
原理图:
三、思考题
1.写出图5.1和图5.2的状态方程,并对照检查实验结果正确与否。

Q3=D3+D1D2 Q2= D0+D3 Q1=D3+D1D2 Q0=D0+D3 是正确的
四、实验总结(自己总结本次试验的重难点及心得、体会、收获,字数不得少于100字)。

相关文档
最新文档