纤维素酶活力的测定Measurement of Cellulase Activities
纤维素酶活力的测定

纤维素酶活力的测定(CMC糖化力法)1、定义:1克固体酶粉(或1毫升液体酶),在40℃pH﹦4.6条件下,每分钟水解羧甲基纤维素钠(CMC-Na),产生1.0ug的葡萄糖,即为1个酶活单位,以u/g(u/ml)表示。
2、原理:CMC-Na在纤维素酶的作用下,水解产生纤维寡糖、纤维二糖、葡萄糖等还原糖,还原糖能将3,5﹣二硝基水杨酸中的硝基还原成橙黄色的氨基化合物,在540nm波长下测定吸光度值A,吸光度与酶活成正比。
CMC-Na糖化力主要代表内切β-1.4-葡聚糖的活力和外切酶活力总和。
3、试剂:3.1 0.1mol/LpH﹦4.6醋酸﹣醋酸钠缓冲溶液:将49.0ml0.2mol/L醋酸钠溶液和51.0ml0.2mol/L醋酸溶液混合后加100ml蒸馏水。
注意:0.2mol/L醋酸钠溶液:称取27.22g结晶乙酸钠(AR)定容至1000ml。
0.2mol/L醋酸溶液:称取冰乙酸(AR)11.5ml定容至1000ml。
3.2 3,5二硝基水杨酸(DNS)试剂:称取6.3克3,5-二硝基水杨酸用水溶解,加入21.0克NaOH,182克酒石酸钾钠,加500ml水,加热溶解后再加入5.0克重蒸酚和5.0克亚硫酸钠,搅拌溶解,冷却,定容至1000ml,存于棕色瓶中,放置7天后使用。
3.3 葡萄糖标准溶液(1.0mg /ml):称取1.000克葡萄糖(AR)(105℃干燥至恒重)用蒸馏水溶解后定容至1000ml,冰箱保存备用。
3.4 羧甲基纤维素钠溶液:称2.0gCMC-Na溶于200 ml蒸馏水中,加醋酸缓冲溶液100 ml,混匀后存于冰箱内备用。
配后隔天使用。
4、仪器4.1 分光光度计4.2 恒温水浴,50℃4.3 25 ml具塞刻度试管5、分析步骤:5.1标准曲线绘制:取25ml具塞刻度试管6支,加入1.0 mg /ml的葡萄糖标准溶液0.0、0.4、0.8、1.2、1.6、2.0ml,加蒸馏水2.0、1.2、0.8、0.4、0.0ml,加DNS试剂1.5 ml,混匀后在沸水浴中加热5分钟,取出立即用冷水冷却,用水定容至25 ml,摇匀,测吸光度A,以吸光度为纵坐标,葡萄糖的含量为横坐标,绘制标准曲线。
纤维素酶活力的测定

纤维素酶液中各种酶的作用方式图
2.2 纤维素酶水解纤维素产生的纤维二糖、葡萄糖等还原
糖能将碱性条件下的3,5-二硝基水杨酸(DNS)还原,生成 红棕色的氨基化合物,在540nm波长处有最大光吸收,在一 定范围内还原糖的量与反应液的颜色强度呈比例关系,利 用比色法测定其还原糖生成的量就可测定纤维素酶的活力。
3.器材和试剂
3.1器材:
水浴锅、 分光光度计、 记时器、 比色管(4支+6支)、 移液管(5支)、 吸耳球
3.2试剂(公用): 如下
1 ) D N S试剂
称取3 , 5 一 二硝基水杨酸( 1 0 10 . 1 ) g,置于约6 0 0 m L水中,逐渐 加入氢氧化钠l o g ,在5 0 ℃水浴中( 磁力)搅拌溶解,再依次加入酒石酸 甲钠2 0 0 g 、苯酚( 重蒸) 2 g 和无水亚硫酸钠5 g ,待全部溶解并澄清后, 冷却至室温,用水定容至 I O O O m L ,过滤。贮存于棕色试剂瓶中,于 暗处放置7 d 后使用。
性回归系数应在0 . 9 9 9ห้องสมุดไป่ตู้0以上时方可使用( 否则须重做) 。
4 . 2 样 品的测定
4 . 2 . 1 待测酶液的制备 称取酶样1 g , 精确至0 . 1 m g ( 或吸取液体酶样1 mL , 精
确至0 . 0 1 m L ) , 用水(柠檬酸缓冲液,0.05 mol/LpH4.8) 溶解100ml(100倍),之后分别做200倍、400倍、600倍、800 倍稀释, 磁力搅拌混匀, 准确稀释定容 放置1 0 m i n , 待测。 4 . 2 . 2 滤纸条的准备
有最大光吸收,由此,可根据测得的吸光值与葡萄糖浓度的关
系来计算纤维素酶的活力(FPA)。
纤维素酶活力的测定

实验二十纤维素酶活力的测定一、目的学习和掌握3,5-二硝基水杨酸(DNS)法测定纤维素酶活力的原理和方法,了解纤维素酶的作用特性。
二、原理纤维素酶是一种多组分酶,包括C 酶、C 酶和 |?-葡萄糖苷酶三种主要组分。
其中C1 X 1酶的作用是将天然纤维素水解成无定形纤维素,C 酶的作用是将无定形纤维素继续水解成X纤维寡糖,|?-葡萄糖苷酶的作用是将纤维寡糖水解成葡萄糖。
纤维素酶水解纤维素产生的纤维二糖、葡萄糖等还原糖能将碱性条件下的3,5-二硝基水杨酸(DNS)还原,生成棕红色的氨基化合物,在540nm波长处有最大光吸收,在一定范围内还原糖的量与反应液的颜色强度呈比例关系,利用比色法测定其还原糖生成的量就可测定纤维素酶的活力。
三、实验材料、主要仪器和试剂1.实验材料(1)纤维素酶制剂 500mg(2)新华定量滤纸 50mg / 份 4(3)脱脂棉花 50mg / 份 4(4)羧甲基纤维素钠(CMC) 510mg(5)水杨酸苷 500mg2.主要仪器(1)722 型或其他型号的可见分光光度计(2)恒温水浴 2 台(3)沸水浴锅(4)电炉子(5)剪刀(6)万分之一分析天平(7)恒温干燥箱(8)冰箱(9)试管架(10)胶头滴管(11)具塞刻度试管 20mL24(12)移液管或加液器 0.5 mL3;2mL7(13)容量瓶 100 mL6;1000 mL3(14)量筒 50 mL2;100 mL1;500 mL1(15)烧杯 100 mL6;500mL3;1 000 mL13.试剂(均为分析纯)(1)浓度为 1mg/mL的葡萄糖标准液将葡萄糖在恒温干燥箱中105℃下干燥至恒重,准确称取100mg 于100mL小烧杯中,用少量蒸馏水溶解后,移入100mL容量瓶中用蒸馏水定容至 100mL,充分混匀。
4℃冰箱中保存(可用 12~15 天)。
(2)3,5-二硝基水杨酸(DNS)溶液准确称取DNS 6.3g于500mL大烧杯中,用少量蒸馏水溶解后,加入2mol/L NaOH 溶液 262mL,再加到 500mL含有 185g酒石酸钾钠(C H O KNa ! 4H O,MW=282.22)的热4 4 6 2水溶液中,再加5g结晶酚(C H OH,MW=94.11)和5g无水亚硫酸钠(Na SO ,MW=126.04),6 5 2 3搅拌溶解,冷却后移入1 000mL容量瓶中用蒸馏水定容至1 000mL,充分混匀。
纤维素酶活的测定

8・・纤维素酶活的测定一纤维素酶活力单位定义在37°C、pH值为5. 50的条件下,每分钟从浓度为4mg/ml的竣甲基纤维素钠溶液中降解lumol还原糖所需要的酶疑为一个酶活力单位Uo二测定原理纤维素酶能将竣甲基纤维素降解成寡糖和单糖。
具有还原性末端的寡糖和有还原集团的单糖在沸水浴条件下可以与DNS试剂发生显色反应,反应颜色的强度与酶解产生的还原糖量成正比,而还原糖的生成疑又与反应液中的纤维素酶的活力成正比。
因此,通过分光比色测定反应液颜色的强度,可以汁算反应液中的纤维素酶的活力。
三试剂与溶液除特殊说明外,所用的试剂均为分析纯,水均为符合GB/T6682中规左的三级水。
3. 1 葡萄糖溶液,c (CeHisOe) =10. Omg/ml称取无水匍萄糖1. 000g,加水溶解,定容至100mlo3.2乙酸溶液,c(CHsCOOH)=O. lmol/L吸取冰乙酸0.60ml,加水溶解,定容至100mlo3.3乙酸钠溶液,c (CHsCOONa) =0. 1 mol/L称取三水乙酸钠1.36g,加水溶解,圧容至100ml.3.4氢氧化钠溶液,c (NaOH) =200g/L称取氢氧化钠20. 0g,加水溶解,泄容至100ml o3.5乙酸-乙酸钠缓冲溶液,c (CHsCOOH-CHaCOONa)称取三水乙酸钠11. 57g,加入冰醋酸0.85ml,加水溶解,定容至1000ml,测定溶液的pH值,如果pH偏离5.50,用乙酸溶液(3.2)或乙酸钠溶液(3.3)调至5. 50.3.6拔甲基纤维素钠溶液,0.8$ (w/v)称取竣甲基纤维素钠(Sigma C5678) 0. 40g,加入到盛有30ml3. 5缓冲溶液的饶杯中,磁力搅拌,同时缓慢加热,直至竣甲基纤维素钠完全溶解(在搅拌加热过程中可以补加适量的缓冲液,但是溶液的总体积不能超过50ml),停止搅拌,用3. 5缓溶将英左容至50ml,竣甲基纤维素钠溶液能立即使用,使用前适当摇匀。
(完整版)纤维素酶活力的测定

纤维素酶活力的测定1.纤维素酶活力单位定义在37℃,pH值为5.5的条件下,每分钟从浓度为4mg/ml的羧甲基纤维素钠溶液中降解释放1umol还原糖所需要的酶量为一个酶活力单位u.2.测定原理纤维素酶能将羧甲基纤维素降解成寡糖和单糖.具有还原性末端的寡糖和有还原基团的单糖在沸水浴条件下可以与DNS试剂发生显色反应.反应液颜色的强度与酶解产生的还原糖量成正比,而还原糖的生成量又与反应液中纤维素酶的活力成正比.因此,通过分光比色测定反应液颜色的强度,可以计算反应液中纤维素酶的活力.3.试剂与溶液除特殊说明外,所用的试剂均为分析纯,水均为符合GB/T6682中规定的三级水.3.1葡糖糖溶液,c(C6H12O6)为10.0mg/ml:称取无水葡萄糖1.000g,加水溶解,定容至100ml.3.2 乙酸溶液,c(CH3COOH)为0.1mol/L:吸取冰乙酸0.60ml.加水溶解,定容至100ml.3.3 乙酸钠溶液,c(CH3COONa)为0.1mol/L:称取三水乙酸钠1.36g.加水溶解,定容至100ml.3.4 氢氧化钠溶液,c(NaOH)为200g/L:称取氢氧化钠20.0g.加水溶解,定容至100ml.3.5 乙酸——乙酸钠缓冲溶液,c(CH3COOH—CH3COONa)为0.1mol/L,pH值为5.5:称取三水乙酸钠23.14g,加入冰乙酸1.70ml.再加水溶解,定容至2000ml.测定溶液的pH值.如果pH值偏离5.5,再用乙酸溶液(3.2)或乙酸钠溶液(3.3)调节至5.5.3.6 羧甲基纤维素钠溶液:0.8%(w/v)称取羧甲基纤维素钠(Sigma C5678)0.80g,加入80ml乙酸—乙酸钠缓冲溶液(3.5).磁力搅拌,同时缓慢加热,直至羧甲基纤维素钠完全溶解(注:在搅拌加热的过程中可以补加适量的缓冲液,但是溶液的总体积不能超过100ml.).然后停止加热,继续搅拌30min,用乙酸—乙酸钠缓冲溶液(3.5)定容至100ml.羧甲基纤维素钠溶液能立即使用,使用前适当摇匀.4℃避光保存,有效期为3天.3.7 DNS试剂称取3,5-二硝基水杨酸 3.15g(化学纯),加水500ml,搅拌5s,水浴至45℃.然后逐步加入100ml氢氧化钠溶液(3.4),同时不断搅拌,直到溶液清澈透明(注意:在加入氢氧化钠过程中,溶液温度不要超过48℃.).再逐步加入四水酒石酸钾钠91.0g,苯酚2.50g和无水亚硫酸钠2.50g.继续45℃水浴加热,同时补加水300ml,不断搅拌,直到加入的物质完全溶解.停止加热,冷却至室温后,用水定容至1000ml.用烧结玻璃过滤器过滤.取滤液,储存在棕色瓶中,避光保存.室温下存放7天后可以使用,有效期为6个月.4 仪器与设备4.1 实验室用样品粉碎机或碾钵.4.2 分样筛:孔径为0.25mm(60目).4.3 分析天平:感量0.001g.4.4 pH计:精确至0.01.4.5 磁力搅拌器:附加热功能.4.6 电磁振荡器.4.7 烧结玻璃过滤器:孔径为0.45m.4.8 离心机:2000g以上.4.9 恒温水浴锅:温度控制范围在30—60℃之间,精度为0.1℃.4.10 秒表:每小时误差不超过5s.4.11 分光光度计:能检测350—800nm的吸光度范围.4.12 移掖器;精度为1l.5 标准曲线的绘制吸取缓冲液(3.5)4.0ml,加入DNS试剂(3.7)5.0ml,沸水浴加热5min.用自来水冷却至室温,用水定容至25.0ml,制成标准空白样.分别吸取葡萄糖溶液(3.1)1.00,2.00,3.00,4.00,5.00,6.00和7.00ml,分别用缓冲液(3.5)定容至100ml,配制成浓度为0.10—0.70mg/ml葡萄糖标准溶液.分别吸取上述浓度系列的葡萄糖标准溶液各 2.00ml(做二个平行),分别加入到刻度试管中,再分别加入2ml水和5mlDNS试剂(3.7).电磁振荡3s,沸水浴加热5min.然后用自来水冷却到室温,再用水定容至25ml.以标准空白样为对照调零,在540nm处测定吸光度OD值.以葡萄糖浓度为Y轴,吸光度OD值为X轴,绘制标准曲线.每次新配制DNS试剂均需要重新绘制标准曲线.6 试样溶液的制备固体试样应粉碎或充分碾碎,然后过60目筛(孔径为0.25mm).称取试样两份,精确至0.001g.加入50ml乙酸—乙酸钠缓冲溶液(3.5).磁力搅拌30min,再用缓冲溶液(3.5)定容至100ml,在4℃条件下避光保存24h.摇匀,取出30-50ml,2000g离心3min.吸取5.00ml上清液,再用缓冲溶液(3.5)做二次稀释(稀释后的待测酶液中纤维素酶活力最好能控制在0.04—0.08 u/ml之间).液体试样可以直接用乙酸—乙酸钠缓冲溶液(3.5)进行稀释,定容(稀释后的酶液中纤维素酶活力最好能控制在0.04—0.08 u/ml之间).如果稀释后酶液的pH值偏离5.5,需要用乙酸溶液(3.2)或乙酸钠溶液(3.3)调节,校正至5.5,然后再用缓冲溶液(3.5)做适当定容.7 测定步骤吸取10.0ml羧甲基纤维素钠溶液(3.6),37℃平衡10min.吸取10.0ml经过适当稀释的酶液,37℃平衡10min.吸取2.00ml经过适当稀释的酶液(已经过37℃平衡),加入到刻度试管中,再加入5mlDNS试剂(3.7),电磁振荡3s.然后加入2.0ml羧甲基纤维素钠溶液(3.6),37℃保温30min,沸水浴加热5min.用自来水冷却至室温,加水定容至25ml,电磁振荡3s.以标准空白样为空白对照,在540nm处测定吸光度AB.吸取2.0ml经过适当稀释的酶液(已经过37℃平衡),加入到刻度试管中,再加入2.0ml羧甲基纤维素钠(3.6)(已经过37℃平衡),电磁振荡3s,37℃精确保温30min.加入5.0mlDNS试剂(3.7),电磁振荡3s,酶解反应.沸水浴加热5min,用自来水冷却至室温,加水定容至25ml,电磁振荡3s.以标准空白样为空白对照,在540nm处测定吸光度AE.8.试样酶活力的计算[(AE - AB)×K + CO]XD = × 1000 (1)M×t式(1)中:XD —试样稀释液中的纤维素酶活力,u/ml;AE —酶反应液的吸光度;AB —酶空白样的吸光度;K —标准曲线的斜率;CO —标准曲线的截距;M —葡萄糖的分子量(180.2);t —酶解反应时间,min;1000 —转化因子,1mmol = 1000 umol.XD值应在0.04—0.08 u/ml之间.如果不在这个范围内,应重新选择酶液的稀释度,再进行分析测定.X = XD•Df (2)式(2)中:X —试样纤维素酶的活力,u/g;Df —试样的总稀释倍数.酶活力的计算值保留三位有效数字.9 重复性同一样品两个平行测定值的相对误差不超过8.0%,二者的平均值为最终的酶活力测定值(保留三位有效数字)1.药品、试剂及仪器脂肪酶(Novezymes公司),0.0667mol/L的KH2PO4-Na2HPO4缓冲溶液(pH值为7.38;),脂肪酸显色剂(5%醋酸铜溶液,用吡啶调节pH=6.2),正己烷,油酸,橄榄油,盐酸,无水乙醇,分光光度计,pH计,水/油浴恒温磁力搅拌器,离心机,分析天平等。
纤维素酶活力的测定

目的本检测方法是用来确定本公司纤维素酶类的催化活性。
本方法适用于各种固体和液体纤维素酶制剂。
说明本方法适合于纤维素类酶的质量分析和质量控制领域。
但不是本公司产品及其它公司产品的绝对活力的预测,而各种酶制剂的最终的酶活力在良好的实验操作下仍可发挥出更好的催化活力。
原理纤维素被纤维素酶水解最终降解生成β-葡萄糖。
鉴于纤维素结构的复杂性,没有任何一种酶能将纤维素彻底水解。
1950 年Reese提出了C1-Cx概念。
C1是一水解因子,作用于纤维素的结晶区(如棉花纤维即为高度结晶性纤维),使氢键破裂,呈无定形可溶态,成为长链纤维素分子。
再由Cx最终催化形成还原性单糖。
而Cx通常包括:(1)内切葡萄糖苷酶(endo-1,4-β-D-glucanase,EC3.2.1.4,简称EG)。
这类酶随机水解β-1,4-糖苷键,将长链纤维素分子(羧甲基纤维素钠(CMC)即为人工合成的一种线形纤维素钠盐)截短。
(2)外切葡萄糖苷酶(exo-1,4-β-D-glucanase,EC3.2.1.91),又称纤维二糖水解酶(cellobiohydrolase,简称CBH)。
这类酶作用于β-1,4-糖苷键,每次切下一个纤维二糖分子。
(3)β-葡萄糖苷酶(β-glucosidase,EC3.2.1.21,简称BG),这类酶将纤维二糖(水杨素即为葡萄糖苷键连接的纤维二糖)水解成葡萄糖分子。
据上述理论,分别设计以滤纸(filter paper)、棉球、CMC、水杨素为底物,分别衡量纤维素的总体酶活性(FPA)、C1、Cx、Cb酶活性。
将底物水解后释放还原性糖(以葡萄糖计)与3,5-二硝基水杨酸(DNS)反应产生颜色变化,这种颜色变化与葡萄糖的量成正比关系,即与酶样品中的酶活性成正比。
通过在550nm的光吸收值查对标准曲线(以葡萄糖为标准物)可以确定还原糖产生的量,从而确定出酶的活力单位。
纤维素酶类活性的定义Ⅰ 1g酶粉(1ml酶液)于50℃pH4.8条件下,每分钟水解1×6cm的滤纸(FPA)产生1μg还原糖(以葡萄糖计)的酶量定义为1个FPA酶活力单位。
纤维素酶酶活测定

纤维素酶酶活测定纤维素酶活测定方法一、原理纤维素酶能将纤维素降解成纤维二糖和葡萄糖,具有还原性末端的纤维二糖糖和有还原基团的单糖在沸水浴条件下可与DNS试剂发生显色反应。
反应颜色强度与酶解产生的还原糖量成正比,而还原糖量又与反应液中的纤维素酶的活力成正比。
酶活定义纤维素酶活力单位是指55℃、pH5.0的条件下,以每分钟催化羧甲基纤维素钠水解生成1μmol还原糖所需的酶量定义为一个酶活力单位U。
二、实验试剂羧甲基纤维素钠(聚合度1700-2000),内切纤维素酶(苏柯汉)50mmol NaAC-HAC、DNS试剂三、实验仪器容量瓶(1000ml ×2、500 ml×3、100 ml ×4、50ml×4 ml)、移液器、烧杯(500ml×3、50ml×3)、具塞试管、电热套、水浴锅、分光光度计、pH计、电子天平四、标准曲线的绘制五、酶活测定由于苏柯汉给定的pH范围为4.8-5.2,故选用pH 5.0的50mmol NaAC-HAC缓冲液测定纤维素酶酶活。
1、样品的制备CMC-Na溶液的制备:用pH 5.0的50mmol NaAC-HAC缓冲液配置0.5%的CMC-Na (羧甲基纤维素钠)溶液,准确称量CMC-Na0.05g,精确至0.001g,溶于蒸馏水中,45℃水浴锅中搅拌溶解,冷却后定容至100ml。
纤维素酶液的制备:准确称取纤维素酶,精确到0.001g。
用50mmol NaAC-HAC pH5.0的缓冲液配置成适当的浓度10000倍,保证吸光度在0.2-0.6之间。
2、DNS法测酶活:取1.8ml 0.5% CMC-Na的溶液于25ml 具塞刻度试管中,55℃预热10min左右,加入0.2ml 适当稀释的酶液,于55℃水浴锅中保温30min后,然后加2ml DNS,混匀,沸水浴5min,冷却至室温,定容到25ml。
混匀测OD540nm。
纤维素酶活力的测定方法

纤维素酶活力的测定方法1 原理纤维素酶是一种复合酶。
酶系包括外切B-1.4-葡聚糖酶(ExoB-1.4glucanase,EC3.2.1.9)内切B-1.4葡聚糖酶(Endoβ-1.4-glucanase,EC1.2.1.4)和纤维二糖酶。
纤维素酶在一定温度和PH条件下,将纤维素酶底物(滤纸或羟甲基纤维素钠)水解,释放出还原糖。
在碱性,煮沸条件下,3.5-二硝基水杨酸(DNS试剂)与还原糖发生显色反应,其颜色的深浅与还原糖(与葡萄糖汁)含量成正比。
通过在540nm测定吸光度,可得到产生还原糖的量,计算出纤维素酶的FPA酶和CMCA酶活力,以此代表纤维素酶的酶活力。
2 操作A.FPA酶A.1绘制标准曲线按表1规定的量,分别吸取葡萄糖标准使用溶液、缓冲溶液和DNS试剂加入各管中,混匀。
表1葡萄糖标准曲线管号葡萄糖标准使用溶液缓冲液吸取量 DNS试剂吸取量ml 浓度mg/ml 吸取量ml 0 0.0 0.00 2.0 3.01 1.0 0.50 1.5 3.02 1.5 0.50 1.5 3.03 2.0 0.50 1.5 3.04 2.5 0.50 1.5 3.05 3.0 0.50 1.5 3.06 3.5 0.50 1.5 3.0将标准管同时置于沸水浴中,反应10min。
取出,迅速冷却至室温。
用水定容至25ml,盖塞,混匀。
用10mm比色杯,在分光光度计波长540nm处测量吸光度。
以葡萄糖量为横坐标,以吸光度为纵坐标,绘制标准曲线,获得线性回归方程。
线性回归系数应在0.9990以上时方可使用(否则须重做)。
A.2 样品的测定A.2.1待测酶液的制备称取固体酶样1g,精确至0.1mg(或吸取液体酶样1ml,精确至0.01ml),用水溶解,磁力搅拌混匀,准确稀释定容(使试样液与空白液的吸光度之差恰好落在0.3-0.4范围内),放置10min,待测。
A.2.2 滤纸条的准备----将待用滤纸放入(硅胶)干燥器中平衡24h----将水分平衡后的滤纸制成宽1cm、质量为(50±0.5)mg的滤纸条,折成M型,备用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DISCLAIMERThese Standard Biomass Analytical Methods (“Methods”) are provided by the National Renewable Energy Laboratory (“NREL”), which is operated by the Midwest Research Institute (“MRI”) for the Department Of Energy.Access to and use of these Methods shall impose the following obligations on the user. The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute these Methods for any purpose whatsoever, except commercial sales, provided that this entire notice appears in all copies of the Methods. Further, the user agrees to credit NREL/MRI in any publications that result from the use of these Methods. The names NREL/MRI, however, may not be used in any advertising or publicity to endorse or promote any products or commercial entity unless specific written permission is obtained from NREL/MRI. The user also understands that NREL/MRI is not obligated to provide the user with any support, consulting, training or assistance of any kind with regard to the use of these Methods or to provide the user with any updates, revisions or new versions.THESE METHODS ARE PROVIDED BY NREL/MRI "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NREL/MRI BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS, USE OR PERFORMANCE OF THESE METHODS.Measurement of Cellulase ActivitiesLaboratory Analytical Procedure #0061.Introduction1.1The following method describes a procedure for measurement of cellulase activityusing International Union of Pure and Applied Chemistry (IUPAC) guidelines (1). Theprocedure has been designed to measure cellulase activity in terms of "filter-paperunits" (FPU) per milliliter of original (undiluted) enzyme solution. For quantitativeresults the enzyme preparations must be compared on the basis of significant and equalconversion. The value of 2.0 mg of reducing sugar as glucose from 50 mg of filterpaper (4% conversion) in 60 minutes has been designated as the intercept forcalculating filter paper cellulase units (FPU) by IUPAC.1.2It is extremely important to keep in mind that the FPU is defined only at this extent ofconversion. Reducing sugar yield is not a linear function of the quantity of enzyme inthe assay mixture; as discussed by Ghose (1987), twice the amount of enzyme wouldnot be expected to yield twice the reducing sugar in equal time. The assay proceduretherefore involves finding a dilution of the original enzyme stock such that a 0.5 mLaliquot of the dilution will catalyze 4% conversion in 60 minutes (or, in practical terms,finding two dilutions that bracket the 4%-conversion point so closely that the requireddilution can be obtained, with reasonable accuracy, by interpolation) and thencalculating the activity (in FPU/mL) of the original stock from the dilution required.Further comments on the required calculations, and their significance, are to be foundin the Appendix.1.3Assay mixtures may in some cases contain reducing sugars unrelated to hydrolysis ofsubstrate glycosidic bonds by the enzyme. Culture filtrates to be assayed for cellulasemay contain nutrient sugars, and the reducing ends of the cellulose polymers of thesubstrate may sometimes be measurable as glucose equivalents before any enzymeattack. For this reason, controls consisting of (a) enzyme without substrate and b)substrate without enzyme are included with all enzyme assays and sample values arecorrected for any blank values.2.Scope2.1This procedure is only appropriate for the determination of FPU activity in a cellulasepreparation as defined by the IUPAC procedure as outlined above.Procedure #006Revision: 7/18/96Supersedes: 8/19/92Page 1 of 93.References3.1Ghose, T.K. 1987. "Measurement of Cellulase Activities." Pure & Appl. Chem. 59:257-268.3.2Miller, G.L. 1959. "Use of Dinitrosalicylic Acid Reagent for Determination ofReducing Sugar." Anal. Chem. 31:426-428.4.Significance and Use4.1This procedure follows IUPAC guidelines and determines enzyme activity as filterpaper units in a cellulase preparation.5.Apparatus5.1Water bath capable of maintaining 50o C ± 0.1o C.5.2Spectrophotometer suitable for measuring absorbance at 540 nm.6.Reagents and Materials6.1DNS ReagentMix: Distilled water1416 mL3,5 Dinitrosalicylic acid 10.6 gSodium hydroxide 19.8 gDissolve above, then add:Rochelle salts (sodium potassium tartrate)306 gPhenol (melt at 50o C)7.6 mLSodium metabisulfite8.3 gTitrate 3 mL sample with 0.1 N HCl to the phenolphthalein endpoint. It should take5-6 mL of HCl. Add NaOH if required (2 g = 1 mL 0.1 N HCL).6.2Citrate Buffer: For Trichoderma reesei, cellulase assays are carried out in 0.05 Mcitrate buffer pH 4.8. For other cellulase enzymes, the pH and the assay temperaturemay be different. The assay conditions must be defined when reporting results.Citric acid monohydrate210 gDI water750 mLNaOH - add until pH equals 4.350 to 60 gProcedure #006Revision: 7/18/96Supersedes: 8/19/92Page 2 of 11Dilute to 1 L and check pH. If necessary add NaOH until the pH is 4.5.When the 1 M stock citrate buffer stock is diluted with water to 50 mMthe pH should be 4.8. After diluting the citrate buffer check and adjustthe pH if necessary to pH 4.8.7.ES&H Considerations and Hazards7.1Follow all applicable NREL Laboratory Specific Hygiene Plan guidelines.7.2Care must be taken when working with phenol, which is toxic and corrosive.8.Procedure for the Filter Paper Assay for Saccharifying Cellulase8.1The detection of glycosidic bond cleavage by this method involves the parallel andidentical treatment of three categories of experimental tubes (assay mixtures, blanksand controls, and glucose standards), prepared as detailed below. The substrate is a 50mg Whatman No. 1 filter paper strip (1.0 x 6.0 cm).8.2Enzyme assay tubes:8.2.1Place a rolled filter paper strip into each 13 x 100 test tube.8.2.2Add 1.0 mL 0.05 M Na-citrate, pH 4.8 to the tube; the buffer should saturatethe filter paper strip.8.2.3Equilibrate tubes with buffer and substrate to 50o C.8.2.4Add 0.5 mL enzyme diluted appropriately in citrate buffer. At least twodilutions must be made of each enzyme sample, with one dilution releasingslightly more than 2.0 mg of glucose (absolute amount) and one slightly lessthan 2.0 mg of glucose. Target 2.1 and 1.9 mg glucose, respectively, forthese two dilutions. Depending on the enzyme these targets may be hard toachieve and additional dilutions must be run.8.2.5Incubate at 50o C for exactly 60 min.8.2.6At the end of the incubation period, remove each assay tube from the 50o Cbath and stop the enzyme reaction by immediately adding 3.0 mL DNSreagent and mixing.Procedure #006Revision: 7/18/96Supersedes: 8/19/92Page 3 of 118.3Blank and controls:8.3.1Reagent blank: 1.5 mL citrate buffer.8.3.2Enzyme control: 1.0 mL citrate buffer + 0.5 mL enzyme dilution (prepare aseparate control for each dilution tested).8.3.3Substrate control: 1.5 mL citrate buffer + filter-paper strip.8.4Glucose standards:8.4.1 A working stock solution of anhydrous glucose (10 mg/mL) should be madeup. Aliquots of this working stock should be tightly sealed and stored frozen.The standard should be vortexed after thawing to ensure adequate mixing.8.4.2Dilutions are made from the working stock in the following manner:1.0 mL + 0.5 mL buffer = 1:1.5 = 6.7 mg/mL (3.35 mg/0.5 mL).1.0 mL + 1.0 mL buffer = 1:2 = 5 mg/mL (2.5 mg/0.5 mL).1.0 mL +2.0 mL buffer = 1:3 =3.3 mg/mL (1.65 mg/0.5 mL).1.0 mL + 4.0 mL buffer = 1:5 = 2 mg/mL (1.0 mg/0.5 mL).8.4.3 Glucose standard tubes should be prepared by adding 0.5 mL of each of theabove glucose dilutions to 1.0 mL of citrate buffer in a 13 x 100 mm testtube.8.4.4Blanks, controls and glucose standards should be incubated at 50o C alongwith the enzyme assay tubes, and then "stopped" at the end of 60 minutes byaddition of 3.0 mL of DNS reagent.8.5Color development (Miller, 1959):8.5.1Boil all tubes for exactly 5.0 minutes in a vigorously boiling water bathcontaining sufficient water to cover the portions of the tubes occupied by thereaction mixture plus reagent. All samples, controls, blanks, and glucosestandards should be boiled together. After boiling, transfer to a cold ice-water bath.Procedure #006Revision: 7/18/96Supersedes: 8/19/92Page 4 of 118.5.2Let the tubes sit until all the pulp has settled, or centrifuge briefly. Dilute alltubes (assays, blanks, standards and controls) in water (0.200 mL of color-developed reaction mixture plus 2.5 mL of water in a spectrophotometercuvette works well, use the pipettor to mix by drawing the mixture into thepipettor tip repeatedly). Determine color formation by measuring absorbanceagainst the reagent blank at 540 nm. With this dilution the glucose standardsdescribed above should give absorbance in the range of 0.1 to 1.0 A.9.Calculations9.1Construct a linear glucose standard curve using the absolute amounts of glucose(mg/0.5 mL) plotted against A540. The data for the standard curve should closely fit acalculated straight line, with the correlation coefficient for this straight line fit beingvery near to one. Verify the standard curve by running a calibration verificationstandard, an independently prepared solution of containing a known amount of glucosewhich falls about midpoint on the standard curve.9.2Using this standard curve determine the amount of glucose released for each sampletube after subtraction of enzyme blank.9.3Estimate the concentration of enzyme which would have released exactly 2.0 mg ofglucose by means of a plot of glucose liberated against the logarithm of enzymeconcentration (refer to the example in Appendix B, which uses semilogarithmic graphpaper). To find the required enzyme concentration take two data points that are veryclose to 2.0 mg and draw a straight line between them, use this line to interpolatebetween the two points to find the enzyme dilution that would produce exactly 2.0 mgglucose equivalents of reducing sugar. Appendix B presents an example.Note: In this plot, and in the equation below for calculating FPU, the term "enzymeconcentration" refers to the proportion of the original enzyme solution present in eachenzyme dilution (i.e., the number of mL of the original solution present in each mL ofthe dilution).9.4Calculate FPU:Where [enzyme] represents the proportion of original enzyme solution present in thedirectly tested enzyme dilution (that dilution of which 0.5 mL is added to the assaymixture). For the derivation of the FPU see Ghose (1987) and Appendix A. Procedure #006Revision: 7/18/96Supersedes: 8/19/92Page 5 of 119.5Refer to Appendix B for an example for calculating IUPAC-FPU.10.Precision and BiasProcedure #006Revision: 7/18/96Supersedes: 8/19/92Page 6 of 1110.1Precision can be measured only by the closeness of repeated measurements of the samequantity of enzyme. This procedure, if carefully followed, should give the sameapproximate numerical readings as obtained by other laboratories using the sameprocedure. Precision in filter paper assays may be affected by the inherent physicalproperties of cellulase preparations.11.Quality Control11.1Reported significant figures: Typically results are reported as whole integers alongwith the standard deviation. The assay conditions must be defined when reporting theresults.11.2Replicates: Run each dilution in triplicate.11.3Blank: As described in the section “Blank and controls”.11.4Relative percent difference criteria: Not defined; dependent on the enzyme beingtested.11.5Method verification standard: Not available since enzymes change over time.11.6Calibration verification standard: A calibration verification standard shall beindependently prepared and analyzed as described in the section “Calculations”.11.7Sample size: Dependant upon enzyme concentration.11.8Sample storage: Dependant upon source of enzyme. Manufacturer’s instructionsshould be followed.11.9Standard storage: Store frozen at -20o C or prepare fresh batch; shake vigorously priorto use.11.10Standard preparation: As described in the section “Glucose standards”.11.11Definition of a batch: Run all standards, blanks, and samples together in one batch.The size of the batch may be limited by instrument constraints and should not be largerthan what is practical to handle together.11.12Control charts: Not applicable.11.13Others: Not applicable.Procedure #006Revision: 7/18/96Supersedes: 8/19/92Page 7 of 1112.Appendix A: Numerical Values in Equation Used to Calculate Filter Paper ActivityThe practical bottom line is that if the assays are set up according to the instructions, and the calculations are carried out using the equation presented in the calculations section, the results obtained will correspond to the generally accepted activities in "filter paper units" that would be obtained by other laboratories around the world, were these other laboratories to test the same enzyme solution. For those workers interested in the derivation of this equation, and of the "filter paper unit", the following comments may be helpful in conjunction with Ghose (1987).The numerator (0.37) in the equation is derived from the factor for converting the 2.0 mg of "glucose-equivalents" generated in the assay to mmoles of glucose (2.0 ÷ 0.18016), from the volume of the enzyme being tested that is used in the assay (0.5 mL), and from the incubation time (60 minutes) required for generation of the reducing equivalents.Thus,Because the "enzyme concentration" in the denominator of the equation is a dimensionless number (equal to the ratio of the enzyme concentration in the 0.5 mL of enzyme dilution added to the assay to the enzyme concentration in the original solution, for which FPU values are desired), the right side of equation therefore winds up with units (mmol min-1mL-1) that look like "International Units per mL" (I.U./mL). Ghose himself points out, however, that "because the FPU assay is non-linear, the use of the International Unit per se is incorrect as this unit is based on initial velocities, i.e., linear reactions in which the product is produced at the same rate during each and every minute of the reaction." The author goes on to recommend that FPU values for a given cellulase solution be given simply as "units/mL"."Definition" of the "Filter Paper Unit":As a result of the above choice of numerical values, the "Filter Paper Unit" is not actually explicitly defined. What is defined is the quantity 0.1875 FPU, which is that quantity of enzyme activity that, when assayed according to the instructions contained herein, will produce reducing sugar equivalent to 2.0 mg of glucose. One can verify this from the equation presented in the calculations section by assuming that the enzyme solution being tested needs no dilution to yield reducing sugar equivalent to 2.0 mg of glucose (i.e., the "enzyme concentration" ratio in the denominator is equal to 1.0), in which case the activity of the solution being tested is measured as 0.37 filter paper units per mL. Inasmuch as 0.5 mL of this solution was used in the assay, the absolute quantity of enzyme activity that is present in the assay (and to which the observed effect can be ascribed) is 0.1875 FPU. Procedure #006Revision: 7/18/96Supersedes: 8/19/92Page 8 of 11Procedure #006Revision: 7/18/96Supersedes: 8/19/92Page 9 of 11To put it another way, we have a defined method for measuring the activity of a cellulase solution containing 0.1875 filter paper units per 0.5 mL assay aliquot (0.37 filter paper units per mL of enzyme solution) but we do not have method for measuring the filter paper activity of solutions with any other value. Solutions containing more than 0.37 "units" per mL must therefore be diluted to this standard value to be measured, and solutions containing less than 0.37 "units" per mL (reducing sugar produced in 60 minutes is less than that equivalent to 2.0 mg of glucose) cannot be assigned "filter paper unit” activities at all. These latter "sub-2.0-mg" solutions either must be concentrated before assay, or the activities should not be reported as "filter paper units" at all, but should be reported instead as "mmoles glucose equivalents released per minute averaged over 60 minutes."Ghose (1987) explains the special circumstances involved in measurement of "filter paper activity",and workers are urged to pay close attention to the text of the paper (especially the text surrounding the equations on page 263 of the reference) rather than just "lifting" the equations themselves.13.Appendix B: Example for calculating IUPAC-FPU13.1Determination of cellulase activity in a T. reesei enzyme preparation using the methods outlined by IUPAC. All enzyme dilutions were made in citrate buffer, pH 4.8, as indicated in the following table from a working enzyme stock solution that had been diluted 1:20 in citrate buffer.Dilution #Citrate buffer(ml)1:20 Enzyme (ml)Concentration *116503500.00875217003000.00750318002000.00500418501500.00375519001000.00250*The term "concentration" is used to represent the proportion of the original enzyme solution present in the dilution added to the assay mixture. For example a 1:10 dilution of the 1:20 working stock of enzyme will have a "concentration" of 0.005.Procedure #006Revision: 7/18/96Supersedes: 8/19/92Page 10 of 1113.2Dilution of glucose standards and construction of standard curve.Glucose stock(mL)Citrate buffer(mL)Dilution Concentration Abs. 540 nm1.00.51:1.5 3.35 mg/0.5 mL 0.7651.0 1.01:22.50 mg/0.5 mL 0.5791.0 2.01:3 1.65 mg/0.5 mL 0.3841.04.01:51.00 mg/0.5 mL0.22013.3Glucose concentration of samples as determined from standard curve.Dilution #Abs 540 nm Glucose (ml/0.5 mL)10.603 2.6320.567 2.4430.442 1.9340.346 1.5150.2481.08Procedure #006Revision: 7/18/96Supersedes: 8/19/92Page 11 of 1113.4Determination of the concentration of enzyme which would have released exactly 2.0mg of glucose by plotting glucose liberated against enzyme concentration.13.5Calculation of FPU from graph of dilution vs. glucose concentration.。