高中物理曲线运动经典练习题全集含答案

合集下载

高考物理曲线运动题20套(带答案)及解析

高考物理曲线运动题20套(带答案)及解析

高考物理曲线运动题20套(带答案)及解析一、高中物理精讲专题测试曲线运动1.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x=v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.2.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。

杆静止时,小环靠在杆上,细绳方向竖直;当杆绕竖直轴以角速度ω旋转时,如图所示,小环与Q 点等高,细绳恰好被绷断。

重力加速度g =10m /s 2,忽略一切摩擦。

求:(1)杆静止时细绳受到的拉力大小T ;(2)细绳断裂时杆旋转的角速度大小ω; (3)小环着地点与O 点的距离D 。

【答案】(1)5N (2)53/rad s (3)1.6m 【解析】 【详解】(1)杆静止时环受力平衡,有2T =mg 得:T =5N(2)绳断裂前瞬间,环与Q 点间距离为r ,有r 2+d 2=(L -r )2 环到两系点连线的夹角为θ,有d sin L r θ=-,rcos L rθ=- 绳的弹力为T 1,有T 1sinθ=mg T 1cosθ+T 1=m ω2r 得53/rad s ω=(3)绳断裂后,环做平抛运动,水平方向s =vt竖直方向:212H d gt -=环做平抛的初速度:v =ωr小环着地点与杆的距离:D 2=r 2+s 2 得D =1.6m 【点睛】本题主要是考查平抛运动和向心力的知识,解答本题的关键是掌握向心力的计算公式,能清楚向心力的来源即可。

高中物理曲线运动试题经典及解析

高中物理曲线运动试题经典及解析

高中物理曲线运动试题经典及解析一、高中物理精讲专题测试曲线运动1.光滑水平轨道与半径为R 的光滑半圆形轨道在B 处连接,一质量为m 2的小球静止在B 处,而质量为m 1的小球则以初速度v 0向右运动,当地重力加速度为g ,当m 1与m 2发生弹性碰撞后,m 2将沿光滑圆形轨道上升,问:(1)当m 1与m 2发生弹性碰撞后,m 2的速度大小是多少?(2)当m 1与m 2满足21(0)m km k =>,半圆的半径R 取何值时,小球m 2通过最高点C 后,落地点距离B 点最远。

【答案】(1) 2m 1v 0/(m 1+m 2) (2) R =v 02/2g (1+k )2 【解析】 【详解】(1)以两球组成的系统为研究对象, 由动量守恒定律得:m 1v 0=m 1v 1+m 2v 2, 由机械能守恒定律得:12m 1v 02=12m 1v 12+12m 2v 22, 解得:102122m v v m m =+;(2)小球m 2从B 点到达C 点的过程中, 由动能定理可得:-m 2g ×2R =12m 2v 2′2-12m 2v 22, 解得:2221002212224()4()41m v vv v gR gR gR m m k'=-=-=-++小球m 2通过最高点C 后,做平抛运动,竖直方向:2R =12gt 2, 水平方向:s =v 2′t ,解得:22024()161v Rs R k g=-+, 由一元二次函数规律可知,当2022(1)v R g k =+时小m 2落地点距B 最远.2.如图所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点相接,导轨半径为R .一个质量为m 的物体将弹簧压缩至A 点后由静止释放,在弹力作用下物体获得某一向右速度后脱离弹簧,当它经过B 点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半个圆周运动到达C点.试求:(1)弹簧开始时的弹性势能.(2)物体从B点运动至C点克服阻力做的功.(3)物体离开C点后落回水平面时的速度大小.【答案】(1)3mgR (2)0.5mgR (3)52 mgR【解析】试题分析:(1)物块到达B点瞬间,根据向心力公式有:解得:弹簧对物块的弹力做的功等于物块获得的动能,所以有(2)物块恰能到达C点,重力提供向心力,根据向心力公式有:所以:物块从B运动到C,根据动能定理有:解得:(3)从C点落回水平面,机械能守恒,则:考点:本题考查向心力,动能定理,机械能守恒定律点评:本题学生会分析物块在B点的向心力,能熟练运用动能定理,机械能守恒定律解相关问题.3.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L,重力加速度g,小球半径不计,质量为m,电荷q.不加电场时,小球在最低点绳的拉力是球重的9倍。

高中物理曲线运动经典练习题全集(含答案)

高中物理曲线运动经典练习题全集(含答案)

《曲线运动》超经典试题1、关于曲线运动,下列说法中正确的是( AC )A. 曲线运动一定是变速运动B. 变速运动一定是曲线运动C. 曲线运动可能是匀变速运动D. 变加速运动一定是曲线运动【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。

变速运动可能是速度的方向不变而大小变化,则可能是直线运动。

当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。

做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。

2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,若突然撤去F1,而保持F2、F3不变,则质点( A )A.一定做匀变速运动B.一定做直线运动C.一定做非匀变速运动D.一定做曲线运动【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。

由题意可知,当突然撤去F1而保持F2、F3不变时,质点受到的合力大小为F1,方向与F1相反,故一定做匀变速运动。

在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,则撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F1后,质点可能做直线运动(条件是F1的方向和速度方向在一条直线上),也可能做曲线运动(条件是F1的方向和速度方向不在一条直线上)。

3、关于运动的合成,下列说法中正确的是( C )A. 合运动的速度一定比分运动的速度大B. 两个匀速直线运动的合运动不一定是匀速直线运动C. 两个匀变速直线运动的合运动不一定是匀变速直线运动D. 合运动的两个分运动的时间不一定相等【解析】根据速度合成的平行四边形定则可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。

两个匀速直线运动的合运动一定是匀速直线运动。

两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度方向是否与合加速度方向在一直线上。

高中物理曲线运动典型题及答案

高中物理曲线运动典型题及答案

高中物理曲线运动典题及答案一、单选题(本大题共14小题,共56.0分)1.某一滑雪运动员从滑道滑出并在空中翻转时经多次曝光得到的照片如图所示,每次曝光的时间间隔相等。

若运动员的重心轨迹与同速度不计阻力的斜抛小球轨迹重合,A,B,C和D表示重心位置,且A和D处于同一水平高度。

下列说法正确的是A. 相邻位置运动员重心的速度变化相同B. 运动员在A、D位置时重心的速度相同C. 运动员从A到B和从C到D的时间相同D. 运动员重心位置的最高点位于B和C中间2.在光滑的水平面上,质量m=1kg的物块在的水平恒力F作用下运动,如图所示为物块的一段轨迹。

已知物块经过P、Q两点时的速率均为v= 4m/s,用时为2s,且物块在P点的速度方向与PQ连线的夹角α=30°.关于物块的运动,下列说法正确的是( )A. 水平恒力F=4NB. 水平恒力F的方向与PQ连线成90°夹角C. 物块从P点运动到Q点的过程中最小速率为2m/sD. P、Q两点的距离为8m3.如图所示,从匀速运动的水平传送带边缘,垂直弹入一底面涂有墨汁的棋子,棋子在传送带表面滑行一段时间后随传送带一起运动.以传送带的运动方向为x轴,棋子初速度方向为y轴,以出发点为坐标原点,棋子在传送带上留下的墨迹为( )A. B. C. D.4.如图所示,水平桌面上有一涂有黑色墨水的小球,给小球一个初速度使小球向右做匀速直线运动,它经过靠近桌边的竖直木板ad边前方时,木板开始做自由落体运动。

若木板开始运动时,cd边与桌面相齐平,则小球在木板上留下的墨水轨迹是( )A. B.C. D.5.如图所示,长度为l的轻杆上端连着一质量为m的小球A(可视为质点),杆的下端用铰链固接于水平地面上的O点.置于同一水平面上的立方体B恰与A接触,立方体B的质量为M.今有微小扰动,使杆向右倾倒,各处摩擦均不计,而A与B刚脱离接触的瞬间,杆与地面夹角恰为37°(sin37°=0.6,cos37°=0.8),重力加速度为g,则下列说法正确的是( )A. A、B质量之比为27∶25B. A落地时速率为√2glC. A与B刚脱离接触的瞬间,A、B速率之比为3∶5D. A与B刚脱离接触的瞬间,B的速率为√3gl56.一带有乒乓球发射机的乒乓球台如图所示,水平台面的长和宽分别为L1和L2,中间球网高度为ℎ.发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3ℎ.不计空气的作用,重力加速度大小为g.若乒乓球的发射速率v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v的最大取值范围是( )A. L12√g6ℎ<v<L1√g6ℎB. L14√gℎ<v<√(4L12+L22)g6ℎC. L12√g6ℎ<v<12√(4L12+L22)g6ℎD. L14√gℎ<v<12√(4L12+L22)g6ℎ7.在爆炸实验基地有一发射塔,发射塔正下方的水平地面上安装有声音记录仪。

高中物理曲线运动经典练习题全集(答案)

高中物理曲线运动经典练习题全集(答案)

《曲线运动》超经典试题1、关于曲线运动,下列说法中正确的是(AC )A. 曲线运动一定是变速运动B. 变速运动一定是曲线运动C. 曲线运动可能是匀变速运动D. 变加速运动一定是曲线运动【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。

变速运动可能是速度的方向不变而大小变化,则可能是直线运动。

当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。

做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。

2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,若突然撤去F1,而保持F2、F3不变,则质点(A )A.一定做匀变速运动B.一定做直线运动C.一定做非匀变速运动D.一定做曲线运动【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。

由题意可知,当突然撤去F1而保持F2、F3不变时,质点受到的合力大小为F1,方向与F1相反,故一定做匀变速运动。

在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,则撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F1后,质点可能做直线运动(条件是F1的方向和速度方向在一条直线上),也可能做曲线运动(条件是F1的方向和速度方向不在一条直线上)。

3、关于运动的合成,下列说法中正确的是(C )A. 合运动的速度一定比分运动的速度大B. 两个匀速直线运动的合运动不一定是匀速直线运动C. 两个匀变速直线运动的合运动不一定是匀变速直线运动D. 合运动的两个分运动的时间不一定相等【解析】根据速度合成的平行四边形定则可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。

两个匀速直线运动的合运动一定是匀速直线运动。

两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度方向是否与合加速度方向在一直线上。

高中物理 曲线运动 典型例题(含答案)【经典】

高中物理   曲线运动     典型例题(含答案)【经典】

第四章 曲线运动第一讲:曲线运动条件和运动特点、运动的合成与分解考点一:运动的合成与分解 1、(多选)质量为m =2 kg 的物体在光滑的水平面上运动,在水平面上建立xOy 坐标系,t =0时物体位于坐标系的原点O.物体在x 轴和y 轴方向的分速度vx 、vy 随时间t 变化的图线如图甲、乙所示.则( ). A .t =0时,物体速度的大小为3 m/s 答案 ADB .t =8 s 时,物体速度的大小为4 m/sC .t =8 s 时,物体速度的方向与x 轴正向夹角为37°D .t =8 s 时,物体的位置坐标为(24 m,16 m)2.(多选)在一光滑水平面内建立平面直角坐标系,一物体从t =0时刻起,由坐标原点O(0,0)开始运动,其沿x 轴和y 轴方向运动的速度—时间图象如图甲、乙所示,下列说法中正确的是( ).答案 AD A .前2 s 内物体沿x 轴做匀加速直线运动B .后2 s 内物体继续做匀加速直线运动,但加速度沿y 轴方向C .4 s 末物体坐标为(4 m,4 m)D .4 s 末物体坐标为(6 m,2 m) 3.(单选)如图,从广州飞往上海的波音737航班上午10点到达上海浦东机场,若飞机在降落过程中的水平分速度为60 m/s ,竖直分速度为6 m/s ,已知飞机在水平方向做加速度大小等于2 m/s2的匀减速直线运动,在竖直方向做加速度大小等于0.2 m/s2的匀减速直线运动,则飞机落地之前( ).答案 D A .飞机的运动轨迹为曲线B .经20 s 飞机水平方向的分速度与竖直方向的分速度大小相等C .在第20 s 内,飞机在水平方向的分位移与竖直方向的分位移大小相等D .飞机在第20 s 内,水平方向的平均速度为21 m/s4、(多选)质量为0.2 kg 的物体在水平面上运动,它的两个正交分速度图线分别如图甲、乙所示,由图可知( )A .最初4 s 内物体的位移为8 2 m 答案 ACB .从开始至6 s 末物体都做曲线运动C .最初4 s 内物体做曲线运动,接下来的2 s 内物体做直线运动D .最初4 s 内物体做直线运动,接下来的2 s 内物体做曲线运动 5、(单选)各种大型的货运站中少不了旋臂式起重机,如图所示,该起重机的旋臂保持不动,可沿旋臂“行走”的天车有两个功能,一是吊着货物沿竖直方向运动,二是吊着货物沿旋臂水平运动.现天车吊着货物正在沿水平方向向右匀速行驶,同时又启动天车上的起吊电动机,使货物沿竖直方向做匀减速运动.此时,我们站在地面上观察到货物运动的轨迹可能是下图中的( ). 答案 D6.汽车静止时,车内的人从矩形车窗ABCD 看到窗外雨滴的运动方向如图图线①所示.在汽车从静止开始匀加速启动阶段的t 1、t 2两个时刻,看到雨滴的运动方向分别如图线②③所示.E 是AB 的中点.则( ) A .t2=2t 1 B .t 2=2t 1 C .t 2=5t 1D .t 2=3t 1 答案 A解析 静止时,雨滴相对于地面做的是竖直向下的直线运动,设雨滴的速度为v0,汽车匀加速运动后,在t1时刻,看到的雨滴的运动方向如图线②,设这时汽车的速度为v1,这时雨滴水平方向相对于汽车的速度大小为v1,方向向左,在t2时刻,设汽车的速度为v2,则雨滴的运动方向如图线③,雨滴水平方向相对于汽车速度大小为v2,方向水平向左,根据几何关系,v1OA =v0AB ,v2OA =v012AB ,得v2=2v1,汽车做匀加速运动,则由v =at 可知,t2=2t1,A 项正确.7.一物体在光滑水平面上运动,它在x 方向和y 方向上的两个分运动的速度—时间图象如图所示. (1)判断物体的运动性质;(2)计算物体的初速度大小;(3)计算物体在前3 s 内和前6 s 内的位移大小.答案 (1)匀变速曲线运动 (2)50 m/s (3)3013m 180 m8.如图所示,为一次洪灾中,德国联邦国防军的直升机在小城洛伊宝根运送砂袋.该直升机A 用长度足够长的悬索(重力可忽略不计)系住一质量m =50 kg 的砂袋B ,直升机A 和砂袋B 以v0=10 m/s 的速度一起沿水平方向匀速运动,某时刻开始将砂袋放下,在5 s 时间内,B 在竖直方向上移动的距离以y =t2(单位:m)的规律变化,取g =10 m/s2.求在5 s 末砂袋B 的速度大小及位移大小.答案 10 2 m/s 25 5 m9、如图所示,在竖直平面内的xOy 坐标系中,Oy 竖直向上,Ox 水平向右.设平面内存在沿x 轴正方向的恒定风力.一小球从坐标原点沿Oy 方向竖直向上抛出,初速度为v0=4 m/s ,不计空气阻力,到达最高点的位置如图中M 点所示(坐标格为正方形,g =10 m/s2)求:(1)小球在M 点的速度v1;(2)在图中定性画出小球的运动轨迹并标出小球落回x 轴时的位置N ; (3)小球到达N 点的速度v2的大小.答案 (1)6 m/s (2)见解析图 (3)410 m/s解析 (1)设正方形的边长为x0. 竖直方向做竖直上抛运动,有v0=gt1,2x0=v02t1水平方向做匀加速直线运动,有3x0=v12t1. 解得v1=6 m/s.(2)由竖直方向的对称性可知,小球再经过t1到x 轴,水平方向做初速度为零的匀加速直线运动,所以回到x 轴时落到x =12处,位置N 的坐标为(12,0).(3)到N 点时竖直分速度大小为v0=4 m/s 水平分速度vx =a 水平tN =2v1=12 m/s , 故v2=v 20+v 2x =410 m/s.考点二:绳(杆)端速度分解模型(结合受力和机械能守恒)1、如图所示,人用绳子通过定滑轮以不变的速度0v 拉水平面上的物体A ,当绳与水平方向成θ角时,求物体A 的速度。

高中物理必修二曲线运动测试题及答案

高中物理必修二曲线运动测试题及答案

曲线运动一、选择题1、对曲线运动的速度,下列说法正确的是: ( )A、速度的大小与方向都在时刻变化B、速度的大小不断发生变化,速度的方向不一定发生变化C、质点在某一点的速度方向是在这一点的受力方向D、质点在某一点的速度方向是在曲线的这一点的切线方向2、一个物体在两个互为锐角的恒力作用下,由静止开始运动,当经过一段时间后,突然去掉其中一个力,则物体将做()A.匀加速直线运动B.匀速直线运动 C.匀速圆周运动 D.变速曲线运动3、下列说法错误的是()A、物体受到的合外力方向与速度方向相同,物体做加速直线运动B、物体受到的合外力方向与速度方向相反时,物体做减速直线运动C、物体只有受到的合外力方向与速度方向成锐角时,物体才做曲线运动D、物体只要受到的合外力方向与速度方向不在一直线上,物体就做曲线运动4.下列说法中正确的是()A.物体在恒力作用下一定作直线运动 B.若物体的速度方向和加速度方向总在同一直线上,则该物体可能做曲线运动C.物体在恒力作用下不可能作匀速圆周运动 D.物体在始终与速度垂直的力的作用下一定作匀速圆周运动5、关于运动的合成和分解,说法错误的是()A、合运动的方向就是物体实际运动的方向B、由两个分速度的大小就可以确定合速度的大小C、两个分运动是直线运动,则它们的合运动不一定是直线运动D、合运动与分运动具有等时性6、关于运动的合成与分解的说法中,正确的是:()A 、合运动的位移为分运动的位移矢量和 B、合运动的速度一定比其中的一个分速度大C、合运动的时间为分运动时间之和D、合运动的位移一定比分运动位移大7.以下关于分运动和合运动的关系的讨论中,错误的说法是:()A.两个直线运动的合运动,可能是直线运动,也可能是曲线运动;B.两个匀速直线运动的合运动,可能是直线运动,也可能是曲线运动;C.两个匀变速直线运动的合运动,可能是直线运动,也可能是曲线运动;D.两个分运动的运动时间,一定与它们的合运动的运动时间相等。

高考物理曲线运动题20套(带答案)含解析

高考物理曲线运动题20套(带答案)含解析

高考物理曲线运动题20 套( 带答案 ) 含分析一、高中物理精讲专题测试曲线运动 1. 如图,圆滑轨道abcd 固定在竖直平面内,ab水平,bcd 为半圆,在b 处与 ab 相切.在直轨道 ab 上放着质量分别为 m A =2kg 、 m B =1kg的物块 A 、 B (均可视为质点),用轻质细绳将A 、B 连结在一同,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左边的圆滑水平川面上停着一质量 M =2kg 、长 L=0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,以后A 向左滑上小车,B 向右滑动且恰巧能冲到圆弧轨道的最高点 d 处.已知 A 与小车之间的动摩擦因数μ知足 0.1 ≤μ≤,0.3g 取 10m/ s 2,求( 1) A 、 B 走开弹簧瞬时的速率 v A 、v B ;( 2)圆弧轨道的半径 R ;(3) A 在小车上滑动过程中产生的热量Q (计算结果可含有μ).【答案】( 1) 4m/s ( 2) 0.32m(3) 当知足0.1 ≤μ <0.2 , Q 1μ; 当知足 0.2 ≤μ≤ 0.3时 =10时, 1mA v121(m A M ) v 222【分析】【剖析】(1)弹簧恢复到自然长度时,依据动量守恒定律和能量守恒定律求解两物体的速度; (2)依据能量守恒定律和牛顿第二定律联合求解圆弧轨道的半径R ;( 3)依据动量守恒定律和能量关系求解恰巧能共速的临界摩擦力因数的值,而后议论求解热量 Q.【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为 v A 、 v B , 由动量守恒定律:0= m A v A m B v B 由能量关系: E P =1m A v A 2 1m B v B 222解得 v A =2m/s ;v B =4m/s(2)设 B 经过 d 点时速度为 v d ,在 d 点:m B g m B v d 2R由机械能守恒定律:1m B v B 2 =1m B v d 2 m B g 2R22解得 R=0.32m(3)设 μ =1μv,由动量守恒定律:时 A 恰巧能滑到小车左端,其共同速度为m A v A =(m A M )v 由能量关系: 1m A gL1m A v A 21m A M v 222解得 μ1=0.2议论:(ⅰ)当知足 0.1 ≤μ <0时.2, A 和小车不共速, A 将从小车左端滑落,产生的热量为Q 1 m A gL 10(J )(ⅱ)当知足0.2 ≤μ≤ 0.A3和小车能共速,产生的热量为时, Q 11m A v 121 m A M v2 ,解得 Q 2=2J222. 一质量 M =0.8kg 的小物块,用长 l=0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m=0.2kg 的粘性小球以速度 v 0=10m/s 水平射向小物块,并与物块粘在一同,小球与小物 块互相作用时间极短能够忽视.不计空气阻力,重力加快度g 取 10m/s 2.求:( 1)小球粘在物块上的瞬时,小球和小物块共同速度的大小; ( 2)小球和小物块摇动过程中,细绳拉力的最大值;( 3)小球和小物块摇动过程中所能达到的最大高度.【答案】( 1) v 共 =2.0 m / s ( 2) F=15N (3)h=0.2m 【分析】(1)因为小球与物块互相作用时间极短,因此小球和物块构成的系统动量守恒.mv 0 (Mm)v 共得: v 共 =2.0 m / s(2)小球和物块将以v共开始运动时,轻绳遇到的拉力最大,设最大拉力为F ,F (M m) g ( M m)v 共2L得: F 15N(3)小球和物块将以v 共 为初速度向右摇动,摇动过程中只有重力做功,因此机械能守恒,设它们所能达到的最大高度为h ,依据机械能守恒:( m+M ) gh 1( m M )v 共 22解得 : h 0.2m综上所述本题答案是 : ( 1) v 共 =2.0 m / s ( 2) F=15N (3)h=0.2m点睛 :( 1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. ( 2)对小球和物块协力供给向心力,可求得轻绳遇到的拉力( 3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.3.如下图,在竖直平面内有一绝缘“”型杆放在水平向右的匀强电场中,此中AB、 CD 水平且足够长,圆滑半圆半径为R,质量为 m、电量为 +q 的带电小球穿在杆上,从距 B 点x=5.75R 处以某初速 v0开始向左运动.已知小球运动中电量不变,小球与AB、 CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加快度为g, sin37 =0°.6, cos37 °=0.8.求:(1)若小球初速度 v0=4 gR,则小球运动到半圆上 B 点时遇到的支持力为多大;(2)小球初速度 v0知足什么条件能够运动过 C 点;(3)若小球初速度v=4 gR,初始地点变成x=4R,则小球在杆上静止时经过的行程为多大.【答案】( 1)5.5mg( 2)v04gR (3) 44R【分析】【剖析】【详解】(1)加快到 B 点:-1mgx qEx 1 mv21mv0222在 B 点:N mg m v2R解得 N=5.5mg(2)在物理最高点F:tan qE mg解得α=370;过 F 点的临界条件: v F=0从开始到 F 点:-1mgx qE (x R sin ) mg ( R R cos ) 01mv02 2解得 v0 4 gR可见要过 C 点的条件为:v04gR(3)因为 x=4R<5.75R,从开始到 F 点战胜摩擦力、战胜电场力做功均小于(2)问,到F 点时速度不为零,假定过 C 点后行进 x1速度变成零,在 CD 杆上因为电场力小于摩擦力,小球速度减为零后不会返回,则:-1mgx2 mgx1-qE( x-x1 ) mg 2R 01mv02 2s x R x1解得: s(44)R4.如下图,在竖直平面内有一倾角θ=37°的传递带BC.已知传递带沿顺时针方向运转的速度 v=4 m/s , B、 C两点的距离 L=6 m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《曲线运动》超经典试题1、关于曲线运动,下列说法中正确的是( AC )A. 曲线运动一定是变速运动B. 变速运动一定是曲线运动C. 曲线运动可能是匀变速运动D. 变加速运动一定是曲线运动【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。

变速运动可能是速度的方向不变而大小变化,则可能是直线运动。

当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。

做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。

2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,若突然撤去F1,而保持F2、F3不变,则质点( A )A.一定做匀变速运动B.一定做直线运动C.一定做非匀变速运动D.一定做曲线运动【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。

由题意可知,当突然撤去F1而保持F2、F3不变时,质点受到的合力大小为F1,方向与F1相反,故一定做匀变速运动。

在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,则撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F1后,质点可能做直线运动(条件是F1的方向和速度方向在一条直线上),也可能做曲线运动(条件是F1的方向和速度方向不在一条直线上)。

3、关于运动的合成,下列说法中正确的是( C )A. 合运动的速度一定比分运动的速度大B. 两个匀速直线运动的合运动不一定是匀速直线运动C. 两个匀变速直线运动的合运动不一定是匀变速直线运动D. 合运动的两个分运动的时间不一定相等【解析】根据速度合成的平行四边形定则可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。

两个匀速直线运动的合运动一定是匀速直线运动。

两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度方向是否与合加速度方向在一直线上。

如果在一直线上,合运动是匀变速直线运动;反之是匀变速曲线运动。

根据运动的同时性,合运动的两个分运动是同时的。

4、质量m=0.2kg的物体在光滑水平面上运动,其分速度v x和v y随时间变化的图线如图所示,求:(1)物体所受的合力。

(2)物体的初速度。

(3)判断物体运动的性质。

(4)4s末物体的速度和位移。

【解析】根据分速度v x和v y随时间变化的图线可知,物体在x轴上的分运动是匀加速直线运动,在y轴上的分运动是匀速直线运动。

从两图线中求出物体的加速度与速度的分量,然后再合成。

(1) 由图象可知,物体在x轴上分运动的加速度大小a x=1m/s2,在y轴上分运动的加速度为0,故物体的合加速度大小为a=1m/s2,方向沿x轴的正方向。

则物体所受的合力F=ma=0.2×1N=0.2N,方向沿x轴的正方向。

(2) 由图象知,可得两分运动的初速度大小为v x0=0,v y0=4m/s,故物体的初速度22240+=+=yxvvv m/s=4m/s,方向沿y轴正方向。

(3)根据(1)和(2)可知,物体有y正方向的初速度,有x正方向的合力,则物体做匀变速曲线运动。

(4) 4s末x和y方向的分速度是v x=at=4m/s,v y=4m/s,故物体的速度为v=smvvyx/24442222=+=+,方向与x正向夹角θ,有tanθ= v y / v x=1。

x和y方向的分位移是x=at2/2=8m,y=v y t=16m,则物体的位移为s=5822=+yx m,方向与x正向的夹角φ,有tanφ=y/x=2。

5、已知某船在静水中的速率为v1=4m/s,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽为d=100m,河水的流动速度为v2=3m/s,方向与河岸平行。

试分析:⑴欲使船以最短时间渡过河去,航向怎样?最短时间是多少?到达对岸的位置怎样?船发生的位移是多大?⑵欲使船渡河过程中的航行距离最短,船的航向又应怎样?渡河所用时间是多少?【解析】⑴根据运动的独立性和等时性,当船在垂直河岸方向上的分速度v⊥最大时,渡河所用时间最短,设船头指向上游且与上游河岸夹角为α,其合速度v与分运动速度v1、v2的矢量关系如图1所示。

河水流速v2平行于河岸,不影响渡河快慢,船在垂直河岸方向上的分速度v⊥=v1sinα,则船渡河所用时间为t=αsin1vd。

显然,当sin α=1即α=90°时,v⊥最大,t最小,此时船身垂直于河岸,船头始终指向正对岸,但船实际的航向斜向下游,如图2所示。

渡河的最短时间t min=1vd=1004s=25s。

船的位移为s=v t=⋅+2221vv t min=2234+×25m=125m。

图1vv1αv2图2vv1v2A船渡过河时已在正对岸的下游A 处,其顺水漂流的位移为x =v 2t min =12v d v =3×1004 m =75m 。

⑵ 由于v 1>v 2,故船的合速度与河岸垂直时,船的渡河距离最短。

设此时船速v 1的方向(船头的指向)斜向上游,且与河岸成θ角,如图6-34所示,则cos θ=12v v =34,θ=41°24′。

船的实际速度为 v 合=2221v v -=42-32m/s =7 m/s 。

故渡河时间 t ′=d v 合 =1007s =10077 s ≈38s 。

6、如图所示为频闪摄影方法拍摄的研究物体做平抛运动规律的照片,图中A 、B 、C 为三个同时由同一点出发的小球。

AA ′为A 球在光滑水平面上以速度v 运动的轨迹; BB ′为B 球以速度v 被水平抛出后的运动轨迹;CC ′为C 球自由下落的运动轨迹。

通过分析上述三条轨迹可得出结论:。

【解析】观察照片,B 、C 两球在任一曝光瞬间的位置总在同一水平线上,说明平抛运动物体B 在竖直方向上的运动特点与自由落体运动相同;而A 、B 两小球在任一曝光瞬间的位置总在同一竖直线上,说明平抛运动物体B 在水平方向上的运动特点与匀速直线运动相同。

所以,得到的结论是:做平抛运动的物体在水平方向做匀速直线运动,在竖直方向做自由落体运动。

7、在研究平抛运动的实验中,用一张印有小方格的纸记录轨迹,小方格的边长L =1.25cm ,若小球在平抛运动途中的几个位置如图中a 、b 、c 、d 所示,则小球平抛的初速度为v 0= (用L 、g 表示),其值是 。

(g 取9.8m/s 2)【解析】由水平方向上ab =bc =cd 可知,相邻两点的时间间隔相等,设为T ,竖直方向相邻两点间距之差相等,Δy =L ,则由 Δx =aT 2,得 T =Lg。

时间T 内,水平方向位移为x =2L ,所以 v 0=tx =2Lg 8.90125.02⨯⨯=m/s =0.70m/s 。

8、飞机在2km 的高空以360km/h 的速度沿水平航线匀速飞行,飞机在地面上观察者的正上方空投一包裹。

(g 取10m/s 2,不计空气阻力)⑴ 试比较飞行员和地面观察者所见的包裹的运动轨迹。

⑵ 包裹落地处离地面观察者多远?离飞机的水平距离多大? ⑶ 求包裹着地时的速度大小和方向。

提示 不同的观察者所用的参照物不同,对同一物体的运动的描述一般是不同的。

【解析】 ⑴ 从飞机上投下去的包裹由于惯性,在水平方向上仍以360km/h 的速度沿原来的方向飞行,与飞机运动情况相同。

在竖直方向上同时进行自由落体运动,所以飞机上的飞行员只是看到包裹在飞机的正下方下落,包裹的轨迹是竖直直线;地面上的观察者是以地面为参照物的,他看见包裹做平抛运动,包裹的轨迹为抛物线。

⑵ 抛体在空中的时间t =s 10200022⨯=g h=20s 。

在水平方向的位移 x =v 0t =m 206.3360⨯=2000m ,即包裹落地位置距观察者的水平距离为2000m 。

包裹在水平方向与飞机的运动情况完全相同,所以,落地时包裹与飞机的水平距离为零。

⑶ 包裹着地时,对地面速度可分解为水平方向和竖直方向的两个分速度, v x =v 0=100m/s ,v y =gt =10×20m/s =200m/s , 故包裹着地速度的大小为 v t =2222200100+=+y x v v m/s =100 5 m/s ≈224m/s 。

而 tan θ=xy v v =100200=2,故着地速度与水平方向的夹角为θ=arctan2。

9、如图,高h 的车厢在平直轨道上匀减速向右行驶,加速度大小为a ,车厢顶部A 点处有油滴滴下落到车厢地板上,车厢地板上的O 点位于A 点的正下方,则油滴的落地点必在O 点的 (填“左”或“右”)方,离O 点的距离为 。

【解析】因为油滴自车厢顶部A 点脱落后,由于惯性在水平方向具有与车厢相同的初速度,因此油滴做平抛运动,水平方向做匀速直线运动 x 1=vt , 竖直方向做自由落体运动h =12gt 2,又因为车厢在水平方向做匀减速直线运动,所以车厢(O 点)的位移为 x 2=vt -12at 2。

图6-34C ′如图所示 x =x 1-x 2h gag h a at =⋅==221212, 所以油滴落地点必在O 点的右方,离O 点的距离为 agh 。

10、如图所示,两个相对斜面的倾角分别为37°和53°,在斜面顶点把两个小球以同样大小的初速度分别向左、向右水平抛出,小球都落在斜面上。

若不计空气阻力,则A 、B 两个小球的运动时间之比为( D )A.1:1B.4:3C.16:9D.9:16 【解析】由平抛运动的位移规律可知:tv x 0=221gt y =∵x y /tan =θ ∴gv t /tan 20θ= ∴16953tan 37tan =︒︒=B A t t11、如图在倾角为θ的斜面顶端A 处以速度V 0水平抛出一小球,落在斜面上的某一点B 处,设空气阻力不计,求(1)小球从A 运动到B 处所需的时间;(2)从抛出开始计时,经过多长时间小球离斜面的距离达到最大? 【解析】(1)小球做平抛运动,同时受到斜面体的限制,设从小球从A 运动到B 处所需的时间为t ,水平位移为x=V 0t竖直位移为y=221gt 由数学关系得:gV t t V gt θθtan 2,tan )(21002== (2)从抛出开始计时,经过t 1时间小球离斜面的距离达到最大,当小球的速度与斜面平行时,小球离斜面的距离达到最大。

因V y1=gt 1=V 0tan θ,所以gV t θtan 01=。

12、如图所示,两个小球固定在一根长为l 的杆的两端,绕杆上的O 点做圆周运动。

当小球A 的速度为v A 时,小球B 的速度为v B ,则轴心O 到小球A 的距离是( B )A. l v v v B A A )(+B.B A A v v l v + C. A B A v l v v )(+ D. BB A v lv v )(+【解析】设轴心O 到小球A 的距离为x ,因两小球固定在同一转动杆的两端,故两小球做圆周运动的角速度相同,半径分别为x 、l -x 。

相关文档
最新文档