区分中介与调节变量
中介变量、调节变量与协变量概念、统计检验及其比较

中介变量、调节变量与协变量概念、统计检验及其比较一、本文概述在社会科学和自然科学的研究中,变量之间的关系是复杂且多样的。
中介变量、调节变量和协变量是理解和分析这些复杂关系的重要概念。
本文旨在深入探讨这三种变量的概念、统计检验方法及其在实证研究中的应用,并对它们进行比较,以帮助读者更好地理解并应用这些变量在各自的研究中。
我们将详细定义中介变量、调节变量和协变量的概念,解释它们在研究中的作用和重要性。
然后,我们将介绍如何通过统计方法检验这些变量,包括常用的回归分析、路径分析、协方差分析等技术。
我们将重点关注这些统计检验方法的原理、步骤和适用条件,以便读者能够在实际研究中正确应用。
我们还将对中介变量、调节变量和协变量进行比较,分析它们之间的异同点,以及在研究中的优势和局限性。
这将有助于读者更好地理解这三种变量在实证研究中的适用场景,以及如何在具体研究中选择合适的变量和方法。
我们将通过一些实证研究案例来演示中介变量、调节变量和协变量的应用,以便读者能够更直观地理解这些概念和方法在实际研究中的应用。
通过本文的阅读,读者将能够更深入地理解中介变量、调节变量和协变量的概念、统计检验方法及其在实证研究中的应用,为未来的研究提供有益的参考和指导。
二、中介变量概念及统计检验中介变量,又称为中介效应,是一个在自变量和因变量之间起桥梁作用的变量。
它的存在意味着自变量对因变量的影响并非直接,而是通过中介变量这一“中介”来实现的。
在理解这个概念时,我们可以将自变量视为“原因”,因变量视为“结果”,而中介变量则是这一因果关系链条中的“过程”或“机制”。
统计检验方面,常用的中介效应检验方法包括Baron和Kenny(1986)提出的逐步回归法,以及Sobel检验和Bootstrap方法等。
逐步回归法要求先检验自变量对中介变量的影响(第一步),再检验中介变量对因变量的影响(第二步),最后检验在控制中介变量后,自变量对因变量的直接影响是否显著减弱或消失(第三步)。
调节变量与中介变量

调节变量与中介变量
调节变量(moderator)和中介变量(mediator)是两个重要的统计概念,它们都与回归分析有关。
一般人总是搞混两个之间的含义,因此造成统计数据的误差。
调节变量的定义
如果变量Y与变量X的关系是变量M 的函数,称M 为调节变量。
就是说, Y与X 的关系受到第三个变量M 的影响。
调节变量可以是定性的(如性别、种族、学校类型等) ,也可以是定量的(如年龄、受教育年限、刺激次数等) ,它影响因变量和自变量之间关系的方向(正或负)和强弱.
例如,学生的学习效果和指导方案的关系,往往受到学生个性的影响:一种指导方案对某类学生很有效,对另一类学生却没有效,从而学生个性是调节变量。
又如,学生一般自我概念与某项自我概念(如外貌、体能等)的关系,受到学生对该项自我概念重视程度的影响:很重视外貌的人,长相不好会大大降低其一般自我概念;不重视外貌的人,长相不好对其一般自我概念影响不大,从而对该项自我概念的重视程度是调节变量。
中介变量的定义
考虑自变量X 对因变量Y的影响,如果X 通过影响变量M 来影响Y,则称M 为中介变量。
例如,上司的归因研究:下属的表现———上司对下属表现的归因———上司对下
属表现的反应,其中的“上司对下属表现的归因”为中介变量。
如果一个变量与自变量或因变量相关不大,它不可能成为中介变量,但有可能成为调节变量。
理想的调节变量是与自变量和因变量的相关都不大。
有的变量,如性别、年龄等,由于不受自变量的影响,自然不能成为中介变量,但许多时候都可以考虑为调节变量。
对于给定的自变量和因变量,有的变量做调节变量和中介变量都是合适的,从理论上都可以做出合理的解释。
中介变量和调节变量

例如:
父亲的社会经济地位——儿子的教育程 度——儿子的社会经济地位(Duncan, Featherman & Duncan, 1972)
中介变量:儿子的教育程度
下属的表现——上司对下属表现的归 因——上司对下属表现的反应(James & Brett,1984)
中介变量:上司对下属表现的归因
效应之间的关系:c=c’+ab
2. 广义乘积指标(GAPI)方法( Wall & Amemiya, 2001) 3. 无约束方法(Marsh, Wen & Hau, 2004)
拟极大似然估计(QML)方法(Klein & Muthen, 2002)
2 中介变量和中介效应
2.1 中介变量的定义 考虑自变量X对因变量Y的影响,如果X通过 影响变量M来影响Y,则称M为中介变量。 (Judd & Kenny,1981; Baron & Kenny, 1986)
第三者: 老师的管教方式(U) 老师对学生的喜欢程度(W)
5.1 教师喜欢程度 是调节变量还是中介变量
调节效应分析
5.1 教师喜欢程度 是调节变量还是中介变量
中介效应分析
5.2 管教方式 是调节变量还是中介变量
调节效应分析
5.2 管教方式 是调节变量还是中介变量
中介效应分析
Sobel 检验
化潜为显(均值或因子得分) 两步最小二乘回归 (Bollen & Paxton, 1998) 分组线性结构方程分析 (如Bagozzi & Yi ,
1989 ; Joreskog, 1971)
带潜变量乘积项的结构方程分析
1. 参数非线性约束方法(Kenny & Judd, 1984; Joreskog & Yang , 1996; Algina & Moulder, 2001)
中介变量和调节变量

调整效应
调整变量和自变量都是类别变量时: 做方差分析当两者旳交互效应明显时,则阐明
调整变量产生了调整效应。之后,能够经过 简朴效应分析进一步了解调整变量旳详细 作用。
当调整变量是连续变量时,不论自变量是何种 变量,均可采用层次回归技术来进行检验。 即先分别考察自变量和调整变量对因变量 旳主效应大小,然后将“自变量×调整变量” 乘积项纳入回归方程,若该项系数明显,则表 白调整效应明显。
然后,以自尊、社会影响以及这两者旳交互作用
项一起作为预测变量,以自控为因变量采用逼迫进 入法进行回归分析。成果表白,整体模型具有统计 明显性,但是交互作用项对自控旳影响未到达明显 水平( p < 0. 05) ,这阐明社会影响在自尊与自控之 间未存在调整效应。
最终,以自尊、社会影响、自控、自尊与社会影响 旳交互作用项以及自控与社会影响旳交互作用项一
3当该回归系数降低到0时,称为完全中介作用
中介效应分析措施
• 假设Y与X 旳有关明显,意味着回归系数c 明显,在 这个前提下考虑中介变量M。对中介效应旳统计 检验主要有三种措施。
• 老式旳做法是依次检验回归系数a、b (完全中介 效应还要检验c′) 旳明显性。 第二种做法是检验经过中介变量旳途径上旳回归 系数旳乘积ab 是否明显。 第三种做法是检验c’与c 旳差别是否明显。三种 措施各有利弊。
第二步:
明显 X预测M检验系数明显
不明显 不明显
第三步:
明显
停止中介效果分析
X和M同步预测Y检验X Y系数是否明显
不明显且
明显且≤第 一步X Y
X Y系数接 近0
部分中介效果明显
完全中介效果明显
操作环节
(一)国内部分: 1.将变量中心化 变量值-均值 2、检验回归系数c,即主观幸 福感对社会支持旳回归 Y=0.30X(要看原则系数) 3、检验回归系数a,即自尊 对社会支持旳回归M=0.26X 4、检验回归系数b,即主观 幸福感对自尊旳回归 5、检验系数c’ , Y=0.17X+0.49M
调节效应和中介效应

调节变量(Moderator) vs 中介变量(Mediator)1、调节变量的定义变量Y与变量X 的关系受到第三个变量M 的影响,就称M为调节变量。
调节变量可以是定性的,也可以是定量的。
在做调节效应分析时,通常要将自变量和调节变量做中心化变换。
简要模型:Y = aX + bM + cXM + e 。
Y与X 的关系由回归系数a + cM 来刻画,它是M 的线性函数, c衡量了调节效应(moderating effect)的大小。
如果c显著,说明M 的调节效应显著。
2、调节效应的分析方法显变量的调节效应分析方法:分为四种情况讨论。
当自变量是类别变量,调节变量也是类别变量时,用两因素交互效应的方差分析,交互效应即调节效应;调节变量是连续变量时,自变量使用伪变量,将自变量和调节变量中心化,做Y=aX+bM+cXM+e 的层次回归分析:1、做Y对X和M的回归,得测定系数R12。
2、做Y对X、M和XM的回归得R22,若R22显著高于R12,则调节效应显著。
或者,作XM的回归系数检验,若显著,则调节效应显著;当自变量是连续变量时,调节变量是类别变量,分组回归:按M的取值分组,做Y对X的回归。
若回归系数的差异显著,则调节效应显著,调节变量是连续变量时,同上做Y=aX +bM +cXM +e的层次回归分析。
潜变量的调节效应分析方法:分两种情形:一是调节变量是类别变量,自变量是潜变量;二是调节变量和自变量都是潜变量。
当调节变量是类别变量时,做分组结构方程分析。
做法是,先将两组的结构方程回归系数限制为相等,得到一个χ2值和相应的自由度。
然后去掉这个限制,重新估计模型,又得到一个χ2值和相应的自由度。
前面的χ2减去后面的χ2得到一个新的χ2,其自由度就是两个模型的自由度之差。
如果χ2检验结果是统计显著的,则调节效应显著;当调节变量和自变量都是潜变量时,有许多不同的分析方法,最方便的是Marsh,Wen和Hau 提出的无约束的模型。
调节变量和中介变量

Click to edit company s l o g a n .
第十四章 调节变量和中介变量
本章大纲
1 2 3
调节变量和中介变量在研究中的作用
调节变量的原理和检验方法
中介变量的原理和检验方法
一、调节变量和中介变量在研究中的意义
我们的很多知识都是建立在变量间的相关关系 或因果关系的基础上的,随着研究的深入,一 些简单的关系已经不能够提供足够的信息,也 难以概括复杂的情况。所以研究者们才提出了 调节变量和中介变量的研究挖掘更多信息的方 法。
Z
X
Y
2.1 调节作用的原理
调节变量影响自变量和因变量之间的关系,即可以是对关 系方向的影响,又可以是对关系强度的影响。
2.2 调节作用与交互作用
交互作用:两个变量(X1和X2)共同作用时对Y的 影响不等于两者分别影响Y的简单数学和。两个 自变量可以是对称也可以是不对称的。
调节作用:一个变量(X1)影响了另外一个变量 (X2)对Y的影响。自变量和调节变量是不能互 换的。
2.3 检验调节作用的方法
检验调节作用最普遍的方法是多元调节回归分析: MMR
MMR具体步骤
1.用虚拟变量代表类别变量
所需的虚拟变量的数目等于类别变量水平个数减一。 如2个类别变量的时候,D1=1;D1=0
2.对连续变量进行中心化或标准化
目的:减小回归方程中的变量间多重共线性 中心化:用这个变量中测量的每个数据点减去均值,使得新得到的数 据样本均值为0
2.2 调节作用与交互作用
Y 0 1 X1 2 X 2 3 X1 X 2
β1,β2反映了主效应的大小,β3反映了交互效用 和调节作用的大小。 对Y关于X2求偏导数
社会心理学研究中调节变量与中介变量的区别:从概念、战略、统计角度分析文献回顾

(3)文章切入点较佳,对调节变量和中介变量区分模糊进行了深入分析和确切区分,弥补了这一问题相关研究的不足。
(4)具有较强的实践指导性,作者加入了案例来具体说明中介变量和调节变量的检验方法和分析框架,更好地指导读者将知识运用到具体的实践操作中。
接着,作者提出在分析中介变量和调节变量区别时存在概念性的问题,借此文章将深入探究因果机制的本质,整合看似不可调和的两个变量间的关系。
然后,基于概念、战略和统计三个层面,作者通过对实际操作和理论假设举例的描述,讨论调节变量和中介变量的功能区分和检验方法的意义。具体分析思路简述如下:
一、调节变量的性质
1.调节变量的基本概念及其特征;
2.个人控制的含义;
3.行为意图-行为关系;
4.将全面的气质性格与行为联系起来:态度和特征。分别介绍上述三种领域理论框架中的调节作用和中介作用。
Research Methodology:
文章主要使用了文献回顾的方法,在描述理论以及举例说明以往研究混淆调节变量和中介变量时,提出前人的研究成果和操作方法,进而提出自己的观点;
在对前人的研究进行说明以及对所提方法如何运用时,文章使用了举例法,通过举例阐述了具体的操作和分析方法。
Results & Discussion:
文章在讨论部分首先说明了三个主要写作意义:一是仔细阐述了中介变量和调节变量的诸多区别;二是描述了区分两个变量在概念和战略等方面的影响;三是首次提出了一个适用于中介变量和调节变量在独立和混合机制中有效性最大化的分析纲要。
Theoretical Framework:
调节变量和中介变量模型举例

调节变量和中介变量模型举例
1.有调节变量的模型
调节变量影响自变量和因变量之间的关系,即可以对关系方向的影响,也可能是对关系强度的影响.如银行存款数与一个人每个月开销数是存在关系的,但对男士和女士的影响是不同的,这里的性别就是一个调节变量。
2。
有中介变量的模型
中介变量可以解释变量之间为什么会存在关系以及这个关系如何发生的。
比如变革型领导通过影响领导成员交换关系从而影响员工工作绩效和组织公民行为。
3.有调节变量的中介模型
在很多的模型中,可能既有中介变量又有调节变量,如良好的校园氛围会影响一个人的学业成就,但是校园氛围是通过学校依恋这一中介变量对学业成就进行影响,在这个过程中,学生自控能力的差别会影响这种关系,所以学生自控能力是这个模型里的调节变量.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Baron 和Kenny (1986)认为实验中是否存在中介作用应满足以下四个条件: (1) 自变量与中介变量之间有显著相关; (2) 中介变量与因变量之间有显著相关; (3) 自变量与因变量之间有显著相关; (4)当中介变量引入回归方程后,自变量与因变量的相关或回归系数显著降低。
如果自变量与因变量的关系下降至零,是完全中介(full mediation) ;如果自变量与因变量的相关降低但不等于零,是部分中介(partial mediation) 。
在这种情况下就可以证明预测变量对结果变量的影响是通过中介变量来进行的。
中介变量是自变量对因变量产生影响的途径或机制,如果X通过影响M来影响Y,则M就是中介变量。
模型可表达为Y=cX+e_1, M=aX+e_2, Y=c'X+bM+e_3。
调节变量影响因变量和自变量之间关系的方向和强弱。
用模型表达为Y=bM+(a+cM)X+e,c衡量了调节效应的大小。
调节效应与交互效应从统计分析的角度看是一样的。
但在交互效应中,两个自变量的位置是对称的,也可以是不对称的;在调节效应中,自变量和调节变量的位置不能互换。
在X对Y的影响时强时弱或方向不定时,应该研究调节变量,目的是弄清X何时影响Y 或何时影响较大。
在X对Y的影响较强且稳定时,应该研究中介变量,目的是弄清X影响Y 的机制。
中介变量和X、Y的相关都显著,调节变量则不一定,而且理想的调节变量与自变量、因变量的相关都不显著。
不受自变量影响的变量不可能成为中介变量,但可以成为调节变量。