焦炉工艺
焦炉煤气的使用工艺流程

焦炉煤气的使用工艺流程1. 焦炉煤气的概述焦炉煤气是炼焦过程中产生的一种副产品,主要成分为一氧化碳、氢气、甲烷等。
煤气既可以作为燃料直接使用,也可以进一步加工提取有用物质。
2. 焦炉煤气的收集和净化焦炉煤气在高炉炼焦过程中产生,需要通过管道网络收集起来,然后进行净化处理。
净化主要包括除尘、脱硫、脱氨和脱氮等步骤。
•除尘:通过电除尘器、布袋除尘器等设备,将煤气中的颗粒物进行过滤和分离。
•脱硫:采用碱洗法、吸收法、催化剂法等去除煤气中的二氧化硫。
•脱氨:通过氨水或硫酸等化学物质与氨气作用,将其转化为无毒的硫酸铵,达到脱氨的效果。
•脱氮:采用吸收法、膜分离法等去除煤气中的一氧化氮和二氧化氮。
3. 焦炉煤气的利用方式焦炉煤气作为一种具有可燃性的气体,可以用于多种用途。
3.1 发电焦炉煤气可以用于发电,通过发电机组将煤气燃烧产生的热能转化为电能。
这种方式既能提供电力,又能充分利用煤气的能源价值。
3.2 加热焦炉煤气可以直接用于工业生产过程中的加热操作。
例如,可以用于加热锅炉、干燥机等设备,提供热能支持。
3.3 煤气的深加工焦炉煤气还可以进行深加工,提取其中的有用物质。
常见的深加工方式包括:- 液化:将焦炉煤气通过液化装置,将其中的甲烷、乙炔等可液化成分取出,用于燃料或化学原料。
- 分馏:通过分馏塔进行分馏,得到不同烃类的混合物,进一步用于炼化、化工等领域。
- 合成:利用焦炉煤气中的合成气(一氧化碳和氢气)进行化学合成,制备化肥、合成氨、甲醇等产品。
4. 焦炉煤气利用过程中的安全措施在焦炉煤气利用的过程中,需要采取一系列安全措施,确保操作人员和设备的安全。
•检测装置:安装煤气检测仪器,及时监测煤气中的浓度,一旦发现泄漏等情况,及时采取措施。
•防火措施:确保煤气供应管道和设备的完整性,并采取火花防护措施。
•排风系统:建立良好的排风系统,及时排除煤气中的有害气体,保持室内空气的清洁。
5. 焦炉煤气利用的环境效益焦炉煤气的利用不仅具有经济效益,还可以带来一定的环境效益。
焦炉煤气工艺流程

焦炉煤气工艺流程焦炉煤气工艺流程是一种将焦炉煤气转化为利用价值较高的能源的工艺流程。
下面将详述焦炉煤气工艺流程的主要步骤。
首先,焦炉煤气从焦炉底部产生,并通过管道输送到煤气净化系统。
在煤气净化系统中,煤气中的杂质如灰尘和硫化物等将被去除,以保证后续步骤的正常运行。
第二步是焦炉煤气回收。
在焦炉煤气回收装置中,煤气会被冷凝并进一步处理,以回收其中的焦油和氨水。
回收的焦油可以用作重油替代品,氨水则可以用于制造化肥等化学品。
接下来,焦炉煤气进入煤气净化系统的下一个阶段,即酸性气体去除。
通过将煤气经过一系列的化学反应和洗涤过程,其中的酸性气体如硫化氢和二氧化硫等将被去除。
在酸性气体去除的过程中,煤气中可能还会含有一定量的焦炉煤气残余,因此需要通过进一步处理来使煤气脱硫。
常用的脱硫方法包括吸收法和吸附法等,通过使用特定的吸收剂或吸附剂,可以有效地去除煤气中的硫化氢等硫化物。
完成煤气脱硫后,接下来要对煤气进行脱水处理。
脱水作为将焦炉煤气中的水分去除的关键步骤,可以通过冷凝、吸附或膜分离等方法实现。
脱水后的焦炉煤气可以提供更高的热值和稳定性。
最后,经过所有前述步骤处理后的焦炉煤气可以用于发电、燃烧或者制氢等应用领域。
利用焦炉煤气发电可以有效提高能源利用效率,降低环境污染;利用焦炉煤气燃烧可以代替部分石油和天然气的使用,降低能源依赖性;而将焦炉煤气转化为氢气可以作为清洁燃料应用于氢能源产业。
总之,焦炉煤气工艺流程通过多步骤的处理,将焦炉煤气转化为可再利用的能源,实现了能源的高效利用和减少环境污染的目标。
随着能源问题的日益突出,焦炉煤气工艺流程的发展和应用将发挥越来越重要的作用。
焦炉煤气制氢工艺流程

焦炉煤气制氢工艺流程焦炉煤气制氢工艺是一种用焦炉煤气为原料生产氢气的过程。
焦炉煤气是指焦炭燃烧产生的气体,主要成分是一氧化碳和氢气,含有少量的二氧化碳、氮气和其他杂质。
利用焦炉煤气制氢是一种高效、低成本的方法,可以用于工业生产、能源储存和环保等领域。
主要包括气体净化、变换反应、水煮和气体分离等步骤。
下面将详细介绍焦炉煤气制氢工艺的流程及各个步骤的原理和操作方法。
1. 气体净化焦炉煤气中含有杂质如硫化氢、苯、硫醛等,这些杂质会影响后续反应的进行,因此需要进行气体净化处理。
气体净化可以采用吸附剂或洗涤液来去除杂质,使焦炉煤气达到符合要求的纯度。
2. 变换反应气体净化后的焦炉煤气进入变换反应器,通过变换催化剂催化反应,将一氧化碳和水蒸气转化为氢气和二氧化碳。
变换反应是焦炉煤气制氢过程中的关键步骤,需要控制反应条件如温度、压力和催化剂性质等,以提高氢气产率和减少副产物。
3. 水煮变换反应产生的气体混合物经过冷凝和去除二氧化碳后,进入水煮塔。
在水煮塔中,气体混合物与热水接触,使氢气与水反应生成氢气和热能。
水煮塔的目的是通过水煮反应增加氢气的纯度和产量。
4. 气体分离水煮后得到的气体混合物含有水蒸气和氢气,需要进行气体分离。
气体分离可以采用冷凝、压缩、吸附和膜分离等方法,将氢气从水蒸气和其他气体分离出来,得到高纯度的氢气。
总结起来,焦炉煤气制氢工艺流程包括气体净化、变换反应、水煮和气体分离四个步骤。
通过这些步骤的组合应用,可以高效地生产出高纯度的氢气,满足不同领域的需求。
焦炉煤气制氢是一种成熟的工艺,具有较高的经济效益和环保性,是未来氢能源发展的重要途径之一。
焦炉煤气的净化工艺流程

焦炉煤气的净化工艺流程焦炉煤气的净化工艺流程是将焦炉煤气中的有害物质进行去除,以保证燃烧时的环境安全和能源利用效率。
常见的焦炉煤气净化工艺包括除尘、除硫、去氮、除苯和回收利用等步骤。
首先,焦炉煤气进入除尘工序。
这一步骤的目的是去除焦炉煤气中的颗粒物。
煤气中的颗粒物主要来源于煤炭的燃烧和气化过程中产生的煤灰,以及炉渣和焦炭的携带带入煤气。
常见的除尘方法有静电除尘器、布袋除尘器和湿式除尘器等。
除尘作业能有效地减少煤气中颗粒物的含量,保证后续处理步骤的顺利进行。
接下来是除硫工序。
焦炉煤气中的硫化物主要有硫化氢和有机硫化物,这些有害物质会对环境产生严重的污染,并且对人体健康有害。
常见的除硫方法有干法吸收、湿法吸收和半干法吸收等。
其中,干法吸收主要利用金属氧化物吸收剂吸收硫化物,湿法吸收则利用碱性溶液中的氢氧根离子中和硫化物。
除硫工序的目的是将硫化物转化为无害的硫酸盐或硫酸等形式,以达到净化煤气的目的。
随后是去氮工序。
焦炉煤气中的氮化物主要由氨气和一氧化氮组成。
这些有害物质会对环境产生酸雾和酸雨等污染问题。
常见的去氮方法主要有吸附剂去氮法、催化剂去氮法和化学氧化法等。
例如,吸附剂去氮法利用特定的吸附剂吸附焦炉煤气中的氮气物质,从而使煤气中的氮化物含量降低。
除苯工序是为了去除焦炉煤气中的苯。
苯是焦炉煤气中的主要有机物成分,对环境和人体都有一定的危害。
去苯的方法多种多样,包括吸附过程、吸附剂再生过程和热解技术等。
其中,吸附过程主要是利用各种吸附剂吸附苯,吸附剂再生过程则是通过各种手段将吸附的苯从吸附剂中脱附出来。
最后是回收利用工序。
焦炉煤气中除去有害物质后,还含有一些有价值的组分,如甲烷、氢气和一些烃类等。
对于这些有价值的组分,可以通过适当的工艺进行回收利用。
一般来说,回收利用工艺分为低温分馏和高温分馏两种方式。
低温分馏主要是通过降温将焦炉煤气中的一些高沸点成分凝结出来,从而得到所需的有价值气体。
而高温分馏则是通过高温条件下焦炉煤气中的组分按沸点顺序蒸馏分离。
炼焦工艺流程

炼焦工艺流程首先,原料破碎。
将煤炭或其他含碳的原料经过破碎设备处理,使其成为适合加工的颗粒状态。
接着,原料干燥。
通过干燥设备将原料中的水分去除,以提高炼焦的效率。
然后,原料预热。
将原料送入预热炉中,使其在高温下加热,以减少后续加热所需的能耗。
接下来,进入焦炉。
将预热后的原料转移到焦炉中,进行高温煅烧。
在焦炉中,原料中的挥发物和焦油会被释放出来,而固态的残渣则被保留下来。
最后,焦炭冷却和收集。
将煅烧后的焦炭进行冷却处理,然后收集起来,用于后续的生产。
整个炼焦工艺流程中,需要严格控制加热温度、时间和气氛,以确保生产出符合要求的焦炭产品。
同时,需要加强设备的维护和管理,保证生产运行的稳定性和安全性。
通过科学合理的工艺流程,能够生产出高质量、高效率的焦炭产品,满足市场需求。
炼焦工艺是煤炭加工中的重要环节,它不仅可以生产焦炭,还能产生一些副产品,包括焦油和精炼气体等。
这些产品在冶金、化工、能源和其他领域中都有着广泛的应用。
因此,正确的炼焦工艺流程对于提高生产效率、降低能耗和保护环境都是至关重要的。
在炼焦过程中,最关键的环节之一是焦炉的运行。
焦炉是炼焦工艺中的核心设备,其运行状态直接影响生产效率和产品质量。
一般来说,焦炉可以分为热风焦炉和顶装式焦炉两种类型。
不同类型的焦炉有着不同的运行特点和技术要求,但基本的工艺流程是相似的。
在进入焦炉后,原料中的可燃气体会被释放出来,这些气体称为焦炉气。
焦炉气在炼焦工艺中也是重要的副产品之一,它可以用于加热炼焦炉或通常被收集并用于其他能源应用。
同时,焦炉气中还含有一些有价值的化学物质,比如苯、酚等,可以通过进一步的精炼得到。
此外,在炼焦工艺中,焦油是另一个重要的副产品。
焦油是一种有机物质,它通常被用作沥青的原料,或者进行进一步加工,提取其中的芳烃物质,用于合成柴油和燃料油等。
因此,对焦油的收集和利用也是炼焦工艺中需要重视的一点。
在炼焦工艺中,除了关注产品的质量和产量外,环保问题也是一个重要的考虑因素。
焦炉煤气 工艺流程

焦炉煤气工艺流程
《焦炉煤气工艺流程》
焦炉煤气是一种重要的燃料,广泛用于热能供应、发电和化工生产中。
其工艺流程主要包括焦炭的生产和煤气的提取两个步骤。
首先,焦炭的生产。
在焦炉中,经过预处理的煤块被装入炉内,并经过高温热解反应,产生焦炭和焦炉煤气。
在高温下,煤中的挥发分质量损失,产生焦炭和焦炉煤气。
而煤气主要是一种混合气体,其中包含有可燃气体和不可燃气体。
而后,焦炉煤气的提取。
炉顶的煤气在蒸汽的辅助下进入提取塔,通过冷凝和吸收等过程将焦炉煤气中的不可燃气体和杂质剔除,最终得到高品质的焦炉煤气。
在整个工艺流程中,焦炭的生产是焦炉煤气产生的主要环节,而煤气的提取则是保证煤气质量的关键步骤。
这一工艺流程的设计和运行需要高效的炉膛操作和优质的提取设备,能够充分利用煤炭资源,降低能源消耗,提高产品质量。
综上所述,焦炉煤气的工艺流程是一个复杂的系统工程,其关键在于炉膛的操作和煤气的提取。
只有不断改进工艺流程,提高设备技术水平,才能够生产出高品质的焦炉煤气,满足不同行业的需求。
焦炉煤气工艺流程

焦炉煤气工艺流程
《焦炉煤气工艺流程》
焦炉煤气工艺流程是利用焦炭生产过程中产生的煤气进行加工和利用的过程。
焦炉煤气主要由一氧化碳、氢气、甲烷和一些杂质组成,是一种重要的工业燃料和原料。
焦炉煤气的工艺流程通常分为四个主要步骤:煤气的生产、净化、加工和利用。
首先是煤气的生产。
焦炉中的焦炭生产过程会产生大量的煤气,这些煤气经过收集后被送入净化系统进行处理。
在净化系统中,煤气会经过除尘、除硫、除氮等工艺处理,去除其中的杂质。
净化后的煤气会被送入加工系统进行储存和调节。
加工系统会对煤气进行加压、干燥和调节,以适应不同的工业用途。
通过加工后的煤气可以用于工业燃料、化工原料等领域。
关键是,这些煤气可以被再次利用,从而实现资源的高效利用。
焦炉煤气的工艺流程不仅能够提供工业燃料,还可以减少环境污染,实现资源节约和循环利用。
因此,焦炉煤气工艺流程在工业生产中具有重要的意义。
总而言之,焦炉煤气工艺流程是一项重要的工业技术,通过对焦炉产生的煤气进行处理和利用,实现了资源的高效利用和环境的保护。
需要进一步研究和发展,以满足工业生产对能源和环境的需求。
5.5米焦炉工艺

20073620085 20081323035)炭化室底上第一层炉墙砖,因经常受送煤饼的托煤板的摩擦冲击,磨损特别严重,故这层砖应特别加厚。
炭化室底上第一层砖加厚130mm。
6)燃烧室盖顶大砖采用在一对火道内设拱顶的结构,使上面的负荷归集在立火道隔墙上,可以承受住炉顶消烟车的机械震动而不易损坏。
除炉体设计外,就捣固工艺而言,宽炭化室捣固焦炉的一个显著特点就是提高了捣固煤饼的稳定性。
捣固煤饼的高宽比可减少到10.74:1,低于国外的捣固煤饼高度比15:1,增强了煤饼的稳定性。
捣固焦炉的核心设备捣固机采用引进设备,完全可以满足捣固工艺的要求。
五、产品质量对比生产经验表明,在相同原料煤的前提下,适当延长结焦时间,可以改善焦炭质量。
5.5m捣固焦炉的炭化室宽550mm,结焦时间比4.3m捣固焦炉的炭化室长3小时,预计焦炭质量会有所提高。
六、环保效果的比较由于5.5m捣固焦炉炭化室宽度更宽,焦饼收缩大,有利于推焦,减少了机械力对炉体的破坏。
由于焦炉出炉次数少,对焦炉机械使用维护更为有利。
捣固站工技术操作规程1、岗位职责1.1 直属班组长领导,完成其布置的任务。
1.2 认真执行本岗位的安全操作规程和交接班制度。
1.3 掌握捣固机各机构的性能、构造和原理。
1.4交接班制1.4.1 交班1.4.1.1 交班前向班组长汇报本岗位生产和设备运转情况,以及存在的问题,并作好操作记录.1.4.1.2 交班时详细介绍本机、电气设备使用情况,各转动部位运转润滑情况,各部件有无磨损、脱落、松动。
1.4.1.3设备如检修,须将检修情况、更换的部件和改变的操作方法向接班人交待清楚。
1.4.1.4 未得到接班人同意,工作未交待清楚,交班人不准离开岗位。
1.4.2 接班:1.4.2.1 按时参加班前会,听班组长布置工作任务。
1.4.2.2听完交班人介绍情况后,对设备进行详细检查,并落实捣固情况,发现问题要与交班人协商解决。
1.4.2.3 未接完班不准操作,接班后向班组长汇报本机接班情况1.4.2.4接班时检查项目:1.4.2.4.1 核对摇动给料机电机、连杆、减速机、曲轮的润滑情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焦炉工艺焦炉又称炼焦炉,煤炼焦的设备。
是焦化技术中的关键。
煤焦化技术的应用已有200多年的历史,其炉子的结构形式经历了许多变化。
初期炼焦仿造烧木炭的过程采用成堆干馏。
18世纪中期,开始演变成砖砌的半封闭式长窑炉。
1763年开始采用全封闭式圆窑即蜂窝炉。
成堆干馏和窑炉干馏共同的特点是内部加热,即炭化和燃烧在一起,靠燃烧一部分煤和干馏煤气直接加热其余的煤而干馏成焦。
19世纪中期,焦炉技术发生转折性变革,从窑炉发展到外部加热的炭化室炼焦阶段,出现倒焰炉。
这种焦炉是将成焦的炭化室和加热的燃烧室用墙隔开,在隔墙上部设有通道,炭化室内煤的干馏气经此通道直接流入燃烧室,与来自燃烧室顶部风道的空气混合,自上而下地流动燃烧,这种炉子已经具备了现代焦炉最基本的特征。
19世纪70年代,建成了回收化学产品的焦炉,使炼焦走向生产多种产品的重要阶段。
此后不久,1883年建成了利用烟气废热的蓄热式焦炉,至此,焦炉在总体上基本定型。
现代焦炉炉体由炭化室、燃烧室和蓄热室三个主要部分构成。
一般,炭化室宽0.4~0.5m、长10~17m、高4~7.5m,顶部设有加煤孔和煤气上升管(在机侧或焦侧),两端用炉门封闭。
燃烧室在炭化室两侧,由许多立火道构成。
蓄热室位于炉体下部,分空气蓄热室和贫煤气蓄热室。
现代化焦炉主要部分用硅砖砌筑,火道温度可达到1400℃。
成焦时间因炭化室宽度和火道温度不同,一般为13~18h。
焦炉机械有装煤车、推焦车、导焦车和熄焦车等。
由装煤车把煤装入炭化室,炼成的焦炭用推焦车推出,赤热的焦炭经导焦车落入熄焦车内,经水熄或回收热能的干法熄焦。
熄过的焦炭放到焦台上。
焦炭经过筛选后作为产品外送。
为了改善炼焦生产条件,现代焦炉操作除了机械化、自动化之外,还建有防治烟尘和处理污水装置。
电子计算机也已开始用于焦炉操作。
炉子向大型化发展,炭化室有效容积增加到50m3。
为了提高焦炉生产能力,采取降低炉墙焦炉炉体为双联火道、废气循环、宽炭化室、宽蓄热室、焦炉煤气下喷的单热式焦炉。
熄焦采用湿法熄焦;装煤采用捣固侧装方式;装煤、推焦设有地面除尘站3.2.5.1备煤车间备煤包括煤的堆存、配煤、粉碎和输送。
●煤场精煤由本公司或外地洗煤厂购进,从外省购进的洗精煤用火车运进厂内的经卸料槽后用皮带运至精煤堆场,汽车可直接运送至精煤堆场;本地精煤由矿区各洗煤厂汽运至精煤堆场。
煤场主要用于贮存各种炼焦煤。
炼焦煤在煤场经过一段时间的贮存后,能够达到煤质均匀化和脱水的目的;同时保证焦炉连续、均衡生产,并稳定焦炭的质量。
拟建煤场的设计容量为3.5万t,操作容量为2.7万t。
按4种煤计算,满足焦炉15天的用煤量。
●地下受配煤槽地下受配煤槽是将各种牌号的炼焦用煤,根据配煤试验确定的配比进行配合,使配合后的煤能够炼出符合质量要求的焦炭,同时合理利用煤炭资源,降低生产成本。
受配煤槽采用锥形斗嘴,操作稳定,仓壁配有仓壁振动器,可防止配煤槽内棚料,提高配煤的准确性。
●粉碎粉碎机室是将配合后的煤进行粉碎处理,使其细度<3mm的煤达到80%以上,从而保证装炉煤的粒度均匀,达到提高焦炭质量的目的。
由受配煤机槽来的配合煤经除铁件后,进入粉碎机室进行粉碎。
粉碎机为2台200t/h的反击式粉碎机,1用1备。
本工程设计采用地下受煤坑,备煤工艺采用先配合再粉碎的工艺流程。
备煤系统分为卸料系统、备料系统及配煤粉碎系统。
从精煤卸料开始至煤场为卸料系统;从煤场开始至配煤仓顶为备料系统;从配煤仓下电子自动配料秤开始至煤塔顶为配煤粉碎系统。
备煤系统能力按60万吨/年产焦配套设计,卸料系统能力为600t/h,备料系统能力为300t/h,配煤粉碎系统能力为200t/h。
炼焦所需的洗精煤运至煤场,由推土机或装载机将煤卸到地下受煤槽中,用圆盘给料机配煤。
配好的煤通过皮带机送到粉碎室,粉碎后的煤通过胶带机送入焦炉煤塔中,保证焦炉的正常生产。
炼焦、熄焦车间炼焦采用炉外煤饼捣固侧装入炉高温干馏湿法熄焦工艺,焦炉采用TJL4350D型焦炉。
TJL4350D型焦炉借鉴了化学工业第二设计院设计的双联、下喷、废气循环焦炉技术及TJL940E型捣固焦炉成功的经验,并根据非钢铁企业没有贫煤气的特点,采用了化学工业第二设计院设计的双联、下喷、废气循环、单热式捣固侧装煤焦炉,该焦炉具有国内先进经验。
炉组规模为2×50孔。
熄焦塔高36米,顶部装有折流式捕尘器,可捕集熄焦时产生的大量焦尘和水雾,除尘效率在80%以上。
炼焦工艺流程简述:贮煤场的精洗煤由输煤皮带运至偏置于机侧装煤推焦机上方的贮煤塔备用,中途用电磁除铁器除掉煤中的铁块或铁器。
通过摇动给料机连续均匀分层给料并由设于上方的多锤捣固机逐层夯实,然后从机侧将捣好的煤饼送入各炭化室中,煤饼在950℃~1050℃的高温下,干馏成焦炭,成熟的焦炭由推焦车推出经除尘拦焦车导入熄焦车箱内,然后由熄焦车运至熄焦塔喷淋熄焦,熄灭后的焦炭被卸至凉焦台,凉焦台上的焦炭冷却后经刮板放焦机、皮带机将焦炭送往筛焦工段进行筛分处理。
煤在炭化室内干馏过程中产生的荒煤气汇集到炭化室顶部空间进入机侧上升管,在桥管处由循环氨水喷淋冷却,700℃左右的荒煤气在桥管及集气管内经循环氨水喷洒后温度降至82℃左右,荒煤气中焦油等同时冷凝下来。
煤气和冷凝下来的焦油等同氨水一起经吸煤气管道进入冷凝鼓风工段,进入煤气净化系统。
装煤过程逸散的荒煤气,由设在炉顶的消烟除尘车吸至车上燃烧室,完全燃烧后经过洗涤烟尘分离后,废气排入大气,洗涤用水排入粉焦沉淀池循环使用。
出焦过程中产生的焦尘由设置在拦焦车上的集气罩将推焦烟气收集后,送到地面站布袋除尘器净化后排入大气。
焦炉加热用的回炉煤气经煤气总管、支管从焦炉下部进入各燃烧室,经焦炉煤气预热器预热至45℃左右送入地下室,再经下喷管进入燃烧室立火道与从废气交换开闭器进入蓄热室经预热的空气汇合燃烧。
燃烧后的废气通过立火道顶部跨越孔进入下降气流的立火道,经过蓄热室热交换后再进入小烟道,经废气交换开闭器、分烟道、总烟道、烟囱排入大气。
上升气流的煤气和空气与下降气流的废气由液压交换传动装置定时进行换向。
筛焦车间焦炭按四级筛分(≥40mm,40~25mm,25~10mm,<10mm)。
筛焦楼内设振动筛,按粒径大小进行筛分。
筛焦楼内设有4个冶金焦仓和焦丁、焦末仓各1个,冶金焦仓总贮量为600t,焦丁、焦末仓均为75t。
仓上使用可逆配仓胶带机布料及密封。
凉焦台上的焦炭放至胶带输送机送入筛焦楼内的三层振动筛筛分,筛上≥40mm,筛中40~25mm和25~10mm的焦炭,筛下<10mm,筛分后的焦炭分别进各自的贮仓,直接装车外售或送至焦场堆存;<10mm小焦及焦粉可外卖,也可破碎后掺混炼焦。
图3-7 炼焦车间工艺流简图3.2.5.4煤气净化车间由焦炉来的荒煤气采用横管初冷却器两段冷却工艺,由设置于鼓风机前的蜂窝式电捕焦油器进一步脱除煤气中的焦油雾;煤气鼓风机后脱硫采用PDS栲胶为复合催化剂的湿式氧化法脱硫工艺;脱氨采用泡沸伞式饱和器法硫铵工艺;煤气脱苯采用焦油洗油洗苯工艺。
其煤气净化系统如下:焦炉来荒煤气初冷器电捕焦油器煤气鼓风机脱硫塔泡沸伞式饱和器终冷塔洗苯净化煤气自用或外送(1)冷凝鼓风及电捕本工段包括焦炉荒煤气的间接冷却、电捕除焦油、煤气输送及焦油、氨水分离等工艺。
高温焦炉荒煤气经气液分离器分离后降至82℃左右,再依次进入并联操作的间接式横管初冷器进行一、二两段冷却,煤气冷却至22℃,接着,煤气入蜂窝式电捕焦油器,在高压直流电场作用下除去所含的焦油雾。
而后,煤气进入煤气鼓风机加压送往脱硫工段。
从煤气气液分离器分离的循环氨水与焦油混合液进入机械化氨水澄清槽。
其中,沉积的焦油渣由刮板机刮出落入渣箱,定期运往备煤系统掺入炼焦煤料中;循环氨水由澄清槽上部引至循环氨水中间槽,继续由循环氨水泵返送回焦炉系统用于冷却出炉的高温荒煤气;剩余氨水经蒸氨后的蒸氨废水送入生化污水处理站处理;焦油从澄清槽下部经液位调节器控制流入焦油中间槽作为产品送往油库。
在煤气间接式初冷器中冷却产生的煤气冷凝液和喷洒冲洗液首先进入冷凝液中间槽,然后溢流至冷凝液贮槽。
该冷凝液的一部分送进混合液槽中,与一定量的焦油混合后用作煤气初冷器的喷洒液,以清除煤气初冷器内冷却横管外壁上的积萘,以提高初冷器冷却煤气的效果;其余冷凝液则送入循环氨水与焦油混合液系统。
(2)脱硫工段本工段包括煤气的脱硫、脱硫液的再生、硫泡沫沉淀分离和熔硫、硫磺产品的贮存及剩余氨水的蒸馏等工艺过程。
从煤气鼓风机来的煤气,首先进入煤气预冷塔底部;来自冷鼓工段的氨水则从预冷塔顶部进入、喷洒,与煤气逆流接触将其冷却。
然后煤气进脱硫塔与塔顶喷淋的再生脱硫母液逆液接触,经过脱硫的煤气自脱硫塔上部引出送往硫铵工段。
脱硫液从脱硫塔底部流经液封槽进入反应槽,由此用泵送再生塔底与压缩空气混合一起自下而上顺流接触,氧化再生。
再生后的脱硫液由再生塔上部流出,经液位调节器返回脱硫塔循环再用。
由脱硫液再生产生的硫泡沫浮于再生塔顶扩大部分,利用位差自流入硫泡沫槽,通过加热、搅拌、澄清分层后,清液经碱液漏斗返回反应槽,浓缩的硫泡沫则直接流入熔硫釜熔硫。
熔融硫冷却盘,自然冷却后即为产品硫磺,入仓待售。
在生产过程中,为了避免脱硫液积累过量铵引起的降低脱硫效率,需排出少量废液,送生化污水处理站处理。
(3)蒸氨工段脱硫过程中的剩余氨水引入蒸氨塔内进行蒸氨,蒸出浓氨汽经冷凝冷却后制得含氨18~20%的浓氨水,送入脱硫液槽,兑入脱硫液中,作为补充碱源。
对蒸氨废气选用目前国内较先进的氨裂解处理技术。
在裂解炉内,氨气在触媒的作用下,通过控制炉温可将蒸氨废气中的氨还原成氢气、氮气和一氧化碳气,并将这部分混合气体返回煤气管道中,不仅防止了对大气的污染,而且还可增加煤气量,是一项回收能源、化害为利的控制措施,该技术成熟、可靠,在国内外焦化厂均有使用。
(4)硫铵工段由脱硫工段送来的煤气经煤气预热器预热至70℃后进入喷淋式饱和器上段的喷淋室,在此煤气与循环母液充分接触,使其中的氨被硫酸吸收。
煤气经饱和器内的除酸器分离酸雾后送至洗脱苯工段。
在饱和器母液中不断有硫铵晶体生成,用结晶泵将其连同一部分母液送至结晶槽,然后经离心分离、干燥、称重、包装后外售。
离心分离出的结晶母液返回饱和器循环使用。
(5)洗脱苯工段来自硫铵工段的粗煤气,首先进入煤气隔板式终冷却器,冷却后从洗脱塔底部入塔,由下而上经过洗苯塔填料层,与塔顶喷淋的循环洗油逆流接触,煤气中的苯被循环洗油吸收,进一步脱除煤气中的焦油和萘;再经过塔的捕雾段脱除雾滴后离开洗苯塔,其中部分净煤气送焦炉做回炉煤气及脱苯管式炉燃料,剩余部分外送。
由洗苯装置送来的含苯富油,首先进入粗苯冷凝冷却器,与脱苯塔来的粗苯蒸汽间接接触换热到60℃左右,然后进入贫富油换热器,与脱苯塔底来的热贫油间接换热到120~130℃进入管式炉,在管式炉中通入400℃过热蒸汽,富油被加热到180~185℃进入脱苯塔,其中1~2%的富油进入再生器;再生器底部聚合的残渣定期排出;再生器顶部蒸出的气体进入脱苯塔。