山东省烟台市莱山区2019-2020学年人教版九年级(上)期末数学试卷 解析版

合集下载

人教版2019--2020学年度第一学期九年级数学上册期末考试题及答案

人教版2019--2020学年度第一学期九年级数学上册期末考试题及答案

人教版2019—2020学年度第一学期九年级数学期末试卷及答案(满分:120分 答题时间:120分钟)一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在题后括号内. 1. 在平面直角坐标系中,点A )7,6(-关于原点对称的点的坐标为( ) A.)7,6(-- B.)7,6( C.)7,6(- D.)7,6(- 2. 一元二次方程02=x 的根的情况是( ) A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根 3. 已知抛物线82++=bx ax y 经过点)2,3(,则代数式83++b a 的值为( ) A.6 B.6- C.10 D.10- 4. 如图,在半径为5的⊙O 中,AB,CD 是互相垂直的两条弦,垂足为P,若AB=CD=4,则OP 的长为( ) A.1 B.2 C.2 D.225. 若双曲线xk y 1-=位于第二、四象限,则k 的取值范围是( )A.1<kB.1≥kC.1>kD.1≠k6. 从6,722,,0,2π这五个数中随机抽取一个数,抽到有理数的概率是( )A.51B.52C.53D.54 7. 如图,在△ABC 中,DE ∥BC,分别交AB,AC 于点D,E.若AD=1,DB=2,则△ADE 的面积与△ABC 的面积的比等于( )A.21B.41C.81D.918.在平面直角坐标系中,二次函数)0()(2≠-=a h x a y 的图象可能是( )A. B. C. D.9.如图,AB 是⊙O 的直径,点E 为BC 的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和是( ) A.3 B.32 C.23D.1 10. 如图,已知△ABC,任取一点O,连接AO,BO,CO,并取它们的中点D,E,F,得△DEF,则下列说法正确的个数是( ) ①△ABC 与△DEF 是位似图形; ②△ABC 与△DEF 是相似图形; ③△ABC 与△DEF 的周长比为1:2;④若△ABC 的面积为4,则△DEF 的面积为1. A.个1 B.个2 C.个3 D.个4 二、填空题:(本大题共6个小题,每小题3分,共18分) 11. 都相同,如果摸到红球的概率是41,那么口袋中有白球__________个.12. 在一个不透明的口袋中,装有4个红球和若干个白球,这些球除颜色外其余用配方法把二次函数1322+-=x x y 写成k h x a y +-=2)(的形式为_____________.13. 关于x 的一元二次方程0)9()3(22=-++-m x x m 的一个根是0,则m 的值是______.14.如图,已知点O 是△ABC 的内切圆的圆心.若∠BAC=58°,则∠BOC=__________. 15.如图所示,点A 在双曲线x ky =上,点A的坐标为)3,31(,点B 在双曲线x y 3=上,且AB ∥x 轴,C,D 在x 轴上,若四边形ABCD 为矩形,则它的面积是_______. 16. 如图,在△ABC 中,∠ACB=90°,BC=16cm,AC=12cm,点P 从点B 出发,以2cm/秒的速度向点C 移动,同时点Q 从点C 出发,以1cm/秒的速度向点A 移动,设运动时间为t 秒,当t =__________秒时,△CPQ 与△ABC 相似. 三、解答题:(本大题共9个小题,共72分)解答应写出文字说明、证明过程或演算步骤.17. (本小题满分6分)某服装店现有A,B,C 三种品牌的衣服和D,E 两种品牌的裤子,小明家现要从该服装店选购一种品牌的衣服与一种品牌的裤子.(1) 写出所有选购方案(利用树状图或列表法表示);(2) 如果(1)中各种选购方案被选中的可能性相同,那么A 品牌衣服被选中的概率是多少?18. 先化简,再求值:21)11(y xy y x y x +÷-++,其中25,25-=+=y x . 19. (本小题满分6分)(本小题满分8分)如图, 在△ABC 中,∠ABC=80°, ∠BAC=40°,AB 的垂直平分线分别与AC,AB 相交于点D,E,连接BD.求证:△ABC ∽△BDC.第19题图 第20题图 第21题图20. (本小题满分8分) 如图,已知A )2,(-n ,B )4,1(是一次函数b kx y +=的图象与反比例函数xm y =的图象的两个交点,直线AB 与y 轴交于点C.(1)求反比例函数和一次函数的解析式; (2)求△AOC 的面积.21. (本小题满分6分)如图,要设计一副宽20cm,长30cm 的图案,其中有一横一竖的彩条,横竖彩条的宽度之比为2:3.如果彩条所占面积是图案面积的19%,求横,竖彩条的宽度各为多少cm?22. (本小题满分8分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.莫小贝按照政策投资销售本市生产的一种品牌衬衫.已知这种品牌衬衫的成本价为每件120元,出厂价为每件165元,每月销售量y (件)与销售单价x (元)之间的关系近似满足一次函数:9003+-=x y .(1)莫小贝在开始创业的第1个月将销售单价定为180元,那么政府这个月为他承担的总差价是多少元?(2)设莫小贝获得的利润为w (元),当销售单价为多少元时,每月可获得最大利润?(3)物价部门规定,这种品牌衬衫的销售单价不得高于250元.如果莫小贝想要每月获得的利润不低于19500元,那么政府每个月为他承担的总差价最少为多少元?23. (本小题满分10分)如图,在Rt△ABC中,∠BAC=90°, BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E.(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.24.(本小题满分10分)如图,已知:抛物线42-+=bxaxy与x轴交于A)0,1(-、B)0,4(两点,过点A的直线1-=kxy与该抛物线交于点C.点P是该抛物线上不与A,B 重合的动点,过点P作PD⊥x轴于D,交直线AC于点E.(1)求抛物线的解析式;(2)当PE=2DE时,求点P坐标;(3)是否存在点P使得△BEC为等腰三角形,若存在请直接写出点P的坐标,若不存在,请说明你的理由.25.(本小题满分10分)如图,在△ABC中,AB=AC=5,BC=6,点D是BC边上的动点(不与B,C重合),点E是AC上的某点并且满足∠ADE=∠C.(1)求证:△ABD∽△DCE;(2)若BD的长为x,请用含x的代数式表示AE的长;(3)当(2)中的AE最短时,求△ADE的面积. 2019-2020学年度上学期期末测试九年级数学试题参考答案一.选择题二.填空题11. 2312()48y x=-- 12. 3- 13. 12 14.119° 15. 2 16.1164524或(第16题只填一种情况并且对了的,给2分;若填了两种情况,但有一种错误的,给0分)三.解答题17. 解:(1)根据题意,可以画出如下树状图:.....…………………3分(2)由树状图可以看出,所有可能出现的情况共有6种,它们被选中的可能性相同,其中A品牌衣服被选中的情况有2种,所以......……………...............................................……4分3162)(==A P......................................................…………………6分18. 解:原式=)())((yxyyxyxyxyx+⋅-+++-……….........................…………………1分=yxxy-2………........................................................3分∵25,25-=+=yx∴1452)5()25)(25(22=-=-=-+=xy………....…..……4分42525)25()25(=+-+=--+=-yx……….............5分∴原式=21412=⨯………..................................6分裤子衣服EDD EEDCBA19. 解: (1)将B )4,1(代入xmy =得4=m ......................................……1分 ∴反比例函数的解析式为: xy 4=..............................……2分将A )2,(-n 代入上式得2-=n 将A )2,2(--,B )4,1(代入b kx y +=得⎩⎨⎧+=+-=-b k b k 422 解得⎩⎨⎧==22b k .....................................……3分∴一次函数的解析式为:22+=x y .............................……4分(2)在22+=x y 中当0=x 时,2=y 即点C 的坐标为)2,0(........……5分∴OC=2......................................................……6分∴22221||21=⨯⨯=⋅⋅=∆A AOC x OC S ...................……8分20.证明:∵DE 垂直平分AB∴DA=DB..…………..............................................……1分 ∴∠DBA =∠BAC =40º ..…………..........................……2分 ∴︒=︒-︒=∠-∠=∠404080DBA ABC DBC ..……...……5分 ∴BAC DBC ∠=∠..…………......................……6分又∵C C ∠=∠..…………...........................................……7分∴ABC ∆∽BDC ∆..…………..........................................……8分 21. 解:设横彩条的宽度为x 2cm,则竖彩条的宽度为x 3cm,那么………...............……1分 %)191(3020)330)(220(-⨯⨯=--x x ……..................…..……3分 解得:1=x 或19=x (不合题意,舍去)……….........................……4分∴33,22==x x ………....................……5分答:横,竖彩条的宽度分别为2cm 与3cm.…….........……6分 22. (1)在9003+-=x y 中,当180=x 时,360=y ……1分16200360)120165(=⨯-............................……2分 答:政府这个月为他承担的总差价是16200元................……3分(2)由题意得)9003)(120(+--=x x W ...............……4分108000126032-+-=x x24300)210(32+--=x∵03<-=a ,抛物线开口向下∴当210=x 时,W 有最大值24300.............……5分 即当销售单价为210元时,每月可获得最大利润. (3)当19500=W ,即19500)9003)(120(=+--x x 时解得170=x 或250=x ..........................……6分 ∵ 在9003+-=x y 中,y 随x 的增大而减小 即销售量随着销售单价的提高而减少∴当250=x 时,销售量最低,此时1509002503=+⨯-=y6750150)120165(=⨯-...................................……7分答:政府每个月为他承担的总差价最少为6750........................……8分元23.解: (1)证明:过点D 作DF ⊥BC 于F ∵∠BAC=90°∴DA分 又 ∵BD 是角平分线,DF ∴DA=DF,DA 是⊙D ∴BC 是⊙D (2)由(1)知BA,BC 均是⊙D 的切线 ∴BF=BA=5∴8513=-=-=BA BC CF 125132222=-=-=BA BC CA ...........................……7分 ∵ DF ⊥BC∴∠DFC=∠BAC=90°又∵∠C=∠C∴CFD ∆∽CAB ∆.........................……8分∴ABCA FD CF =即......................................……9分∴3202==FD AE ..............……10分24. 解:(1)将A )0,1(-,B )0,4(代入42-+=bx ax y 得⎩⎨⎧=-+=--0441604b a b a ..........................................…1分解得⎩⎨⎧-==31b a ...........................…2分所以抛物线的解析式为432--=x x y .......................…3分 (2)将A )0,1(-代入1-=kx y 得1-=k 即AC 所在直线为1--=x y设点P 坐标为)43,(2--m m m 则点E 坐标为)1,(--m m ..............…4分 ①当点P 在点E 的下方时32)43(122++-=-----=m m m m m PE 1)1(0+=---=m m DE当DE PE 2=,即)1(2322+=++-m m m 时 解得11-==m m 或(不合题意舍去)此时点P 的坐标为)6,1(-.......................…5分 ②当点P 在点D 的上方时32)1()43(22--=-----=m m m m m PE 1)1(0+=---=m m DE当DE PE 2=,即)1(2322+=--m m m 时 解得15-==m m 或(不合题意舍去)此时点P 的坐标为)6,5(........................................…6分 综上所述当DE PE 2=时,点P 的坐标为)6,1(-或)6,5(................…7分(3)当BE BC =时,点P 坐标为)4,0(-;..........................…8分 当CE CB =时,点P 坐标为)2349,2346(±±;................…9分 当BE BC =时,点P 坐标为)36161,61(-.......................…10分25. (1)证明: ∵AB=AC ∴C B ∠=∠..............................................................……1分又∵C ADE ∠=∠ ∴B ADE ∠=∠∵DAB B EDC ADE ADC ∠+∠=∠+∠=∠∴EDC DAB ∠=∠..................................................……2分 ∴△ABD ∽△DCE.....................................................……3分(2)解:∵△ABD ∽△DCE∴CE CDBD AB =...........................................……4分 即CExx -=65∴x x x x CE 56515)6(2+-=-=..................……5分∴55651)5651(522+-=+--=-=x x x x CE AC AE ............…6分(3) ∵516)3(515565122+-=+-=x x x AE∴当3=x 时,AE 最短为516即BD=3时,AE分又∵BD=3=21BC ∴此时点D 恰好为BC 中点 ∴AD ⊥BC∴︒=∠90ADB ..................................................……8分 ∵△ABD ∽△DCE∴︒=∠=∠90ADB DEC∴︒=︒-︒=∠-︒=∠9090180180DEC AED∴当AE 最短时,ADE ∆是直角三角形.........................….…9分∵595)36(35)6(=-⨯=-=x x CE∴51222=-=CE CD DE∴25965125162121=⨯⨯=⋅=∆DE AE S ADE .....................…10分。

2019-2020学年度人教版九年级数学第一学期期末测试题含答案

2019-2020学年度人教版九年级数学第一学期期末测试题含答案

2019~2020 学年度第一学期期末考试九年级数学试卷题 号一二17 18 19三 2021 22 23总分得 分一、选择题(本题共 8 小题,每小题 3 分,共 24 分)1.从图中的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称的卡 片的概率是【 】A.14B.1 2C.3 4D. 12.已知一个直角三角形的两条直角边的长恰好是方程x 上的中线长是【 】-3x =4(x -3)的两个实数根,则该直角三角形斜边A. 3B. 4C.6D. 2.53.某商品原价每盒 28 元,为响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒 16 元, 设该药品平均每次降价的百分率为 x ,由题意,所列方程正确的是【 】A.28 (1-2x )=16B. 16(1-2x )=28C. 28 (1-x ) =16D. 16(1-x ) =28 4.将二次函数 y =x 的图象向右平移一个单位长度,再向上平衡 3 个单位长度所得的图象解析式为【 】A. y =(x -1)+3 B. y =(x +1) +3 C. y =(x -1) -3 D. y =(x +1) -3 5.如图,PA ,PB 切⊙O 于点 A ,B ,点 C 是⊙O 上一点,且∠P =36°,则∠ACB =【 】 PA. 54°B. 72°C. 108°D. 144°6.在体检中,12 名同学的血型结果为:A 型 3 人,B 型 3 人,AB 型 4 人,AB·OCO 型 2 人,若从这 12 名同学中随机抽出 2 人,这两人的血型均为 O 型的概率为【】A.1 66B.1 33C.15 7 D.22 22︵7.如图,已知 AB 是⊙O 的直径,AD 切⊙O 于 A ,点 C 是E B 的中点,则下列结论不成立的是【 】A. OC ∥AEB. EC =BCC. ∠DAE =∠ABED. AC ⊥OE8.如图,抛物线 y =ax +bx +c (a ≠0)的对称轴为直线 x =1,与 x 轴的一个 交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b ;②方程 ax +bx +c =0 的两个根是 x =-1,x =3;③3a +c >0; 12y3-1 O1 x④当 y >0 时,x 的取值范围是-1≤x <3;⑤当 x <0 时,y 随 x 增大而增大。

2019—2020学年人教版九年级上册数学期末测试卷及答案

2019—2020学年人教版九年级上册数学期末测试卷及答案

最新 2019—2020 学年人教版九年级上册数学期末测试卷及答案(1)(时间 120 分钟,满分 120 分)一、选择题(每题 3 分,共 30 分)1.以下图形中,既是中心对称图形又是轴对称图形的是()2.将函数 y= 2x2的图象向左平移 1 个单位,再向上平移 3 个单位,可获取的抛物线是()A.y=2(x-1)2- 3B.y=2(x-1)2+3C.y=2(x+1)2- 3D.y=2(x+1)2+33.如图,将 Rt△ABC(此中∠ B=35°,∠C=90°)绕点 A 按顺时针方向旋转到△ AB1 C1的地点,使得点 C、A、 B1在同一条直线上,那么旋转角等于 ( )第 3题图第 6题图第4题图°°°°4.一条排水管的截面以下左图所示,已知排水管的半径OB=10,水面宽 AB=16,则截面圆心 O到水面的距离 OC是()A. 4 B. 5 C. 6 3 D. 65.一个半径为 2cm的圆内接正六边形的面积等于()2B. 63 cm 2C.12 3cm2D.8 3 cm2A. 24cm6.如图,若 AB是⊙ O的直径, CD是⊙ O的弦,∠ ABD=55°,则∠ BCD的度数为 () A.35° B .45° C .55°D .75°7.函数 y2x 28x m 的图象上有两点(,y1), B( x2 , y2 ) ,若 x1x22,则() A. y1y2A x1B. y1 y2C.y1y2D.y1、 y2的大小不确立8.将半径为 3cm 的圆形纸片沿 AB 折叠后,圆弧恰巧能经过圆心O,用图中暗影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()A. B .C.D.9.一次函数y ax b 与二次函数 y ax2bx c 在同一坐标系中的图像可能是()A.3B.3 根号 3C.D.4二、填空题(每题 3 分,共 18 分)11.抛物线y x 22x 3的极点坐标是12.如图,将△ ABC的绕点 A 顺时针旋转获取△ AED,点 D 正好落在 BC边∠ EAB=°.第 12题图第 14题图13.若函数y mx22x 1 的图象与x轴只有一个公共点,则常数m的值14.抛物线 y=-x 2 +bx+c 的部分图象以下图,若 y> 0,则 x 的取值范围是15.如图,在一个正方形围栏中均匀地漫步者很多米粒,正方形内有一个圆(仔围栏内啄食,则“小鸡正在院内”啄食的概率为_______.16.如图,把直角三角形 ABC的斜边 AB放在定直线 l 上,按顺时针方向在上转动两次,使它转到△ A″B″C″的地点.设 BC=2,AC=2,则极点 A 动到点 A″的地点时,点 A 经过的路线与直线 l所围成的面积_________.三、解答以下各题(共72 分)17.(共 8 分)解方程:( 1)x22x1()22( x3)02 ( x 3)18.(共 6 分)已知对于 x 的一元二次方程kx2(3k 1)x 3 0 (k 0) .( 1)求证:不论 k 取何值,方程总有两个实数根;( 2)若二次函数y kx2(3k 1) x 3 的图象与 x 轴两个交点的横坐标均为整A. B . C .10.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形 ABC,粮堆母线 AC①△ ABC对于原点 O逆时针旋转 90°获取△ A1B1C1;的中点 P 处有一老鼠正在偷吃粮食,此时,小猫正在 B 处,它要沿圆锥侧面抵达 P②△ A B C 对于原点中心对称的△ A B C .处捕获老鼠,则小猫所经过的最短行程是m.(结果不取近似值)( 2)△ A2B2C2中极点 B2坐标为1 / 320.(共 8 分)某校九年级举行毕业典礼,需要从九年(1)班的 2 名男生 1 名女生(男生用A1表示,女生用 B1表示)和九年( 2)班的 1 名男生 1 名女生(男生用 A2表示,女生用 B2表示)共 5 人中随机选出 2 名主持人.(1)用树状图或列表法列出全部可能情况;(2)求 2 名主持人来自不一样班级的概率;(3)求2名主持人恰巧1 男 1 女的概率.21.(共 8 分)某水果批发商销售每箱进价为 40 元的苹果,物价部门规定每箱售价不得高于 55 元,市场检查发现,若每箱以 50 元的价钱销售,均匀每日销售 90 箱,价钱每提升 1 元,均匀每日少销售 3 箱.(1)求均匀每日销售量y 箱与销售价x元 / 箱之间的函数关系式.(2)求该批发商均匀每日的销售收益w(元)与销售价x(元 / 箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,能够获取最大收益?最大收益是多少?23、(共 8 分)已知:如图,抛物线 y= - x2+bx+c 与 x 轴、 y 轴分别订交于其极点为 D.(1)求这条抛物线的分析式;(2)若抛物线与 x 轴的另一个交点为 E.求△ ODE的面积;24、(共 10 分)如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为面 CD的宽是 10m.( 1)求此抛物线的分析式;( 2)现有一辆载有营救物质的货车从甲地出发需经过此桥开往乙地,已知甲地计).货车正以每小时40km的速度开往乙地,当行驶 1 小不时,突然接到紧水位以每小时0.25m 的速度连续上升(货车接到通知时水位在CD处,当水辆通行).试问:假如货车按本来速度行驶,可否安全经过此桥?若能,请说明全经过此桥,速度应超出每小时多少千米?22、(共 8 分)如图,已知 AB是⊙ O的直径,点 C、D 在⊙ O上,点 E 在⊙ O 外,∠ EAC=∠ D=60° .(1)求∠ ABC的度数;(2)求证: AE是⊙ O的切线;(3)当 BC= 4 时,求劣弧AC的长.25、(共 12 分)(2015?武威)如图,在直角坐标系中,抛物线经过点 A(0其对称轴与 x 轴订交于点 M.(1)求抛物线的分析式和对称轴;(2)在抛物线的对称轴上能否存在一点 P,使△ PAB的周长最小?若存在,说明原因;(3)连结 AC,在直线 AC的下方的抛物线上,能否存在一点 N,使△ NAC的的坐标;若不存在,请说明原因.第2页共3页。

人教版2019--2020学年度第一学期九年级数学上册期末考试题及答案

人教版2019--2020学年度第一学期九年级数学上册期末考试题及答案

人教版2019—2020学年度第一学期九年级数学期末试卷及答案(满分:120分 答题时间:120分钟)一、选择题(本大题每小题3分,满分42分)1.海南的富铁矿是国内少有的富铁矿之一,储量居全国第六位,其储量约为237 000 000吨,用科学记数法表示应为( ) A. 237×106吨 B. 2.37×107吨 C. 2.37×108吨 D. 0.237×109吨 2.下列运算,正确的是( )A.523a a a =⋅ B.ab b a 532=+ C.326a a a =÷ D.523a a a =+3.2-的相反数是( )A.21 B.21- C.2- D.24. 在实数2、0、1-、2-中,最小的实数是( )A .2B .0C .1-D .2-5. 不等式组⎩⎨⎧-><-12x x 的解集是( ) A. 1->x B. 2-<x C. 2<x D. 21<<-x 6. 函数1-=x y 中,自变量x 的取值范围是( )A. 1≥xB. 1->xC. 0>xD. 1≠x7. 下列各图中,是中心对称图形的是( )8.方程042=-x 的根是( )A. 2,221-==x xB. 4=xC. 2=xD. 2-=x 9.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:这些运动员跳高成绩的中位数和众数分别是( )A .1.65,1.70B .1.70,1.65C .1.70,1.70D .3,5 10. 某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s 甲2=0.002、s乙2=0.03,则( )A .甲比乙的产量稳定B .乙比甲的产量稳定C .甲、乙的产量一样稳定D .无法确定哪一品种的产量更稳定11. 下列各点中,在函数xy 2=图象上的点是( )A .(2,4)B .(-1,2)C .(-2,-1)D .(21-,1-)12.一次函数2+=x y 的图象不经过...( ) A.第一象限 B.第二象限 C.第三象限 D. 第四象限13. 如图1,正方形ABCD的边长为2cm ,以B 点为圆心、AB 长为半径作⋂AC ,则图中阴影部分的面积为( )A BC DA.2)4(cm π-B. 2)8(cm π-C. 2)42(cm -πD. 2)2(cm -π14.如图2,AB 、CD 相交于点O ,∠1=80°,如果DE ∥AB ,那么∠D 的度数为( )A. 80°B. 90°C. 100°D. 110°二、填空题(本大题满分12分,每小题3分) 15. 在一个不透明的布袋中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是54,则n = .16. 计算:=-283 .17. 如图3,∠ABC=90°,O 为射线BC 上一点,以点O 为圆心,21BO 长为半径作⊙O ,当射线BA 绕点B 按顺时针方向旋转 度时与⊙0相切.18. 如图4,在等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,AB =6cm ,则AE = cm . 三、解答题(本大题满分66分) 19.计算(满分8分,每小题4分)(1)化简:(a +1)(a -1)-a (a -1). (2)2314(2)2-⨯+-20.(8分)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y (米)与时间x (时)的函数图象为线段OA ,乙队铺设完的路面长y (米)与时间x (时)的函数图象为折线BC ﹣CD ﹣DE ,如图所示,从甲队开始工作时计时. (1)分别求线段BC 、DE 所在直线对应的函数关系式. (2)当甲队清理完路面时,求乙队铺设完的路面长.21. (本大题满分8分)如图,四边形ABCD 是正方形,G 是BC 上任意一点(点G 与B 、C 不重合),AE ⊥DG 于E ,CF ∥AE 交DG 于F.(1)在图中找出一对全等三角形,并加以证明; (2)求证:AE=FC+EF.AB CO E1D图2A ABC图4EDABC DE FG22. (满分8分)某商场正在热销2008价格各是多少元?23. (11分)如图,已知二次函数图象的顶点坐标为C(1,0),直线m x y +=与该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在轴y 上. (1)求m 的值及这个二次函数的关系式;(2)P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图象交于点E 点,设线段PE 的长为h ,点P 的横坐标为x①求h 与x 之间的函数关系式,并写出自变量x 的取值范围;②线段PE 的长hx 值;若不存在,请说明理由?24.(11分) 某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好(每人只能选其中一项),并将调查结果绘制成如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)在这次考察中一共调查了多少名学生?(2)在扇形统计图中,“乒乓球”部分所对应的圆心角是多少度? (3)补全条形统计图;(4)若全校有1800名学生,试估计该校喜欢篮球的学生约有多少人? 25.(12分)如图,已知AB 是⊙O 的直径,P 为⊙O 外一点,且OP ∥BC ,∠P=∠BAC .(1)求证:PA 为⊙O 的切线;(2)若OB=5,OP=,求AC 的长.共计145元共计280元第24题图2019-2020学年第一学期九年级数学期末检测试题参考答案一、选择题(本大题每小题3分,满分42分)二、填空题(本大题满分12分,每小题3分)15. 8 16.25 17.60°或120 ° 18.6三、解答题(本大题满分56分)19.(本题满分8分,每小题4分)(1)原式=a2-1-a2+a=a-1= -7(2)原式=3 - 2 +(-8)20.解:(1)设线段BC所在直线对应的函数关系式为y=k1x+b1.∵图象经过(3,0)、(5,50),∴∴线段BC所在直线对应的函数关系式为y=25x﹣75.设线段DE所在直线对应的函数关系式为y=k2x+b2.∵乙队按停工前的工作效率为:50÷(5﹣3)=25,∴乙队剩下的需要的时间为:÷25=,∴E(,160),∴,解得:∴线段DE所在直线对应的函数关系式为y=25x﹣112.5.(2)由题意,得甲队每小时清理路面的长为100÷5=20,甲队清理完路面的时间,x=160÷20=8.把x=8代入y=25x﹣112.5,得y=25×8﹣112.5=87.5.答:当甲队清理完路面时,乙队铺设完的路面长为87.5米.21、(满分8分)(1) ΔAED≌ΔDFC.∵四边形ABCD是正方形,∴ AD=DC,∠ADC=90º.又∵ AE⊥DG,CF∥AE,∴∠AED=∠DFC=90º,…AB CDEF图6G∴ ∠EAD+∠ADE=∠FDC+∠ADE=90º, ∴ ∠EAD=∠FDC.∴ ΔAED≌ΔDFC (AAS ). (2) ∵ ΔAED≌ΔDFC,∴ AE=DF ,ED=FC. … ∵ DF=DE+EF , ∴ AE=FC+EF. )22.(满分8分)解:设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元.依题意,得 ⎩⎨⎧=+=+280321452y x y x 解这个方程组,得 ⎩⎨⎧==10125y x 答:一盒“福娃”玩具和一枚徽章的价格分别为125元和10元. 23.(1) ∵ 点A(3,4)在直线y=x+m 上,∴ 4=3+m. ∴ m=1.设所求二次函数的关系式为y=a(x-1)2. ∵ 点A(3,4)在二次函数y=a(x-1)2的图象上, ∴ 4=a(3-1)2, ∴ a=1.∴ 所求二次函数的关系式为y=(x-1)2.即y=x 2-2x+1.(2) 设P 、E 两点的纵坐标分别为y P 和y E .∴ PE=h=y P -y E=(x+1)-(x 2-2x+1) =-x 2+3x.… 即h=-x 2+3x (0<x <3). (3)略24. (本题满分11分) 解:(1)∵,∴这次考察中一共调查了60名学生. (2)∵∴∴在扇形统计图中,“乒乓球”部分所对应的圆心角为90° (3),∴补全统计图如下图(4)∵∴可以估计该校学生喜欢篮球活动的约有450人25. (1)证明:∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠BAC+∠B=90°.又∵OP ∥BC ,∴∠AOP=∠B ,∴∠BAC+∠AOP=90°.∵∠P=∠BAC .∴∠P+∠AOP=90°,60%106=%25%20%20%10%251=----︒=⨯︒90%2536012%2060=⨯450%251800=⨯图7第24题答案图∴由三角形内角和定理知∠PAO=90°,即OA⊥AP.又∵OA是的⊙O的半径,∴PA为⊙O的切线;(2)解:由(1)知,∠PAO=90°.∵OB=5,∴OA=OB=5.又∵OP=,∴在直角△APO中,根据勾股定理知PA==,由(1)知,∠ACB=∠PAO=90°.∵∠BAC=∠P,∴△ABC∽△POA,∴=.∴=,解得AC=8.即AC的长度为8.。

人教版2019-2020学年上册期末考试九年级数学试卷(含答案)

人教版2019-2020学年上册期末考试九年级数学试卷(含答案)

2019-2020学年上学期期末考试九年级数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1. (3分)方程x2+x=0的解为()A. x=0B. x= - 1C. x i=0, X2= - 1 D . x i=1, X2= - 12. (3分)下列图形中,既是轴对称图形又是中心对称图形的是()A .平行四边形B .菱形C.等边三角形D .等腰直角三角形3. (3分)如图,将△ AOB绕点O按逆时针方向旋转45°后得到△ A OB若/ AOB=15,则/ AOB的度数是()A. 25°B. 30°C. 35°D. 40°4. (3分)下列说法正确的是()A. 经过有交通信号的路口遇到红灯”是必然事件B. 已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C. 投掷一枚硬币正面朝上是随机事件D. 明天太阳从东方升起是随机事件5. (3分)已知一元二次方程x2- 4x+m=0有一个根为2,则另一根为()A. - 4 B . - 2 C . 4 D . 26. (3分)若点M在抛物线y(x+3)2-4的对称轴上,则点M的坐标可能是()A. (3,- 4)B. (- 3, 0)C. (3, 0)D. (0,- 4)7. (3分)如图,四边形ABCD内接于。

O,连接OB、OD,若/BOD= / BCD , 则/A的度数为()A. 60°B. 70°C. 120°D. 140°28. (3分)将二次函数y=x+2x-1的图象沿x轴向右平移2个单位长度,得到的函数表达式是()2 2 2 2A. y= (x+3)2-2 B . y= (x+3)2+2 C. y= (x - 1)2+2D . y= (x - 1)2-29. (3分)如图,菱形ABCD中,/ B=70o, AB=3,以AD为直径的。

九年级上册烟台数学全册期末复习试卷测试与练习(word解析版)

九年级上册烟台数学全册期末复习试卷测试与练习(word解析版)

九年级上册烟台数学全册期末复习试卷测试与练习(word 解析版)一、选择题1.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .32.已知3sin 2α=,则α∠的度数是( ) A .30°B .45°C .60°D .90°3.在平面直角坐标系中,如图是二次函数y =ax 2+bx +c (a ≠0)的图象的一部分,给出下列命题:①a +b +c =0;②b >2a ;③方程ax 2+bx +c =0的两根分别为﹣3和1;④b 2﹣4ac >0,其中正确的命题有( )A .1个B .2个C .3个D .4个4.在Rt △ABC 中,∠C=90°,BC=4,AC=3,CD ⊥AB 于D ,设∠ACD=α,则cosα的值为( ) A .45B .34C .43D .355.如图,以AB 为直径的⊙O 上有一点C ,且∠BOC =50°,则∠A 的度数为( )A .65°B .50°C .30°D .25°6.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积为4,则△ABC 的面积为( )A .8B .12C .14D .167.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .12B .13C .14D .158.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为( ) A .5πB .10πC .20πD .40π9.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:x2- 1-0 12y5 03- 4-3-以下结论:①二次函数2y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点;④当13x 时,0y <.其中正确的结论有( )个A .1B .2C .3D .4 10.已知⊙O 的直径为4,点O 到直线l 的距离为2,则直线l 与⊙O 的位置关系是 A .相交 B .相切 C .相离 D .无法判断 11.一元二次方程x 2=-3x 的解是( )A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-312.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm13.关于二次函数y =x 2+2x +3的图象有以下说法:其中正确的个数是( ) ①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y 轴的直线;③它与x 轴没有公共点;④它与y 轴的交点坐标为(3,0). A .1B .2C .3D .414.小明同学发现自己一本书的宽与长之比是黄金比约为0.618.已知这本书的长为20cm ,则它的宽约为( ) A .12.36cm B .13.6cmC .32.386cmD .7.64cm15.如图,AB 为O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点E ,6AB =,5AD =,则AE 的长为( )A .2.5B .2.8C .3D .3.2二、填空题16.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________. 17.如图,⊙O 是△ABC 的外接圆,∠A =30°,BC =4,则⊙O 的直径为___.18.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上.如果AD :DB=1:2,则CE :CF 的值为____________.19.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________; 20.若关于x 的一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.21.如图,D 、E 分别是△ABC 的边AB ,AC 上的点,AD AB =AEAC,AE =2,EC =6,AB =12,则AD 的长为_____.22.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________. 23.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ =OQ ,则满足条件的∠OCP 的大小为_______.24.如图,抛物线214311515y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.25.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________. 26.如图,已知△ABC 是面积为3的等边三角形,△ABC ∽△ADE ,AB =2AD ,∠BAD =45°,AC 与DE 相交于点F ,则△AEF 的面积等于_____(结果保留根号).27.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n 个数据的平均数等于______.28.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____.29.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”)30.如图,二次函数y =x (x ﹣3)(0≤x ≤3)的图象,记为C 1,它与x 轴交于点O ,A 1;将C 1点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……若P (2020,m )在这个图象连续旋转后的所得图象上,则m =_____.三、解答题31.解方程:(1)3x 2-6x -2=0; (2)(x -2)2=(2x +1)2.32.如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF=3m ,沿BD 方向到达点F 处再测得自己得影长FG=4m ,如果小明的身高为1.6m ,求路灯杆AB 的高度.33.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD 与⊙O 的位置关系,并说明理由; (2)若BE=4,DE=8,求AC 的长.34.一个四边形被一条对角线分割成两个三角形,如果被分割的两个三角形相似,我们被称为该对角线为相似对角线.(1)如图1,正方形ABCD 的边长为4,E 为AD 的中点,1AF =,连结CE .CP ,求证:EF 为四边形AECF 的相似对角线.(2)在四边形ABCD 中,120BAD ︒∠=,3AB =,6AC =,AC 平分BAD ∠,且AC 是四边形ABCD 的相似对角线,求BD 的长.(3)如图2,在矩形ABCD 中,6AB =,4BC =,点E 是线段AB (不取端点A .B )上的一个动点,点F 是射线AD 上的一个动点,若EF 是四边形AECF 的相似对角线,求BE 的长.(直接写出答案)35.(1)如图①,点A ,B ,C 在O 上,点D 在O 外,比较A ∠与BDC ∠的大小,并说明理由;(2)如图②,点A ,B ,C 在O 上,点D 在O 内,比较A ∠与BDC ∠的大小,并说明理由;(3)利用上述两题解答获得的经验,解决如下问题:在平面直角坐标系中,如图③,已知点()1,0M ,()4,0N ,点P 在y 轴上,试求当MPN ∠度数最大时点P 的坐标.四、压轴题36.如图1,△ABC 中,AB=AC=4,∠BAC=100,D 是BC 的中点.小明对图1进行了如下探究:在线段AD 上任取一点E ,连接EB .将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F ,连接BF ,小明发现:随着点E 在线段AD 上位置的变化,点F 的位置也在变化,点F 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.37.如图,在平面直角坐标系中,直线1l:162y x=-+分别与x轴、y轴交于点B、C,且与直线2l:12y x=交于点A.(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点,且COD△的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内里否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.38.如图1:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),试探索AD,BD,CD之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE.继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;(2)如图2,在Rt△ABC中,AB=AC,D为△ABC外的一点,且∠ADC=45°,线段AD,BD,CD之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB是⊙O的直径,点C,D是⊙O上的点,且∠ADC=45°.①若AD=6,BD=8,求弦CD的长为;②若AD+BD=14,求2AD BD2⎛⎫⋅+⎪⎪⎝⎭的最大值,并求出此时⊙O的半径.39.已知:如图1,在O 中,弦2AB =,1CD =,AD BD ⊥.直线,AD BC 相交于点E .(1)求E ∠的度数;(2)如果点,C D 在O 上运动,且保持弦CD 的长度不变,那么,直线,AD BC 相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图2,弦AB 与弦CD 交于点F ; ②如图3,弦AB 与弦CD 不相交: ③如图4,点B 与点C 重合.40.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A 的水平距离为x 米,与地面的距离为y 米,运行时间为t 秒,经过多次测试,得到如下部分数据: t 秒 0 1.5 2.5 4 6.5 7.5 9 … x 米 0 4 8 10 12 16 20 … y 米24.565.8465.844.562…(2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足(256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P点应该在以BC为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.【详解】如图,∵四边形ABCD为矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵PBC PCD∠=∠,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的圆⊙O上,在Rt△OCD中,OC=118422BC,CD=3,由勾股定理得,OD=5,∵PD≥OD OP ,∴当P,D,O三点共线时,PD最小,∴PD的最小值为OD-OP=5-4=1.故选:B.【点睛】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P 点的运动轨迹是解答此题的关键.2.C解析:C 【解析】 【分析】根据特殊角三角函数值,可得答案. 【详解】解:由sin α=,得α=60°, 故选:C . 【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.3.C解析:C 【解析】 【分析】根据二次函数的图象可知抛物线开口向上,对称轴为x =﹣1,且过点(1,0),根据对称轴可得抛物线与x 轴的另一个交点为(﹣3,0),把(1,0)代入可对①做出判断;由对称轴为x =﹣1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断,根据根的判别式解答即可. 【详解】由图象可知:抛物线开口向上,对称轴为直线x =﹣1,过(1,0)点, 把(1,0)代入y =ax 2+bx +c 得,a +b +c =0,因此①正确; 对称轴为直线x =﹣1,即:﹣2ba=﹣1,整理得,b =2a ,因此②不正确; 由抛物线的对称性,可知抛物线与x 轴的两个交点为(1,0)(﹣3,0),因此方程ax 2+bx +c =0的两根分别为﹣3和1;故③是正确的; 由图可得,抛物线有两个交点,所以b 2﹣4ac >0,故④正确; 故选C . 【点睛】考查二次函数的图象和性质,抛物线通常从开口方向、对称轴、顶点坐标、与x 轴,y 轴的交点,以及增减性上寻找其性质.4.A解析:A 【解析】 【分析】根据勾股定理求出AB 的长,在求出∠ACD 的等角∠B ,即可得到答案. 【详解】如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,∴2222AB AC BC345=+=+=,∵CD⊥AB,∴∠ADC=∠C=90°,∴∠A+∠ACD=∠A+∠B,∴∠B=∠ACD=α,∴4cos5BCcos BABα===.故选:A.【点睛】此题考查解直角三角形,求一个角的三角函数值有时可以求等角的对应函数值. 5.D解析:D【解析】【分析】根据圆周角定理计算即可.【详解】解:由圆周角定理得,1252A BOC∠=∠=︒,故选:D.【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.D解析:D【解析】【分析】直接利用三角形中位线定理得出DE∥BC,DE=12BC,再利用相似三角形的判定与性质得出答案.【详解】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=12 BC,∴△ADE ∽△ABC , ∵DE BC =12, ∴14ADE ABC S S ∆∆=, ∵△ADE 的面积为4,∴△ABC 的面积为:16,故选D .【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE ∽△ABC 是解题关键.7.D解析:D【解析】【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D .【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键. 8.B解析:B【解析】【分析】利用圆锥面积=Rr 计算.【详解】 Rr =2510,故选:B.【点睛】 此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答.9.B解析:B【解析】【分析】根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x 轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案.【详解】①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为202+=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确; ②由表格和①可知当x <1时,函数y 随x 的增大而减少;故此选项错误;③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数2y ax bx c =++的图象与x 轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误;④函数图象在x 轴下方y<0,由表格和③可知,二次函数2y ax bx c =++的图象与x 轴的两个交点坐标是(-1,0)和(3,0),∴当13x时,y<0;故此选项正确;综上:①④两项正确,故选:B .【点睛】本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点. 10.B解析:B【解析】【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【详解】∵⊙O 的直径为4,∴⊙O 的半径为2,∵圆心O 到直线l 的距离是2,∴根据圆心距与半径之间的数量关系可知直线l 与⊙O 的位置关系是相切.故选:B .【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r ,圆心到直线的距离是d ,当d =r 时,直线和圆相切,当d >r 时,直线和圆相离,当d <r 时,直线和圆相交.11.D解析:D【解析】【分析】先移项,然后利用因式分解法求解.【详解】解:(1)x2=-3x,x2+3x=0,x(x+3)=0,解得:x1=0,x2=-3.故选:D.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.12.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.13.B解析:B【解析】【分析】直接利用二次函数的性质分析判断即可.【详解】①y=x2+2x+3,a=1>0,函数的图象的开口向上,故①错误;②y=x2+2x+3的对称轴是直线x=221-⨯=﹣1,即函数的对称轴是过点(﹣1,3)且平行于y轴的直线,故②正确;③y=x2+2x+3,△=22﹣4×1×3=﹣8<0,即函数的图象与x轴没有交点,故③正确;④y=x2+2x+3,当x=0时,y=3,即函数的图象与y轴的交点是(0,3),故④错误;即正确的个数是2个,故选:B.【点睛】本题考查二次函数的特征,解题的关键是熟练掌握根据二次函数解析式求二次函数的开口方向、对称轴、与坐标轴的交点坐标.14.A解析:A【解析】【分析】根据黄金分割的比值约为0.618列式进行计算即可得解.【详解】解:∵书的宽与长之比为黄金比,书的长为20cm,∴书的宽约为20×0.618=12.36cm.故选:A.【点睛】本题考查了黄金比例的应用,掌握黄金比例的比值是解题的关键.15.B解析:B【解析】【分析】连接BD,CD,由勾股定理求出BD的长,再利用ABD BED,得出DE DBDB AD=,从而求出DE的长,最后利用AE AD DE=-即可得出答案.【详解】连接BD,CD∵AB为O的直径90ADB∴∠=︒22226511 BD AB AD∴=-=-∵弦AD平分BAC∠11CD BD∴==CBD DAB∴∠=∠ADB BDE∠=∠ABD BED∴DE DBDB AD∴=11511=解得115DE=115 2.85AE AD DE∴=-=-=故选:B.【点睛】本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.二、填空题16.5【解析】【分析】根据根与系数的关系求出,代入即可求解.【详解】∵是方程的两根∴=-=4,==1∴===4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是解析:5【解析】【分析】根据根与系数的关系求出12x x +,12x x ⋅代入即可求解.【详解】∵12,x x 是方程2410x x -+=的两根∴12x x +=-b a =4,12x x ⋅=c a=1 ∴122(1)x x x =1122x x x x ++=1212x x x x ++=4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a的运用. 17.8【解析】【分析】连接OB ,OC ,依据△BOC 是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O 的直径为8.【详解】解:如图,连接OB ,OC ,∵∠A=30°,∴∠BOC=解析:8【解析】【分析】连接OB ,OC ,依据△BOC 是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O 的直径为8.【详解】解:如图,连接OB ,OC ,∵∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O的直径为8,故答案为:8.【点睛】本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.18.【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得. 【详解】解:如图,连接D解析:4 5【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接DE,DF,∵△ABC是等边三角形,∴AB=BC=AC, ∠A=∠B=∠ACB=60°,由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF∵∠BDE=∠BDF+∠FDE=∠A+∠AED,∴∠BDF+60°=∠AED+60°,∴∠BDF=∠AED,∵∠A=∠B,∴△AED∽△BDF,∴AD AE DE BF BD DF , 设AD=x ,∵AD :DB=1:2,则BD=2x,∴AC=BC=3x,∵AD AE DE BF BD DF, ∴AD AE DE DE BF BD DF DF ∴323x x DE x x DF∴45DE DF , ∴45CECF .故答案为:45. 【点睛】 本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.19.【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关解析:()2231y x =-+-【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为()2231y x =-+-.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键. 20.【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,∴ 解析:72【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】 解:∵一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根, ∴2214241402b ac k k ,整理得,22410k k , ∴21+22k k 2221k k k 224k k224k k当21+22k k 时, 224k k142=-+ 72=故答案为:72. 【点睛】 本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.21.3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】解:∵=,AE =2,EC =6,AB =12,∴=,解得:AD =3,故答案为:3.【点睛】本题解析:3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】 解:∵AD AB =AE AC,AE =2,EC =6,AB =12, ∴12AD =226, 解得:AD =3,故答案为:3.【点睛】 本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.22.50(1﹣x )2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.解析:50(1﹣x )2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.23.40°【解析】:在△QOC 中,OC=OQ ,∴∠OQC=∠OCQ ,在△OPQ 中,QP=QO ,∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠解析:40°【解析】:在△QOC 中,OC=OQ ,∴∠OQC=∠OCQ ,在△OPQ 中,QP=QO ,∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°24.【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令中y=0,得x1=【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令21115y x =-中y=0,得x 1x 2∴直线AC 的解析式为1y =-, 设P (x ,31x ), ∵过点P 作⊙B 的切线,切点是Q ,BQ=1∴PQ 2=PB 2-BQ 2, =(x-53)2+(31x )2-1, =24283753x x , ∵43a =0<, ∴PQ 2有最小值24283475()3326443, ∴PQ 的最小值是26,故答案为:26,【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ 、BQ 、PB 之间的关系式是解题的关键.25.8【解析】试题分析:由题意可得,即可得到关于m 的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;当时,抛物线与x解析:8【解析】试题分析:由题意可得,即可得到关于m 的方程,解出即可. 由题意得,解得 考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;当时,抛物线与x 轴只有一个公共点;时,抛物线与x 轴没有公共点. 26.【解析】【分析】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,根据等边三角形的性质可求出AB 的长,根据相似三角形的性质可得△ADE 是等边三角形,可得出AE 的长,根据角的和差【解析】【分析】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,根据等边三角形的性质可求出AB 的长,根据相似三角形的性质可得△ADE 是等边三角形,可得出AE 的长,根据角的和差关系可得∠EAF=∠BAD=45°,设AH =HF =x ,利用∠EFH 的正确可用x 表示出EH 的长,根据AE=EH+AH 列方程可求出x 的值,根据三角形面积公式即可得答案.【详解】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,∵△ABC CM ⊥AB ,∴12×AB×CM ,∠BCM =30°,BM=12AB ,BC=AB ,∴AB ,∴12AB 解得:AB =2,(负值舍去)∵△ABC ∽△ADE ,△ABC 是等边三角形,∴△ADE 是等边三角形,∠CAB=∠EAD=60°,∠E=60°,∴∠EAF+∠FAD=∠FAD+BAD=60°,∵∠BAD=45°,∴∠EAF =∠BAD =45°,∵FH ⊥AE ,∴∠AFH =45°,∠EFH =30°,∴AH =HF ,设AH =HF =x ,则EH =xtan30°x . ∵AB=2AD ,AD=AE ,∴AE =12AB =1,∴=1,解得x 32=.∴S △AEF =12.故答案为:334-.【点睛】本题考查了相似三角形的性质,等边三角形的性质,锐角三角函数,根据相似三角形的性质得出△ADE是等边三角形、熟练掌握等边三角形的性质并熟记特殊角的三角函数值是解题关键.27..【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的解析:mx ny m n++.【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数mx nym n+=+.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法.28.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+)2﹣,∴函数的对称轴为x=﹣,∴当﹣1≤x≤0时,函数有最解析:﹣13≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+13)2﹣13,∴函数的对称轴为x=﹣13,∴当﹣1≤x≤0时,函数有最小值﹣13,当x=﹣1时,有最大值1,∴y的取值范围是﹣13≤y≤1,故答案为﹣13≤y≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.29.>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1 和y2的大小关系.【详解】解:∵二次解析:>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1和y2的大小关系.【详解】解:∵二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵该函数经过点(﹣1,y1),(2,y2),|﹣1﹣1|=2,|2﹣1|=1,∴y1>y2,故答案为:>.【点睛】本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.30.【解析】【分析】x (x ﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y =﹣(x ﹣2019)(x ﹣2022),然解析:【解析】【分析】x (x ﹣3)=0得A 1(3,0),再根据旋转的性质得OA 1=A 1A 2=A 2A 3=…=A 673A 674=3,所以抛物线C 764的解析式为y =﹣(x ﹣2019)(x ﹣2022),然后计算自变量为2020对应的函数值即可.【详解】当y =0时,x (x ﹣3)=0,解得x 1=0,x 2=3,则A 1(3,0),∵将C 1点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……∴OA 1=A 1A 2=A 2A 3=…=A 673A 674=3,∴抛物线C 764的解析式为y =﹣(x ﹣2019)(x ﹣2022),把P (2020,m )代入得m =﹣(2020﹣2019)(2020﹣2022)=2.故答案为2.【点睛】本题考查图形类规律,解题的关键是掌握图形类规律的基本解题方法.三、解答题31.(1)x 1=1+3,x 2=1-3;(2)x 1=13,x 2=-3 【解析】【分析】(1)利用配方法解方程即可;(2)先移项,然后利用因式分解法解方程.【详解】(1)解:x 2-2x =23 x 2-2x +1=23+1 (x -1)2=53x -1=∴x 1=1x 2=1 (2)解:[ (x -2)+(2x +1)] [ (x -2)-(2x +1)]=0(3x -1) (-x -3)=0∴x 1=13,x 2=-3 【点睛】 本题考查了解一元二次方程的应用,能灵活运用各种方法解一元二次方程是解题的关键. 32.4m【解析】【分析】由CD ∥EF ∥AB 得可以得到△CDF ∽△ABF ,△ABG ∽△EFG ,故CD DF AB BF =,EF FG AB BG =,证DF FG BF BG =,进一步得3437BD BD =++,求出BD ,再得1.6312AB =; 【详解】解:∵CD ∥EF ∥AB ,∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG , ∴CD DF AB BF =,EF FG AB BG=, 又∵CD=EF , ∴DF FG BF BG =, ∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7, ∴3437BD BD =++ ∴BD=9,BF=9+3=12 ∴ 1.6312AB = 解得,AB=6.4m因此,路灯杆AB 的高度6.4m .【点睛】考核知识点:相似三角形的判定和性质.理解相似三角形判定是关键.33.(1)相切,证明见解析;(2).【解析】【分析】(1)欲证明CD 是切线,只要证明OD ⊥CD ,利用全等三角形的性质即可证明;(2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得(8﹣r)2=r2+42,推出r=3,由tan∠E=OB CDEB DE=,推出348CD=,可得CD=BC=6,再利用勾股定理即可解决问题.【详解】解:(1)相切,理由如下,如图,连接OC,∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线;(2)设⊙O的半径为r,在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,AB=2r=6,∵tan∠E=OB CD EB DE=,∴348CD =,∴CD=BC=6,在Rt△ABC中,22226662AB BC++=【点睛】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,正确添加辅助线,熟练掌握和灵活应用相关知识解决问题是关键.34.(1)见解析(2)33193)53或163或3【解析】【分析】(1)根据已知中相似对角线的定义,只要证明△AEF∽△ECF即可;(2)AC是四边形ABCD的相似对角线,分两种情形:△ACB~△ACD或△ACB~△ADC,分别求解即可;(3)分三种情况①当△AEF和△CEF关于EF对称时,EF是四边形AECF的相似对角线.②取AD 中点F ,连接CF ,将△CFD 沿CF 翻折得到△CFD′,延长CD′交AB 于E ,则可得出 EF 是四边形AECF 的相似对角线.③取AB 的中点E ,连接CE ,作EF ⊥AD 于F ,延长CB 交FE 的延长线于M ,则可证出EF 是四边形AECF 的相似对角线.此时BE=3;【详解】解:(1)∵四边形ABCD 是正方形,∴AB=BC=CD=AD=4,∵E 为AD 的中点,1AF=,∴AE=DE=2, 12∴==AF AE DE CD ∵∠A=∠D=90°,∴△AEF ∽△DCE ,∴∠AEF=∠DCE ,12==EF AF CE DE ∵∠DCE+∠CED=90°,∴∠AEF+∠CED=90°,∴∠FEC=∠A=90°, 12==AF EF AE EC ∴△AEF ∽△ECF ,∴EF 为四边形AECF 的相似对角线.(2)∵AC 平分BAD ∠,∴∠BAC=∠DAC =60°∵AC 是四边形ABCD 的相似对角线,∴△ACB ~△ACD 或△ACB ~△ADC①如图2,当△ACB ~△ACD 时,此时,△ACB ≌△ACD∴AB=AD=3,BC=CD ,∴AC 垂直平分DB ,在Rt △AOB 中,∵AB=3,∠ABO=30°,33cos30233︒∴=⋅=∴==BO AB BD OB。

20192020学年人教版初三上期末数学试卷含

20192020学年人教版初三上期末数学试卷含

2019-2020 学年人教版初三上期末数学试卷含答案 九年级数学(人教版)上学期期末考试一试卷一、选择题(本大题共10 小题,每题4 分,共 40 分)1.一个直角三角形的两条直角边分别为a=2 3 , b=36 ,那么这个直角三角形的面积是( C )A .8 2B. 7 21) C . 9 2D. 2,则 m 的值等 2.若对于 x 的一元二次方程 (m x 2 5 x m 2 3 m20 的常数项为于( B )A . 1B . 2C .1 或 2D . 03.三角形的两边长分别为 3 和 6,第三边的长是方程 x 26 x 8 0的一个根,则这个三角形的周长是 ( C)A. 9B. 11C. 13D 、144.过⊙ O 内一点 M 的最长弦长为 10cm,最短弦长为 8cm,那么 OM 的长为 ( A )C.41 cm5.图中∠ BOD 的度数是 ( B )A . 55° B. 110°C.125° D . 150°6.如图,⊙ O 是△ ABC 的内切圆,切点分别是D 、E 、F ,已知∠ A=100°,∠ C=30°,则∠ DFE 的度数是 ( C )A.55 °°°°( 第 5 题 ) ( 第 6 题 )7.有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40 个,除颜色外其余完整相同。

小李经过多次摸球试验后发现此中摸到红色、黑色球的频次稳固在 15%和 45%,则口袋中白色球的个数很可能是 ( B )A . 6B . 16C .18D . 248.如图,四边形 ABCD 内接于⊙ O , BC 是直径, AD = DC ,∠ ADB =20o ,则∠ ACB ,∠ DBC 分 别为( B )A . 15o 与 30oB . 20o 与 35oC . 20o 与 40oD . 30o 与 35o9.以下图,小华从一个圆形场所的A 点出发,沿着与半径 OA 夹角为 α 的方向行走,走出席所边沿 B 后,再沿着与半径 OB 夹角为 α 的方向行走。

烟台市九年级(上)期末数学试卷含答案

烟台市九年级(上)期末数学试卷含答案

B. ������ = 12(������−4)2 +5 D. ������ = 12(������−4)2 +3
7. 如图,边长为 1 的小正方形构成的网格中,半径为 1 的 ⊙ ������ 的圆心 O 在格点上,则∠������������������的正切值等于( )
A. 2 5 5
B. 5 5
九年级(上)期末数学试卷
题号 得分



总分
一、选择题(本大题共 12 小题,共 36.0 分) 1. 如图所示,该几何体的俯视图是( )
A. B. C. D.
2. ������������ △ ������������������中,∠������ = 90°,������������������������ = 35,������������ = 6������������,那么 BC 等于( )
值范围是______. 15. 如图, ⊙ ������是 △ ������������������的内切圆,与边 BC,CA,AB 的切点分别为
D,E,F,若∠������ = 70°,则∠������������������ = ______度.
16. 如图,在某监测点 B 处望见一艘正在作业的渔船在南 北偏西15°方向的 A 处,若渔船沿北偏西75°方向以 40 海里/小时的速度航行,航行半小时后到达 C 处,在 C 处观测到 B 在 C 的北偏东60°方向上,则 B,C 之间的 距离为______ 海里.
C. 2
D.
1 2
8. 如图,AB 是半圆的直径,D 是������������的中点,∠������������������ = 50°,则 ∠������������������等于( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年九年级(上)期末数学试卷一.选择题(共12小题)1.如图所示的几何体的左视图为()A.B.C.D.2.已知△ABC的外接圆⊙O,那么点O是△ABC的()A.三条中线交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线交点3.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.4.如图,在⊙O中,半径OC垂直弦AB于D,点E在⊙O上,∠E=22.5°,AB=2,则半径OB等于()A.1 B.C.2 D.25.已知sinα=,求α.若以科学计算器计算且结果以“度,分,秒”为单位,最后应该按键()A.AC B.2ndF C.MODE D.DMS6.用蓝色和红色可以混合在一起调配出紫色,小明制作了如图所示的两个转盘,其中一个转盘两部分的圆心角分别是120°和240°,另一个转盘两部分被平分成两等份,分别转动两个转盘,转盘停止后,指针指向的两个区域颜色恰能配成紫色的概率是()A.B.C.D.7.一人乘雪橇沿坡比1:的斜坡笔直滑下,滑下的距离s(m)与时间t(s)之间的关系为s=8t+2t2,若滑到坡底的时间为4s,则此人下降的高度为()A.16m B.32m C.32m D.64m8.如图,AB,AC分别为⊙O的内接正三角形和内接正四边形的一边,若BC恰好是同圆的一个内接正n边形的一边,则n的值为()A.8 B.10 C.12 D.159.⊙O的半径为5cm,弦AB∥CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为()A.1cm B.7cm C.3cm或4cm D.1cm或7cm10.如图,抛物线y=﹣x2+2x+2交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.下列说法:其中正确判断的序号是()①抛物线与直线y=3有且只有一个交点;②若点M(﹣2,y1),N(1,y2),P(2,y3)在该函数图象上,则y1<y2<y3;③将该抛物线先向左,再向下均平移2个单位,所得抛物线解析式为y=(x+1)2+1;④在x轴上找一点D,使AD+BD的和最小,则最小值为.A.①②④B.①②③C.①③④D.②③④11.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A.3 B.C.D.412.如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是()A.B.C.D.二.填空题(共6小题)13.抛物线y=ax2+bx+c经过点A(﹣4,0),B(3,0)两点,则关于x的一元二次方程ax2+bx+c =0的解是14.如图,国庆节期间,小明一家自驾到某景区C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶8千米至B地,再沿北偏东45°方向行驶一段距离到达景区C,小明发现景区C恰好在A地的正北方向,则B,C两地的距离为.15.如图,Rt△ABC中,∠C=90°,AC=30cm,BC=40cm,现利用该三角形裁剪一个最大的圆,则该圆半径是cm.16.如图,在Rt△ABC中,∠ACB=90°,CB=4,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为17.如图,如果一只蚂蚁从圆锥底面上的点B出发,沿表面爬到母线AC的中点D处,则最短路线长为.18.在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x 轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……,依次进行下去,则点A2019的坐标为.三.解答题(共8小题)19.计算:|1﹣|+(﹣cos60°)﹣2﹣+﹣(2+3)020.我区某校组织了一次“诗词大会”,张老师为了选拔本班学生参加,对本班全体学生诗词的掌握情况进行了调查,并将调查结果分为了三类:A:好,B:中,C:差.请根据图中信息,解答下列问题:(1)全班学生共有人;(2)扇形统计图中,B类占的百分比为%,C类占的百分比为%;(3)将上面的条形统计图补充完整;(4)小明被选中参加了比赛.比赛中有一道必答题是:从下表所示的九宫格中选取七个字组成一句诗,其答案为“便引诗情到碧霄”.小明回答该问题时,对第四个字是选“情”还是选“青”,第七个字是选“霄”还是选“宵”,都难以抉择,若分别随机选择,请用列表或画树状图的方法求小明回答正确的概率.情到碧霄诗青引宵便21.如图,已知AB为⊙O的直径,AD、BD是⊙O的弦,BC是⊙O的切线,切点为B,OC∥AD,BA、CD的延长线相交于点E.(1)求证:DC是⊙O的切线;(2)若AE=1,ED=3,求⊙O的半径.22.如图1,一透明的敞口正方体容器ABCD﹣A'B'C'D'装有一些液体,棱AB始终在水平桌面上,液面刚好过棱CD,并与棱BB'交于点Q.此时液体的形状为直三棱柱,其三视图及尺寸如图2所示请解决下列问题:(1)CQ与BE的位置关系是,BQ的长是dm:(2)求液体的体积;(提示:直棱柱体积=底面积×高)(3)若容器底部的倾斜角∠CBE=α,求α的度数.(参考数据:sin49°=cos41°=,tan37°=)23.在日常生活中我们经常会使用到订书机,如图MN是装订机的底座,AB是装订机的托板AB始终与底座平行,连接杆DE的D点固定,点E从A向B处滑动,压柄BC绕着转轴B 旋转.已知连接杆BC的长度为20cm,BD=cm,压柄与托板的长度相等.(1)当托板与压柄的夹角∠ABC=30°时,如图①点E从A点滑动了2cm,求连接杆DE 的长度.(2)当压柄BC从(1)中的位置旋转到与底座垂直,如图②.求这个过程中,点E滑动的距离.(结果保留根号)24.如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分∠ABM,弦CD交AB于点E,DE=OE.(1)求证:△ACB是等腰直角三角形;(2)求证:OA2=OE•DC:(3)求tan∠ACD的值.25.某食品厂生产一种半成品食材,成本为2元/千克,每天的产量P(百千克)与销售价格x(元/千克)满足函数关系式p =x+8.从市场反馈的信息发现,该食材每天的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表:2 4 (10)销售价格x(元/千克)市场需求量q(百12 10 (4)千克)已知按物价部门规定销售价格x不低于2元/千克且不高于10元/千克(1)直接写出q与x的函数关系式,并注明自变量x的取值范围(2)当每天的产量小于或等于市场需求量时,这种食材能全部售出;当每天的产量大于市场需求量时,只能售出市场需求的量,而剩余的食材由于保质期短作废弃处理①当每天的食材能全部售出时,求x的取值范围;②求厂家每天获得的利润y(百元)与销售价格x的函数关系式;(3)在(2)的条件下,当x为多少时,y有最大值,并求出最大利润26.如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(3,0),B(﹣1,0)两点,与y 轴交于点C(1)求抛物线的表达式;(2)在直线AC的上方的抛物线上,有一点P(不与点M重合),使△ACP的面积等于△ACM的面积,请求出点P的坐标;(3)在y轴上是否存在一点Q,使得△QAM为直角三角形?若存在,请直接写出点Q的坐标:若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.如图所示的几何体的左视图为()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是上大下小等宽的两个矩形,矩形的公共边是虚线,故选:D.2.已知△ABC的外接圆⊙O,那么点O是△ABC的()A.三条中线交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线交点【分析】利用三角形外接圆圆心定义判断即可.【解答】解:已知⊙O是△ABC的外接圆,那么点O一定是△ABC的三边的垂直平分线的交点,故选:C.3.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.【分析】列举出所有情况,看个路口都是绿灯的情况占总情况的多少即可.【解答】解:画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种,∴实际这样的机会是.故选:B.4.如图,在⊙O中,半径OC垂直弦AB于D,点E在⊙O上,∠E=22.5°,AB=2,则半径OB等于()A.1 B.C.2 D.2【分析】直接利用垂径定理进而结合圆周角定理得出△ODB是等腰直角三角形,进而得出答案.【解答】解:∵半径OC⊥弦AB于点D,∴=,∴∠E=∠BOC=22.5°,∴∠BOD=45°,∴△ODB是等腰直角三角形,∵AB=2,∴DB=OD=1,则半径OB等于:=.故选:B.5.已知sinα=,求α.若以科学计算器计算且结果以“度,分,秒”为单位,最后应该按键()A.AC B.2ndF C.MODE D.DMS【分析】根据计算器上三角函数的计算方法可得.【解答】解:若以科学计算器计算且结果以“度,分,秒”为单位,最后应该按DMS,故选:D.6.用蓝色和红色可以混合在一起调配出紫色,小明制作了如图所示的两个转盘,其中一个转盘两部分的圆心角分别是120°和240°,另一个转盘两部分被平分成两等份,分别转动两个转盘,转盘停止后,指针指向的两个区域颜色恰能配成紫色的概率是()A.B.C.D.【分析】根据题意用列表法表示出所有情况,然后根据表中的数据来计算恰能配成紫色的概率即可.【解答】解:列表如下:红红蓝红紫蓝紫紫共有6种情况,其中配成紫色的有3种,所以恰能配成紫色的概率==,故选:A.7.一人乘雪橇沿坡比1:的斜坡笔直滑下,滑下的距离s(m)与时间t(s)之间的关系为s=8t+2t2,若滑到坡底的时间为4s,则此人下降的高度为()A.16m B.32m C.32m D.64m【分析】根据题意求出滑下的距离s,根据坡度的概念求出坡角,根据直角三角形的性质解答即可.【解答】解:设斜坡的坡角为α,当t=4时,s=8×4+2×42=64,∵斜坡的坡比1:,∴tanα=,∴α=30°,∴此人下降的高度=×64=32(m),故选:B.8.如图,AB,AC分别为⊙O的内接正三角形和内接正四边形的一边,若BC恰好是同圆的一个内接正n边形的一边,则n的值为()A.8 B.10 C.12 D.15【分析】连接OA、OB、OC,如图,利用正多边形与圆,分别计算⊙O的内接正四边形与内接正三角形的中心角得到∠AOB=90°,∠AOC=120°,则∠BOC=30°,然后计算即可得到n的值.【解答】解:连接OA、OB、OC,如图,∵AB,AC分别为⊙O的内接正四边形与内接正三角形的一边,∴∠AOB==90°,∠AOC==120°,∴∠BOC=∠AOC﹣∠AOB=30°,∴n==12,即BC恰好是同圆内接一个正十二边形的一边.故选:C.9.⊙O的半径为5cm,弦AB∥CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为()A.1cm B.7cm C.3cm或4cm D.1cm或7cm【分析】过O作OE⊥CD交CD于E点,过O作OF⊥AB交AB于F点,连接OA、OC,由题意可得:OA=OC=5,AF=FB=4cm,CE=ED=3cm,E、F、O在一条直线上,EF为AB、CD之间的距离,由勾股定理求出OE、OF的长,然后分AB、CD在圆心的同侧和异侧两种情况求得AB与CD的距离.【解答】解:①当AB、CD在圆心两侧时;过O作OE⊥CD交CD于E点,过O作OF⊥AB交AB于F点,连接OA、OC,如图1所示:∵半径r=5cm,弦AB∥CD,且AB=8cm,CD=6cm,∴OA=OC=5,CE=DE=3cm,AF=FB=4cm,E、F、O在一条直线上,在Rt△OEC中,由勾股定理可得:OE2=OC2﹣CE2∴OE==4(cm),在Rt△OFA中,由勾股定理可得:OF2=OA2﹣AF2,∴OF==3(cm),∴EF=OE+OF=4+3=7(cm),AB与CD的距离为7;②当AB、CD在圆心同侧时;过O作OE⊥CD交CD于E点,过O作OF⊥AB交AB于F点,连接OA、OC,如图2所示:同①可得:OE=4cm,OF=3cm;则AB与CD的距离为:OE﹣OF=1(cm).故选:D.10.如图,抛物线y=﹣x2+2x+2交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.下列说法:其中正确判断的序号是()①抛物线与直线y=3有且只有一个交点;②若点M(﹣2,y1),N(1,y2),P(2,y3)在该函数图象上,则y1<y2<y3;③将该抛物线先向左,再向下均平移2个单位,所得抛物线解析式为y=(x+1)2+1;④在x轴上找一点D,使AD+BD的和最小,则最小值为.A.①②④B.①②③C.①③④D.②③④【分析】①抛物线的顶点B(1,3),则抛物线与直线y=3有且只有一个交点,即可求解;②抛物线x轴的一个交点在2和3之间,则抛物线与x轴的另外一个交点坐标在x=0或x=﹣1之间,即可求解;③y=﹣x2+2x+2=﹣(x+1)2+3,将该抛物线先向左,再向下均平移2个单位,所得抛物线解析式为y=(x+1)2+1,即可求解;④点A关于x轴的对称点A′(0,﹣2),连接A′B交x轴于点D,则点D为所求,即可求解.【解答】解:①抛物线的顶点B(1,3),则抛物线与直线y=3有且只有一个交点,正确,符合题意;②抛物线x轴的一个交点在2和3之间,则抛物线与x轴的另外一个交点坐标在x=0或x=﹣1之间,则点N是抛物线的顶点为最大,点P在x轴上方,点M在x轴的下放,故y1<y3<y2,故错误,不符合题意;③y=﹣x2+2x+2=﹣(x+1)2+3,将该抛物线先向左,再向下均平移2个单位,所得抛物线解析式为y=(x+1)2+1,正确,符合题意;④点A关于x轴的对称点A′(0,﹣2),连接A′B交x轴于点D,则点D为所求,距离最小值为BD′==,正确,符合题意;故选:C.11.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A.3 B.C.D.4【分析】连接BP,如图,先解方程x2﹣4=0得A(﹣4,0),B(4,0),再判断OQ为△ABP的中位线得到OQ=BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.【解答】解:连接BP,如图,当y=0时,x2﹣4=0,解得x1=4,x2=﹣4,则A(﹣4,0),B(4,0),∵Q是线段PA的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC==5,∴BP′=5+2=7,∴线段OQ的最大值是.故选:C.12.如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是()A.B.C.D.【分析】连接OP,根据条件可判断出PO⊥AB,即AP是定值,与x的大小无关,所以是平行于x轴的线段.要注意CE的长度是小于1而大于0的.【解答】解:连接OP,∵OC=OP,∴∠OCP=∠OPC.∵∠OCP=∠DCP,CD⊥AB,∴∠OPC=∠DCP.∴OP∥CD.∴PO⊥AB.∵OA=OP=1,∴AP=y=(0<x<1).故选:A.二.填空题(共6小题)13.抛物线y=ax2+bx+c经过点A(﹣4,0),B(3,0)两点,则关于x的一元二次方程ax2+bx+c =0的解是﹣4或3【分析】抛物线y=ax2+bx+c经过点A(﹣4,0),B(3,0)两点,则ax2+bx+c=0的解是x=﹣4或3,即可求解.【解答】解:抛物线y=ax2+bx+c经过点A(﹣4,0),B(3,0)两点,则ax2+bx+c=0的解是x=﹣4或3,故答案为:﹣4或3.14.如图,国庆节期间,小明一家自驾到某景区C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶8千米至B地,再沿北偏东45°方向行驶一段距离到达景区C,小明发现景区C恰好在A地的正北方向,则B,C两地的距离为4千米.【分析】过B作BD⊥AC于点D,在直角△ABD中利用三角函数求得BD的长,然后在直角△BCD中利用三角函数求得BC的长.【解答】解:过B作BD⊥AC于点D.在Rt△ABD中,BD=AB•sin∠BAD=8×=4(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=4(千米),∴BC=BD=4(千米).答:B,C两地的距离是4千米.故答案为:4千米.15.如图,Rt△ABC中,∠C=90°,AC=30cm,BC=40cm,现利用该三角形裁剪一个最大的圆,则该圆半径是10 cm.【分析】先利用勾股定理计算AB的长,再利用面积法可得结论.【解答】解:由题意得:该三角形裁剪的最大的圆是Rt△ABC的内切圆,设AC边上的切点为D,连接OA、OB、OC,OD,∵∠ACB=90°,AC=30cm,BC=40cm,∴AB==50cm,设半径OD=rcm,∴S△ACB==,∴30×40=30r+40r+50r,∴r=10,则该圆半径是 10cm.故答案为:10.16.如图,在Rt△ABC中,∠ACB=90°,CB=4,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为【分析】根据题意,可以得到AB、AC的长、∠BCD的度数,由图可知,阴影部分的面积=△ABC的面积﹣扇形BCD的面积,然后代入数据计算即可解答本题.【解答】解:由题意可得,AB=2BC,∠ACB=90°,弓形BD与弓形AD完全一样,则∠A=30°,∠B=∠BCD=60°,∵CB=4,∴AB=8,AC=4,∴阴影部分的面积为:=,故答案为:.17.如图,如果一只蚂蚁从圆锥底面上的点B出发,沿表面爬到母线AC的中点D处,则最短路线长为3.【分析】将圆锥的侧面展开,设顶点为B',连接BB',AE.线段AE与BB'的交点为F,线段BF是最短路线.【解答】解:如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路线.设∠BAB′=n°.∵,∴n=120,即∠BAB′=120°.∵E为弧BB′中点,∴∠AFB=90°,∠BAF=60°,Rt△AFB中,∠ABF=30°,AB=6∴AF=3,BF==3,∴最短路线长为3.故答案为:3.18.在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x 轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……,依次进行下去,则点A2019的坐标为(﹣1010,10102).【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2019的坐标.【解答】解:∵A点坐标为(1,1),∴直线OA为y=x,A1(﹣1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解得或,∴A2(2,4),∴A3(﹣2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解得或,∴A4(3,9),∴A5(﹣3,9)…,∴A2019(﹣1010,10102),故答案为(﹣1010,10102).三.解答题(共8小题)19.计算:|1﹣|+(﹣cos60°)﹣2﹣+﹣(2+3)0【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|1﹣|+(﹣cos60°)﹣2﹣+﹣(2+3)0=﹣1+4﹣+3﹣1=520.我区某校组织了一次“诗词大会”,张老师为了选拔本班学生参加,对本班全体学生诗词的掌握情况进行了调查,并将调查结果分为了三类:A:好,B:中,C:差.请根据图中信息,解答下列问题:(1)全班学生共有40 人;(2)扇形统计图中,B类占的百分比为60 %,C类占的百分比为15 %;(3)将上面的条形统计图补充完整;(4)小明被选中参加了比赛.比赛中有一道必答题是:从下表所示的九宫格中选取七个字组成一句诗,其答案为“便引诗情到碧霄”.小明回答该问题时,对第四个字是选“情”还是选“青”,第七个字是选“霄”还是选“宵”,都难以抉择,若分别随机选择,请用列表或画树状图的方法求小明回答正确的概率.情到碧霄诗青引宵便【分析】(1)由A类人数及其所占百分比可得总人数;(2)用B类的人数除以总人数求出B类所占的百分比,再用整体1减去其它类的人数所占的百分比即可求出C类占的百分比;(3)用总人数乘以C类人数所占的百分比求出C类的人数,从而补全图形;(4)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小明回答正确的概率.【解答】解:(1)全班学生总人数为10÷25%=40(人);故答案为:40;(2)B类占的百分比为:×100%=60%;C类占的百分比为1﹣25%﹣60%=15%;故答案为:60,15;(3)C类的人数40×15%=6(人),补全图形如下:(4)根据题意画图如下:由树状图可知共有4种可能结果,其中正确的有1种,所以小明回答正确的概率是.21.如图,已知AB为⊙O的直径,AD、BD是⊙O的弦,BC是⊙O的切线,切点为B,OC∥AD,BA、CD的延长线相交于点E.(1)求证:DC是⊙O的切线;(2)若AE=1,ED=3,求⊙O的半径.【分析】(1)首先连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线;(2)设⊙O的半径为R,则OE=R+1,在Rt△ODE中,利用勾股定理列出方程,求解即可.【解答】解:(1)证明:连结DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中∵OD=OB,OC=OC,∴△COD≌△COB(SAS),∴∠CDO=∠CBO.∵BC是⊙O的切线,∴∠CBO=90°,∴∠CDO=90°,又∵点D在⊙O上,∴CD是⊙O的切线;(2)设⊙O的半径为R,则OD=R,OE=R+1,∵CD是⊙O的切线,∴∠EDO=90°,∴ED2+OD2=OE2,∴32+R2=(R+1)2,解得R=4,∴⊙O的半径为4.22.如图1,一透明的敞口正方体容器ABCD﹣A'B'C'D'装有一些液体,棱AB始终在水平桌面上,液面刚好过棱CD,并与棱BB'交于点Q.此时液体的形状为直三棱柱,其三视图及尺寸如图2所示请解决下列问题:(1)CQ与BE的位置关系是平行,BQ的长是 3 dm:(2)求液体的体积;(提示:直棱柱体积=底面积×高)(3)若容器底部的倾斜角∠CBE=α,求α的度数.(参考数据:sin49°=cos41°=,tan37°=)【分析】(1)根据水面与水平面平行可以得到CQ与BE平行,利用勾股定理即可求得BQ 的长.(2)液体正好是一个以△BCQ是底面的直棱柱,据此即可求得液体的体积.(3)求出∠BCQ的正切值即可得到其度数.【解答】解:(1)CQ∥BE,BQ==3dm.故答案为:平行,3.(2)V液=×3×4×4=24(dm3).(3)∵CQ∥BE,∴∠CBE=∠BCQ,∵在Rt△BCQ中,tan∠BCQ==,∴∠BCQ=37°,∴α=∠BCQ=37°.23.在日常生活中我们经常会使用到订书机,如图MN是装订机的底座,AB是装订机的托板AB始终与底座平行,连接杆DE的D点固定,点E从A向B处滑动,压柄BC绕着转轴B 旋转.已知连接杆BC的长度为20cm,BD=cm,压柄与托板的长度相等.(1)当托板与压柄的夹角∠ABC=30°时,如图①点E从A点滑动了2cm,求连接杆DE 的长度.(2)当压柄BC从(1)中的位置旋转到与底座垂直,如图②.求这个过程中,点E滑动的距离.(结果保留根号)【分析】(1)如图1中,作DH⊥BE于H.求出DH,BH即可解决问题.(2)解直角三角形求出BE即可解决问题.【解答】解:(1)如图1中,作DH⊥BE于H.在Rt△BDH中,∵∠DHB=90°,BD=4cm,∠ABC=30°,∴DH=BD=2(cm),BH=DH=6(cm),∵AB=CB=20cm,AE=2cm,∴EH=20﹣2﹣6=12(cm),∴DE===2(cm).(2)在Rt△BDE中,∵DE=2,BD=4,∠DBE=90°,∴BE==6(cm),∴这个过程中,点E滑动的距离(18﹣6)cm.24.如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分∠ABM,弦CD交AB于点E,DE=OE.(1)求证:△ACB是等腰直角三角形;(2)求证:OA2=OE•DC:(3)求tan∠ACD的值.【分析】(1)由切线的性质和圆周角定理可得∠ACB=∠ABM=90°,由角平分线的性质可得∠CAB=∠CBA=45°;(2)通过证明△EDO∽△ODC,可得,即可得结论;(3)连接BD,AD,DO,作∠BAF=∠DBA,交BD于点F,由外角的性质可得∠CAB=∠CDB =45°=∠EDO+∠ODB=3∠ODB,可求∠ODB=15°=∠OBD,由直角三角形的性质可得BD=DF+BF=AD+2AD,即可求tan∠ACD的值.【解答】证明:(1)∵BM是以AB为直径的⊙O的切线,∴∠ABM=90°,∵BC平分∠ABM,∴∠ABC=∠ABM=45°∵AB是直径∴∠ACB=90°,∴∠CAB=∠CBA=45°∴AC=BC∴△ACB是等腰直角三角形;(2)如图,连接OD,OC∵DE=EO,DO=CO∴∠EDO=∠EOD,∠EDO=∠OCD∴∠EDO=∠EDO,∠EOD=∠OCD∴△EDO∽△ODC∴∴OD2=DE•DC∴OA2=DE•DC=EO•DC(2)如图,连接BD,AD,DO,作∠BAF=∠DBA,交BD于点F,∵DO=BO∴∠ODB=∠OBD,∴∠AOD=2∠ODB=∠EDO,∵∠CAB=∠CDB=45°=∠EDO+∠ODB=3∠ODB,∴∠ODB=15°=∠OBD∵∠BAF=∠DBA=15°∴AF=BF,∠AFD=30°∵AB是直径∴∠ADB=90°∴AF=2AD,DF =AD∴BD=DF+BF =AD+2AD∴tan∠ACD=tan∠ABD ===2﹣25.某食品厂生产一种半成品食材,成本为2元/千克,每天的产量P(百千克)与销售价格x(元/千克)满足函数关系式p =x+8.从市场反馈的信息发现,该食材每天的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表:2 4 (10)销售价格x(元/千克)12 10 (4)市场需求量q(百千克)已知按物价部门规定销售价格x不低于2元/千克且不高于10元/千克(1)直接写出q与x的函数关系式,并注明自变量x的取值范围(2)当每天的产量小于或等于市场需求量时,这种食材能全部售出;当每天的产量大于市场需求量时,只能售出市场需求的量,而剩余的食材由于保质期短作废弃处理①当每天的食材能全部售出时,求x的取值范围;②求厂家每天获得的利润y(百元)与销售价格x的函数关系式;(3)在(2)的条件下,当x为多少时,y有最大值,并求出最大利润【分析】(1)根据表格数据,可设q与x的函数关系式为:q=kx+b,利用待定系数法即可求(2)①根据题意,当每天的半成品食材能全部售出时,有p≤q,②根据销售利润=销售量×(售价﹣进价),列出厂家每天获得的利润y(百元)与销售价格x的函数关系式(3)根据(2)中的条件分情况讨论即可.【解答】解:(1)由表格的数据,设q与x的函数关系式为:q=kx+b根据表格的数据得,解得,故q与x的函数关系式为:q=﹣x+14,其中2≤x≤10(2)①当每天的半成品食材能全部售出时,有p≤q即x+8≤﹣x+14,解得x≤4又2≤x≤10,所以此时2≤x≤4②由①可知,当2≤x≤4时,y=(x﹣2)p=(x﹣2)(x+8)=x2+7x﹣16当4<x≤10时,y=(x﹣2)q﹣2(p﹣q)=(x﹣2)(﹣x+14)﹣2[x+8﹣(﹣x+14)]=﹣x2+13x﹣16即有y=(3)当2≤x≤4时,y=x2+7x﹣16的对称轴为x==﹣7∴当2≤x≤4时,除x的增大而增大∴x=4时有最大值,y=20当4<x≤10时y=﹣x2+13x﹣16=﹣(x﹣)2+,∵﹣1<0,>4∴x=时取最大值即此时y有最大利润百元.26.如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(3,0),B(﹣1,0)两点,与y 轴交于点C(1)求抛物线的表达式;(2)在直线AC的上方的抛物线上,有一点P(不与点M重合),使△ACP的面积等于△ACM的面积,请求出点P的坐标;(3)在y轴上是否存在一点Q,使得△QAM为直角三角形?若存在,请直接写出点Q的坐标:若不存在,请说明理由.【分析】(1)抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)过点M作直线m∥AC,在AC下方作等距离的直线n,直线n与抛物线交点即为点P,即可求解;(3)分AM时斜边、AQ是斜边、MQ是斜边三种情况,分别求解即可.【解答】解:(1)抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=1,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3…①;(2)过点M作直线m∥AC,直线m与抛物线交点即为点P,点M(1,4),则直线m的表达式为:y=﹣x+5…②,联立①②并解得:x=1(舍去)或2;故点P的坐标为:(2,3);(3)设点Q的坐标为:(0,m),而点A、M的坐标分别为:(3,0)、(1,4);则AM2=20,AQ2=9+m2,MQ2=(m﹣4)2+1=m2﹣8m+17;当AM时斜边时,则20=9+m2+m2﹣8m+17,解得:m=1或3;当AQ是斜边时,同理可得:m=;当MQ是斜边时,同理可得:m=﹣,综上,点Q的坐标为:(0,1)或(0,3)或(0,)或(0,﹣).。

相关文档
最新文档