现代优化计算方法
常见现代优化算法论文

常见现代优化算法论文摘要:三种算法在解决不同的问题时都有各自的优势和缺陷,都具有很大的改进空间,遗传算法可以在选择方法、交叉方法及概率算子上做改进。
粒子群算法可以在权值和学习因子方面进行适应性改进。
而模拟退火算法可以在允许的接受概率等方面进行改进,并可与多种模型进行组合,以达到解决问题的最佳效果。
0 引言传统的优化算法在优化时可以解决一些比较简单的线性问题,但优化一些非线性的复杂问题时,往往会需要很长时间,并且经常不能优化到最优解,甚至无法知道所得解同最优解的近似程度。
而一些现代优化算法就能很好地解决这些问题。
20世纪60年代,学者们开始对遗传进化感兴趣,进而形成遗传算法。
人们将搜索和优化过程模拟成生物体的进化过程,用搜索空间中的点模拟自然界中的生物个体,将求解问题的目标函数度量成生物体对环境的适应能力,将生物的优胜劣汰过程类比为搜索和优化过程中用好的可行解取代较差可行解的迭代[1]。
粒子群优化算法也是一类基于群智能的随机优化算法,是受到自然界中鸟群的社会行为得到而启发产生的。
算法模拟鸟群飞行和觅食的行为,通过鸟之间的集体协作使群体达到最优。
而模拟退火算法与它们不同,它是来源于固体退火的原理,将固体加温至充分高,再让其缓慢降温(即退火),使之达到能量最低点。
而缓慢降温时粒子渐趋有序,在每个温度上都达到平衡态,最后在常温时达到基态,内能减为最小。
1 三种算法的基本原理1.1 遗传算法由Michigan大学的J.H.Holland借助达尔文的生物进化学说的启发提出了遗传算法(GA)这个概念[2]。
遗传算法把问题的解表示成“染色体”,在算法中用一系列编码的串来表示。
并且,在执行遗传算法之前,给出一群初代的“染色体”,也即是假设解。
然后,把这些假设解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉,变异等一系列的过程,产生更适应环境的新一代“染色体”群。
这样,一代一代地进化,最后就会收敛出最适应环境的一个“染色体”上,即问题的最优解。
《现代优化方法》课件

混合整数规划问题求解
混合整数规划问题概述
混合整数规划问题的求解方法
混合整数规划问题的应用领域
混合整数规划问题的发展趋势
多目标优化问题求解
问题定义:多 个目标函数同
时优化
求解方法:遗 传算法、粒子
牛顿法
牛顿法是一种迭代法,用于求解非线性方程组 牛顿法的基本思想是利用函数的导数信息来构造一个迭代公式 牛顿法的优点是收敛速度快,但需要计算函数的导数 牛顿法在优化问题中的应用广泛,如求解非线性规划问题、最优化问题等
遗传算法
基本概念:模拟生物进化过程,通过选择、交叉、变异等操作进行优化 特点:全局搜索、自适应、并行处理 应用领域:组合优化、机器学习、人工智能等
优化方法的应用领域
工业生产:提高生产效率, 降低成本
交通运输:优化路线,减 少运输时间
商业决策:制定最优策略, 提高利润
科学研究:优化实验设计, 提高实验效率
工程设计:优化设计方案, 提高工程质量
教育领域:优化教学策略, 提高教学质量
现代优化方法的 主要技术
梯度下降法
基本思想:通过迭代求解,逐步减小目标函数的值 应用场景:机器学习、深度学习等领域 优点:简单、易于实现、适用范围广 缺点:容易陷入局部最优解,需要选择合适的学习率
优化方法在多目标优化问题中的应用
优化方法在数据驱动的决策问题中的应 用
优化方法在分布式计算和云计算中的应 用
感谢您的观看
汇报人:PPT
群算法等
应用领域:工 程设计、生产 调度、投资决
策等
发展趋势:智 能化、自动化、
数值优化算法

数值优化算法在现代科学和工程中,数值优化算法被广泛应用于解决各种复杂问题。
数值优化算法是一种寻找函数极值的方法,这些函数可能具有多个自变量和约束条件。
数值优化算法对于在实际问题中找到最佳解决方案至关重要。
本文将介绍几种常见的数值优化算法及其应用。
一、梯度下降法梯度下降法是一种常用的数值优化方法。
它通过寻找损失函数的梯度来更新参数,以在每次迭代中逐步接近极值点。
梯度下降法的优势在于简单易实现,并且在大规模数据集上的表现良好。
这使得它成为许多机器学习算法中参数优化的首选方法。
二、牛顿法牛顿法是一种用于寻找函数极值点的迭代优化算法。
它利用函数的一阶导数和二阶导数信息来逼近极值点。
与梯度下降法相比,牛顿法的收敛速度更快,但它的计算复杂度更高。
牛顿法在求解高维问题或拟合复杂曲线时表现出色。
三、遗传算法遗传算法是一种模拟生物遗传和进化过程的优化算法。
它通过使用选择、交叉和变异等操作,模拟自然界的进化规律,来寻找函数的最优解。
遗传算法适用于复杂问题,能够在搜索空间中找到全局最优解。
在函数不可导或离散问题中,遗传算法能够提供有效的解决方案。
四、模拟退火算法模拟退火算法是一种启发式搜索算法,模拟了金属退火过程中原子随温度变化的行为。
模拟退火算法以一定的概率接受更差的解,并以较低的概率逐渐收敛到全局最优解。
模拟退火算法对局部极小点有一定的免疫能力,并且在大规模离散优化问题中表现出优越性。
五、粒子群算法粒子群算法是一种基于群体行为的优化算法。
它模拟了鸟群觅食的行为,通过迭代寻找问题的最优解。
粒子群算法通过评估适应度函数来引导粒子的移动,从而逐渐靠近最优解。
这种算法适用于多目标优化问题和高维函数优化。
结论数值优化算法在科学和工程领域扮演着至关重要的角色。
梯度下降法、牛顿法、遗传算法、模拟退火算法和粒子群算法是几种常见的数值优化方法。
它们各自具有不同的优势和适用范围,可以根据问题的特点选择合适的优化算法。
通过应用这些优化算法,可以帮助科学家和工程师在实际问题中找到最佳解决方案,推动技术的进步和创新。
现代优化方法

动态规划问题的求解方法
逆向求解
从最后阶段开始,依次求出每 个阶段的最优解,最终得到初
始阶段的最优解。
正向求解
从初始阶段开始,逐步向前推导 出每个阶段的最优解。
分支定界法
将问题分解为若干个子问题,通过 设定参数和约束条件,将问题的求 解范围缩小到最优解所在的子问题 集合中。
动态规划的应用
最短路径问题
03
由确定型优化向不确 定型优化发展
考虑随机因素和不确定性因素的影响 ,进行概率优化或鲁棒优化。
THANK态规划算法求解最短路径问题,例如 Floyd-Warshall算法、Dijkstra算法等。
通过动态规划算法求解网络流中的最大流和 最小费用流问题。
背包问题
排程问题
通过动态规划算法求解多阶段决策过程中的 最优解,例如0/1背包问题、完全背包问题 等。
通过动态规划算法求解资源分配和任务调度 问题,例如作业排程、飞机调度等。
05
遗传算法优化方法
遗传算法的基本原理
遗传算法是一种基于生物进化理论的优化算法,通过模拟自 然选择、遗传和突变过程来寻求最优解。
遗传算法的基本原理是:在群体中选择出优秀的个体,通过 交叉、变异等操作产生更优秀的后代,迭代进化,最终得到 最优解。
遗传算法的求解过程
初始化种群
随机生成一定数量的个体作为初始种群。
2023
现代优化方法
contents
目录
• 优化方法概述 • 线性规划优化方法 • 非线性规划优化方法 • 动态规划优化方法 • 遗传算法优化方法 • 模拟退火算法优化方法 • 粒子群优化方法 • 现代优化方法比较分析
01
优化方法概述
定义与特点
定义
数学中的数值计算方法与优化算法

数学中的数值计算方法与优化算法数学是一门精密的学科,许多现代科技的发展离不开数学知识的支撑。
在数学研究中,数值计算方法与优化算法是两个重要的分支,广泛应用于工程学、物理学、计算机科学等领域,为解决实际问题提供了有效的途径。
本文将介绍数学中的数值计算方法与优化算法,并简要阐述其在不同领域中的应用。
一、数值计算方法数值计算方法主要解决问题的数值近似解,并用数值方法对数学模型进行快速计算。
它主要包括插值法、数值积分、微分方程求解、线性方程组求解等方法。
插值法是一种通过已知函数值来近似预测未知函数值的方法。
在实际应用中,我们需要对一些离散函数点进行插值,以得到连续的函数值,进而预测未知函数值。
最常用的插值方法是拉格朗日插值法,其中Lagrange多项式是由与离散函数的点数相同的一组多项式组成的。
数值积分是一种近似计算函数积分值的方法。
在一些积分难以通过解析方法计算时,我们可以采用数值积分法来求解。
最常用的数值积分法是辛普森公式,通过回归一个二次多项式的曲线来近似积分值。
微分方程求解是一个广泛的数值计算问题,涉及到一系列ODE (常微分方程)和PDE(偏微分方程)求解方法。
数值求解通常包括和欧拉法(一阶微分方程)、龙格-库塔法(RK4法)、有限差分法(可以处理复杂的偏微分方程)等等。
在线性方程组求解中,我们通常关注矩阵的求逆问题以及矩阵特征问题。
在解决矩阵求逆问题时,我们可以使用高斯消元方法、LU分解、Cholesky分解等方法。
在矩阵特征问题中,我们可以利用Jacobi旋转法或分布式幂法来解决问题。
二、优化算法优化算法主要是通过优化问题,找到最优解或相对最优解。
优化算法广泛应用于最小化或最大化实际问题的目标函数。
在应用领域中,公司经常使用优化算法进行市场预测,保持过程质量和增加生产效率,还被用于范围从基因组序列比对到大型物流网络优化等领域的应用。
在优化算法中,最常用的是线性规划、非线性规划和数值优化。
线性规划是一种简单而有效的最优化技术,特别适用于有线性约束的问题。
《最优化基础——模型与方法》系列教材

《最优化基础 —— 模型与方法》系列教材编委会 1998 年 5 月
系列教材编委会成员名单 ( 姓氏笔划为序)
主编: 姜启源 谭泽光 编委: 刘宝碇 邢文训 陈宝林 林翠琴 胡冠章
黄红选 谢金星
目 录
序言 ……………………………………………………………… Ⅶ
第 1 章 概论……………………………………………………… 1 1. 1 组合最优化问题 ……………………………………… 1 1. 2 计算复杂性的概念 …………………………………… 5 1. 3 邻域概念……………………………………………… 11 1. 4 启发式算法…………………………………………… 13 1. 5 NP , N P-C 和 NP -hard 概念 ………………………… 28 1. 6 小结…………………………………………………… 48 练习题 ……………………………………………………… 49 参考文献 …………………………………………………… 51
《最优化基础—— 模型与方法》系列教材
现代优化计算方法
邢文训 谢金星 编著
清华大学出版社
( 京) 新登字 158 号
内 容 简 介
本书 系 统 介 绍 了 禁 忌 搜 索 、模 拟 退 火 、遗 传 算 法 、人 工 神 经 网 络 和 拉 格 朗 日 松 弛等 现 代 优 化 计 算 方 法 的 模 型与 理 论 、应 用技 术 和 应 用 案 例 。
解决实际生活中优化问题的手段大致有以下几种: 一是靠经 验的积累, 凭主观作判断; 二是做试验选方案, 比优劣定决策; 三是 建立数学模型, 求解最优策略。虽然由于建模时要作适当简化, 可 能使结果不一定非常完善, 但是它基于客观数据, 求解问题简便、 灵活、经济, 而且规模可以很大( 将来会越来越大) 。人们还可以吸 收从经验得到的规则, 用实验来不断校正建立的模型。随着数学方 法和计算机技术的进步, 用建模和数值模拟解决优化问题这一手 段, 将会越来越显示出它的效能和威力。显然, 在决策定量化、科学 化的呼声日益高涨的今天, 数学建模方法的推广应用是符合时代 潮流和形势发展需要的。
现代优化计算方法

现代优化计算方法
现代优化计算方法是一种新兴的技术,该技术利用计算机科学和数学
理论来解决非线性问题。
它有助于企业对复杂的决策进行有效的优化。
随着人工智能的发展,现代优化计算方法正发挥着重要作用,帮助企
业自动解决挑战性问题,并有助于企业节约大量时间和成本。
首先,现代优化计算方法以迭代方式解决非线性问题,通过计算当前
状况进行优化,以达到最优的解决方案。
它有助于实现真正的自动解决,而不需要过多的人力介入,从而减少了工作时间。
另外,现代优
化计算使用模型来模拟解决复杂的问题,该模型帮助企业更好地了解
各种变量的影响,以便找出最佳解决方案。
此外,现代优化计算通常使用先进算法来解决问题,如遗传算法、蚁
群算法和模拟退火算法等。
遗传算法能够有效地搜索最优解决方案,
蚁群算法能够快速综合多个目标,模拟退火算法能够搜索最优的结果。
这些算法不仅可以提高解决问题的效率,而且能够显著降低数学计算
的难度,使得复杂的优化问题得到更好地解决。
最后,实施现代优化计算方法有许多好处,它有助于企业解决复杂的
决策问题,并且可以节约大量时间和成本,最终达到更优的结果。
此外,它还可以让企业从中获取可视化情况,从而更好地了解各种变量
的影响,以找出最佳的解决方案。
总之,现代优化计算方法是一种高效的技术,它有助于企业对复杂的
决策问题进行有效的优化,从而节约时间和成本,同时也能够有效解
决挑战性问题,以及更好地了解各种变量的影响。
现代优化计算方法课程的教学改革探索

现 代 优 化 计 算 方 法 课 程 的 教 学 改 革 探 索
王 海 英 , 传 涛 李
( .中国地质大学 ( 京) 1 北 信息工程学 院 , 北京 10 8 ; 0 0 3
2 .山 东 体 育 学 院 山 东 体 育 运 动 学 校 ,山东 济 南 2 0 1 ; 50 4
3 .中国地质大学 ( 京) 北 地球物理 与信息技术学 院, 京 10 8 ) 北 0 0 3
摘 要 : 现代 优化计 算方法是 中 国地 质大 学 ( 北京 ) 士研 究 生 的 一 门公共 基 础课 , 要 介绍 禁 忌搜 索 、 硕 主 模拟 退 火 、 遗传 算法 、 群 算法 和人 工神 经 网络 算法 等 , 些 均在 地质 、 感等地 质 类专 业具 有较广 泛 而重要 蚁 这 遥 的应 用 。从该 课程 的教 学理 念 、 学 内容 、 学方 法及 如何 通 过该 课程 提 高研 究生 解决 实际 问题 能力 等若干 教 教 方 面 , 行 了教 学改革探 讨 。 进 关键词 : 现代优 化 算 法 ; 程 ;教 学 改革 课
l9 0
2 1 点 01
菏
泽
学
院
ቤተ መጻሕፍቲ ባይዱ
学
报
第 2期
培 养具有 创新 和科 研 能力 的高 级 知识 人 才 。《 中华 人 民共 和 国高 等 教 育法 》 定 : 士 研 究 生 教 育 应 规 硕 当使 学生 掌握本 学科 知 识 的基 础 理论 、 系统 的专业
方 面进行 教 学改 革探 讨 。
1 教 学 模 式 的基 本 要 素 及 其 重 要 性
从某 种 角度来 说 , 士研 究 生 课 程 的教 学 模 式 硕
2 让 教 学 成 为科 研 活 动 的教 学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s Z n
c为n维列向量,A为m×n矩阵、b为m 维列向量,x 为n维决策变量,Zn表示n 维整数向量的集合 系数A、b和c的元素都是整数
• 例1.1.2和1.1.3的数学模型都具有(IP) 的形式 •一些组合优化问题可以写成整数线 性规划问题 •IP与LP形式非常相似,不同之处是 前者的决策变量部分或全部取整数
包的能力限制
(1.2)
xi
i=1
∈ {0,1},
i
=
1,",
xi=1:装第i个物品
n
(1.3)
D={0,1}n,F为D中满足(1.2)的可行解.f为目标函数
例1.1.2 旅行商问题 (TSP,traveling salesman problem)
一个商人欲到n个城市推销商品,每两 个城市i和j之间的距离为dij,如何选择 一条道路使得商人每个城市走一遍后 回到起点且所走路径最短 TSP还可以细分为: 对称(dij =dji)和非对称距离两大类问题
决策变量
t = 1,",T
(1.12)
xit=1表示第t时段加工产品i 、T:时段数
组合优化问题的表示形式
• 组合优化问题通常可以用整数规划模型 的形式表示,如例1.1.1和1.1.2
• 有些组合优化问题用IP模型表示则比较 复杂且不易被理解,不如对问题采用直 接叙述更易理解,如例1.1.2,1.1.4和1.1.5
1.1 组合最优化问题
1.组合最优化(combinatorial optimization) 是通过对数学方法的研究去寻找离散事 件的最优编排、分组、次序或筛选等, 是运筹学中的一个经典且重要的分支, 所研究的问题涉及信息技术、经济管理、 工业工程、交通运输、通信网络等诸多 领域
2.该问题可用数学模型描述为:
对 一般的TSP
∑ min dij xij i≠ j
n
∑ s.t. xij = 1, j =1
n
∑ xij = 1,
i =1
(1.4)
从城市i出来1次
i = 1,2,", n
走入城市j只1次
j = 1,2,", n
∑ xij ≤| s | −1, 2 ≤| s |≤ n − 2,
i, j∈s
s ⊂ {1,2,", n}, 城市子集 xij ∈{0,1}, i, j = 1,", n, i ≠ j xij=1:经过城市i→j的路径
minT
(1.9) 加工所用的时段数最少
T
∑ s.t.
xit = 1, i = 1,2 ,", n (1.10)
t=1 产品i一定在某个时段加工
n
∑ di xit ≤ ct , t = 1,2 ,",T (1.11)
i=1
每个时段的加工量不超过能力的限制
xit ∈{0,1}, i = 1,", n;
•这些算法涉及生物进化、人工智能、数 学和物理科学、神经系统和统计力学等概
念 •都是以—定的直观基础而构造的算法, 也称之为元启发式算法(meta-heuristics) •启发式算法的兴起与计算复杂性理论的 形成有密切的联系 •现代优化算法自80年代初兴起,至今发 展迅速
•这些算法同人工智能、计算机科学和运 筹学相融合
例1.1.2的非对称距离TSP问题耗时
• 可以用另一个方法来表示它的可行解: 用n个城市的—个排列表示商人按这个排 列序推销并返回起点
• 若固定一个城市为起终点,则需要 (n—1)!个枚举
• 设计算机1秒可以完成24个城市所有路径 枚举为单位
(1.5) (1.6)
(1.7) (1.8)
共n×(n-1)个决策变量 D={0,1}n× (n-1)
一条回路是由k(1≤k ≤ n)个城市和k条弧 组成,因此,(1.7)约束旅行者在任何一 个城市真子集中不形成回路,其中|S|表 示集合S中元素个数
例1.1.3 整数线性规划 (integer linear programming)
现代优化计算方法
第一章 概 论
现代优化算法包括:
• 禁忌搜索(tabu search) • 模拟退火(simulated annealing) • 遗传算法(genetic algorithms) • 蚁群优化(ant colony optimization algorithm) • 人工神经网络(artificial neural networks) • 拉格朗日松弛等算法
例1.1.1 0-1背包问题(knapsack problem)
设有一个容积为b的背包,n个尺寸分别为
ai(i=l,2,…,n),价值分别为ci(i=1,2,…,n)的 物品,如何以最大的价值装包?
n
∑ max ci xi (1.1) 包内所装物品的价值最大
i =1
∑ s.t.
n
ai xi ≤ b
min f(x) s.t. g(x)≥ 0 ,
x∈D 其中,f(x)为目标函数,g(x)为约束函 数,x为决策变量, D为决策变量的定
义域 3.一个组合最优化问题可用三参数(D, F,f)表示,F={x|x ∈D, g(x)≥ 0}表示可 行解集, 为有限点集,D通常也为有限点 集,f表示目标函数
4.满足f(x*)=min{f(x) | x∈F}的可行解 x*称为该问题的最优解. 5.组合最优化的特点是可行解集合为 有限点集 6.例
例1.1.4 装箱问题(bin packing)
设有n个一维尺寸不超过1的物品集合{a1, a2,…, an},如何以个数最少的一维尺寸为 1的箱子装进这n个物品?(一维装箱问 题)
例1.1.5约束机器排序问题 (capacitated machine scheduling)
n个加工量为{ di | i =l,2,…,n}的 产品在一台机器上加工,机器在第t 个时段的工作能力为ct ,求完成所有 产品加工的最少时段数
• 根据对解的精度要求和分析的需要,有 大量的组合优化问题是通过文字语言叙 述的
1.2计算复杂性的概念
• 计算复杂性的概念是为评估算法的计算 耗时和解的偏离程度等指标而提出的
• 这套理论产生于70年代 • 是评估算法的基础
计算耗时的实例
• 每一个组合最优化问题都可以通过枚举 的方法求得最优解
• 枚举是以时间为代价的,有的枚举时间 还可以接受,有的则不可能接受