干空气物理性质表

合集下载

第二节 空气的物理性质

第二节  空气的物理性质

第二节 空气的物理性质、气体状态方程及流动规律一、空气的组成成份及空气的物理性质1.空气的组成成份大气中的空气主要是由氮、氧、氩、二氧化碳,水蒸气以及其它一些气体等若干种气体混合组成的。

含有水蒸气的空气为湿空气。

大气中的空气基本上都是湿空气。

而把不含有水蒸气的空气称为干空气。

在距地面20 km 以内,空气组成几乎相同。

在基准状态(0℃,绝对压力为101325 Pa ,相对湿度为0)下地面附近的干空气的组成见表11-1。

空气中氮气所占比例最大,由于氮气的化学性质不活泼,具有稳定性,不会自燃,所以空气作为工作介质可以用在易燃、易爆场所。

2.空气的密度单位体积空气的质量,称为空气的密度ρ(kg/m 3),其公式为ρ =m / V (11-1)式中 ρ — 空气密度;m — 空气的质量(kg );V — 空气的体积(m 3)。

气体密度与气体压力和温度有关,压力增加,密度增加,而温度上升,密度减少。

在基准状态下,干空气的密度为 1.293 kg/m 3,在温度 t (℃)、压力(MPa )下的干空气的密度可用下式计算(11-2) 式中 ρ0 — 基准状态下的干空气密度;p — 绝对压力(MPa );ρ — 干空气的密度;t — 温度(℃),其中(273+t )为绝对温度(K )。

对于湿空气的密度可用下式计算(11-3)式中 ρ' — 湿空气的密度;p — 湿空气的全压力(MPa );φ — 空气的相对湿度(%);p b — 温度为t ℃时饱和空气中水蒸气的分压力(MPa )。

3.空气的粘性空气在流动过程中产生的内摩擦阻力的性质叫做空气的粘性,用粘度表示其大小。

空气的粘度受压力的影响很小,一般可忽略不计。

随温度的升高,空气分子热运动加剧,因此,空气的粘度随温度的升高而略有增加。

粘度随温度的变化关系见表11-2。

气体与液体和固体相比具有明显的压缩性和膨胀性。

空气的体积较易随压力和温度的变化而变化。

例如,对于大气压下的气体等温压缩,压力增大0.1 MPa ,体积减小一半。

化工原理课程设计附录

化工原理课程设计附录

附录一、水与蒸汽的物理性质1水的物理性质2 水的饱和蒸气压(-20~100℃)3 饱和水蒸气表(以温度为准)4 饱和水蒸气表(以压强为准)(Ⅰ)5 饱和水蒸气表(以压强为准)(Ⅱ)二、干空气的物理性质(p=101325Pa)四、液体及水溶液的物理性质1 某些液体的重要物理性质2 油类的相对密度3 氢氧化钠水溶液相对密度4 浓硫酸水溶液相对密度5 稀硫酸及硝酸、盐酸水溶液相对密度6 有机液体相对密度共线图7 有机液体的表面张力共线图8 某些无机物水溶液的表面张力/(dyn/cm)9 液体在20℃的体积膨胀系数10 液体黏度共线图11 液体比热容共线图12 某些液体的热导率λ×102/[kcal/(m·h·℃)]13 液体汽化潜热共线图14 无机溶液在大气压(101 3kPa)下的沸点15 液体的普朗特数(算图)五、气体的重要物理性质1 某些气体的重要物理性质2 气体黏度共线图(常压下用)3 气体比热容共线图(常压下用)4 常用气体的热导率5 某些气体的Pr数值六、固体性质1.常用固体材料的重要物理性质2 某些固体材料的黑度(ε)七、管子规格1 水煤气输送钢管(摘自GB 3091—93,GB 3092—93)2 无缝钢管规格简表3 热交换器用HSn62 1,HSn70 1,H68拉制黄铜管(摘自YB 448—64)4 承插式铸铁管规格八、泵与风机九、1 B型水泵性能表(摘录)2 8 18、9 27离心通风机综合特性曲线图九、换热器1 热交换器系列标准(摘录)2 冷凝器规格十一、流体常用流速范围参考文献。

第二章湿空气性质

第二章湿空气性质

湿空气的含湿量和相对湿度同为湿空气的 状态参数,但意义却不相同,相对湿度能够表 示空气的饱和程度,但不能表示水蒸气的含量; 相反,湿空气的含湿量它能表示水蒸气的含量,
却不能够表示空气饱和程度。
Pqb d 0.622 0.622 B Pq B Pqb
Pq
7.湿空气的露点温度 饱和空气的水蒸气分压力决定于空气 的温度。空气的温度愈高,相应的 Pqb 愈 大。因此,当空气的温度改变时,随着Pqb 值的变化,饱和空气和未饱和空气两种状态 是可以相互转化的。在不改变空气压力和含 湿量的前提下,若将水蒸气分压力为Pq的未 饱和空气进行冷却,使其温度由原来的t降 低到tl,若对应于tl的Pqb值恰与Pq值相等, 则φ=100%,该未饱和空气就变成了饱和 空气。在含湿量不变的条件下,使未饱和空 气达到饱和状态的温度为露点温度
2.8 测得空调房间的干球温度、湿球温度和大气压力后, 应怎样计算该房间空气的含湿量、相对湿度和焓?



第二章 习


2.1 试 求 t=26℃ 时 干 空 气 的 密 度 。 当 地 大 气 压 力 B=101325Pa。 2.2 已知空气温度t=-10℃,大气压力B=101325Pa,相 对湿度φ=70%。试比较干空气和湿空气的密度。 2.3 已知房间内空气温度t=20℃,相对湿度φ=50%,所 在地区大气压力B=101325Pa,试计算空气的含湿量。 2.4 某地大气压力B=101325Pa。测得当时空气温度 t=30℃,相对湿度φ=80%。试计算该空气的含湿量。若 空气达到饱和状态(φ=100%),试计算该空气的饱和 含湿量、焓和密度。
§2.2 湿空气的焓湿图及其应用
2.2.1 湿空气的焓湿图(h-d)

空气的物理性质

空气的物理性质

8.1 湿空气的物理性质
在湿空气中,水蒸气所占的百分比是不稳定的,常常随着海 拔、地区、季节、气候、湿源等各种条件的变化而变化,因为 水蒸气在仅有压力变化的情况下就能够液化,而干空气只有其 温度降低到一定临界温度以下后才能液化。相对来说,湿空气 中的水蒸气数量很少,它来源于地球上的海洋、江河、湖泊表 面的水分蒸发,各种生物的代谢过程,以及生产工艺过程。虽 然湿空气中水蒸气的含量少,但其变化会引起湿空气干、湿度 变化,进而对人体感觉、产品质量、工艺过程和设备维护等都 有直接影响,这是不容忽视的;同时,湿空气中水蒸气含量的 变化又会使湿空气的物理性质随之变化。因此,从空气调节的 角度来说,空气的潮湿程度是我们十分关心的问题。
8.1 湿空气的物理性质
1kg干空气焓和 d kg水蒸气的焓两者的总和,称为(1 d)kg湿空 气的焓。如果取0℃的干空气和0℃的水的焓值为0,则湿空气 的焓表达式如下:
h hg d hq kJ/kg(d a) (8-16) 其中,干空气的焓为hg cpgt ;水蒸气的焓 hq 2500 cpqt。 式中 cpg ——干空气的定压比热,在常温下为 cpg 1.005 1.01 ,kJ/(kg·℃);
Pq
B Pq.b
kg/kg(d a)
(8-13a)
g/kg(d a)(8-13b)
式由中上d 面db(P为q 8空-1B气3)P的q.b两饱式和B相含比P湿q.b可量1得0,0:%单位为 ddb

B

Pq

100%
B Pq.b
(8-14)
d b Pq.b B Pq
B Pq
在工式程(中8应-1用4)只中会B造比成P2q.b%和~P3q 大%的得误多差,。如因果此把,BB相P对Pqq.b湿视度为1,又在可

干燥计算

干燥计算

U dW Sd
而 dW GdX , [W G(X1 X 2 )]
所以 U GdX
Sd
式中 W’—一批操作中汽化的水分量,kg;
G’—一批操作中干物料的质量,kg。
干燥速率曲线:U与X之间的关系曲线。
由干燥速率曲线,可以将干燥过程分为两个阶段:
物料预热阶段
(1) 恒速干燥阶段
H

水汽质量mv 干空气质量mg

nv M v ng M g
18 nv 29 ng
0.622 p , P p
kg水汽/ kg干空气
(1)
空气饱和时, H s 二、 相对湿度:

0.622
P
ps ps

水汽分压与水的饱和蒸汽压之比,即
p 100 % ps
代入式(1),得 H 0.622 ps
即 Iv0 Iv2 (2) 湿物料进出干燥器时的比热相等,并可取其平均值
即 c1 c2 cm 而 c cs Xcw
由 I0 I g0 H0Iv0 cgt0 Iv0H0
I2 Ig2 H2Iv2 cgt2 Iv2H2
相减并代入假定(1),得
又由
I2 I0 cg (t2 t0 ) Iv2 (H2 H0 ) cg (t2 t0 ) (r0 cv2t2 )(H2 H0 )
恒速干燥阶段
第一降速阶段
(2) 降速干燥阶段
第二降速阶段
干燥机理:
(1) 物料预热阶段,A B
:空气传给物料的热量大于水分汽化所需热量,物料表面温度上
升到空气的湿球温度,, pw , ( pw p) , U
对干燥器进行焓衡算

气压基础知识

气压基础知识
式中 ε为空气膨胀修正系数
• 气流在不同流速时,采用有效截面积的流量计
算公式
充气、放气温度与时间的计算


向容器充气的过程视为绝热过程,压力升高,温度也 升高。但容器内温度下降至室温,其内的气体压力也 要下降。 器放气的过程为绝热过程,压力降低,温度也降低。 但容器停止放气,容器内温度上升到室温,其内的压 力也上升。
因气体粘度小,忽略摩擦阻力,有 v2/2+ gz + kp /(k-1)ρ= 常数

声速与马赫数
– 气流速度与当地声速(c=341m/s)之比称为马赫数
Ma= v/c Ma 集中反映了气流的压缩性, Ma愈大,气流密度 变化越大。 当Ma <1时,称为亚声速流动; 当Ma =1时,称为声速流动,也叫临界状态流动; 当Ma >1时,称为超声速流动。
气压传动基础知识
空气的物理性质 理想气体的状态方程 气体的流动规律 气体在管道中的流动特性 气动元件的通流能力 充、放气温度与时间的计算

空气的物理性质

空气的组成
– 主要成分有氮气、氧气和一定量的水蒸气。 – 含水蒸气的空气称为湿空气,不含水蒸气的空气称为干空气。

空气的密度
– 对于干空气ρ=ρo×273 /(273+t)×p / 0.1013
空气的粘度
– 较液体的粘度小很多,且随温度的升高而升高。
空气的压缩性和膨胀性
– 体积随压力和温度而变化的性质分别表征为压缩性和膨胀性。 – 空气的压缩性和膨胀性远大于固体和液体的压缩性和膨胀性。

湿空气
– 所含水份的程度用湿度和含湿量来表示。湿度的表示方法有 绝
气动元件的通流能力
气动元件的通流能力,是指单位时间内通过阀、 管路等的气体质量。目前通流能力可以采用有 效截面积S和质量流量q表示。 有效截面积

矿内空气的主要物理参数

矿内空气的主要物理参数

第一节 矿内空气的主要物理参数一、密度单位体积空气所具有的质量称为空气的密度,用符号ρ表示。

空气可以看作是均质气体,故:Vm =ρ,kg/m 3 (1-2-1) 式中 m ——空气的质量,kg ;V ——空气的体积,m 3 ;ρ——空气的密度,kg /m 3;一般地说,当空气的温度和压力改变时,其体积会发生变化。

所以空气的密度是随温度、压力而变化的,从而可以得出空气的密度是空间点坐标和时间的函数。

如在大气压P 0为101325 Pa 、气温为0 ℃(273.15 K)时,干空气的密度ρ0为1.293 kg /m3。

湿空气的密度是l m3空气中所含干空气质量和水蒸汽质量之和:v d ρρρ+= (1-2-2) 式中 ρd —1m 3空气中干空气的质量,kg ;ρv —1m 3空气中水蒸汽的质量,kg ;由气体状态方程和道尔顿分压定律可以得出湿空气的密度计算公式:⎪⎭⎫ ⎝⎛-+=P P t P s ϕρ378.01273003484.0 (1-2-3) 式中 P —空气的压力,Pa ;t —空气的温度,℃ ; P s —温度t 时饱和水蒸汽的分压,Pa ;φ—相对湿度,用小数表示。

二、比容空气的比容是指单位质量空气所占有的体积,用符号v (m 3/kg)表示,比容和密度互为倒数,它们是一个状态参数的两种表达方式。

则:ρ1==m V v ,m 3/kg (1-2-4) 在矿井通风中,空气流经复杂的通风网络时,其温度和压力将会发生一系列的变化,这些变化都将引起空气密度的变化,在不同的矿井这种变化的规律是不同的。

在实际应用中,应考虑什么情况下可以忽略密度的这种变化,而在什么条件下又是不可忽略的。

三、粘性当流体层间发生相对运动时,在流体内部两个流体层的接触面上,便产生粘性阻力(内摩擦力)以便阻止相对运动,流体具有的这一性质,称作流体的粘性。

例如,空气在管道内以速度u 作层流流动时,管壁附近的流速较小,向管道轴线方向流速逐渐增大,如同把管内的空气分成若干薄层,图1-2-1所示。

第二章--风流性质和能量方程

第二章--风流性质和能量方程

第二章矿井风流的基本性质§2—1 矿井空气的物理性质一、空气的密度指单位体积空气的质量,用ρ表示,单位:kg/m3。

ρ=vm式中:v—空气的体积,m3;m—v体积空气的质量,kg。

由理想气态方程,对于干空气:ρ干=3.484TP对于湿空气:ρ湿=(3.458~3.473)TP式中:P—空气绝对大气压力,kPa;T—热力学温度,T=(273.15+t)K;t—空气的温度,℃。

将标准大气压力P =101.325 kPa,t=0℃,φ=0代入上式,得ρ干=1.293 kg/m3。

将标准大气压力P =101.325 kPa,t=20℃,φ=60%代入上式,得ρ湿=1.20 kg/m3。

二、空气的重度指单位体积空气的重力,用γ表示,单位:N/m3。

γ=vW式中:v—空气的体积,m3;W—空气的重力,N。

将W=mg代入上式,得γ=ρg N/m3因此,对于干、湿空气γ干=1.293×9.81=12.684 (N/m3)γ湿=1.20×9.81=11.772 (N/m3)三、空气的比容指单位质量的空气具有的容积,用ν表示,单位:m3/kg。

ν=V/m=1/ρ显然,空气的比容与空气的密度互为倒数。

四、空气的比热指质量为1 kg的空气,温度升高(或降低)1℃时,所吸收(或放出)的热量,单位:k.J/kg. ℃。

五、空气的粘性指空气抗拒剪切力的性质,是空气在流动时产生阻力的内在因素。

由于空气的粘性,空气在巷道中流动时靠近巷道轴部流速快,靠近巷道边沿流速慢。

V小V大§2—2 井巷中的风速与测定一、井巷断面风速分布井巷风速指风流单位时间内流过的距离,用V表示,单位:m/s或m/min。

由于空气的粘性,空气在巷道轴部流动速率快,靠近边沿流速慢,我们所说的风速是指巷道的平均风速。

平均风速与最大风速的比值叫风速分布系数,用k速表示,即k速=V均/V大,一般在0.7~0.9之间。

对于不同的巷道砌碹巷道:k速≈0.83;木棚支护巷道:k速≈0.73;无支护巷道:k速≈0.75。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
600
700
800
900
1000
1100
1200
湿空气的性质
温度( ℃ )
湿度
(kg/kg
干空气)
水蒸气压
(kN/m 2 )
水分浓度
(kg/m 3 )
汽化焓
(kJ/kg)
湿焓
(kJ/kg
干空气)
湿容积(m 3 /kg
干空气)
动粘度
(106 m2 /s)
湿热
(10 -3 kJ/kg)
导热系数
(W/m · K)
水分扩散系数
(106 m2 /s)
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100




02380水ຫໍສະໝຸດ 物理性质温度( ℃ )
饱和蒸汽压
(kPa)
密度
(kg/m 3 )
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
0
+
109
264
58
全国主要城市年平均温度及湿度表
城市
平均温度(℃)
平均相对湿度(% )
城市
平均温度(℃)
平均相对湿度(% )
北京
59
杭州
82
天津
65
福州
76
石家庄
58
厦门
76
宝鸡
78
开封
71
南京
73
干空气物理性质表()
温度t
( ℃ )
密度ρ
(kg/m 3 )
比热c,
(kJ/kg ℃ )
导热系数λ× 10 2
(W/m ℃ )
粘度
μ× 10 5
(Pas)
普兰德数
Pr
-50
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
120
140
160
180
200
250
300
350
400
500
郑州
67
玉门
39
洛阳
63
兰州
57
武汉
76
银川
60
长沙
78
青岛
70
南昌
79
济南
55
桂林
73
西安
66
南宁
76
延安
58
广州
75
太原
57
成都
79
大同
54
自贡
77
西宁
61
重庆
83
乌鲁木齐
56
昆明
71
包头
50
贵州
77
呼和浩特
52
遵义
79
哈尔宾
66
拉萨
42
长春
68
锦州
60
吉林
67
抚顺
71
沈阳
67
合肥
75

(kJ/kg)
比热
kJ/(kg ℃ )
导热系数λ×10 2 (W/ m ·℃ )
粘度
μ×10 5 (Pa a)
体积膨胀系数β×10 4 (1/ ℃ )
表面张力σ×10 3 (N/m)
普兰德数
Pr
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
相关文档
最新文档